The Possible Meaning of Fine Structure Constant $1/\alpha = hC/(2\pi e^2) = 137.036$

Dongsheng Zhang Email: <u>zhangds12@hotmail.com</u> 7/24/2011

[Abstract] . Through making the analogous comparisons of Dirac's large number $1/L_n$ to the fine structure constant $1/\alpha$, and of gravitational force F_g to F_b , the better reasonable conclusion might be that, $1/\alpha$ could be 137.036 times or proportion of the strong force Fn to the electromagnetic force F_e in the atomic nucleus.

[Dongsheng Zhang. The Possible Meaning of The Fine Structure Constant $1/\alpha = hC/(2\pi e^2) = 137.036$ Report Opinion 2011;3(8):1-2]. (ISSN: 1553-9873). http://www.sciencepub.net.

[Key Words] : Dirac's large number 1/Ln; fine structure constant $1/\alpha$; gravitational force F_g ; electromagnetic force F_e ; strong force Fn in the atomic nucleus; analogous comparisons;

(1). The fine structure constant $1/\alpha$ is defined to, $1/\alpha = hC/(2 \pi e^2) = 137.036$ (1a)

In formula (1a), h= $6.626 \times 10^{-27} g_* cm^2/s$ =Planck constant; C = $2.998 \times 10^{10} cm/s$ = light speed; e = $4.80325 \times 10^{-10} esu = 1.6022 \times 10^{-19} C$; then, $1/\alpha = hC/(2\pi e^2) = 6.626 \times 10^{-27} \times 2.998 \times 10^{10} / [2 (4.80325 \times 10^{-10})^2] = 137,0368 \approx 137.036.$

Let's explore the possibly physical property of the fine structure constant $1/\alpha$ below.

(2) • Firstly, let's look back the origin of Dirac's large number L_n , According to the idea of Pual Dirac's "large number hypothesis", comparing the electromagnetic force F_e to the universal gravitational force F_g , taking the hydrogen atom as an example, the mass of proton $m_p = 1.6727 \times 10^{-24}$ g, the mass of electron $m_e = 9.1096 \times 10^{-28}$ g, the capacity of electron $e = -e = 1.602 \times 10^{-19}$ C, r is the distance between two electrons, G = gravitational constant= 6.6726×10^{-8} cm³/s²*g, k= 9.0×10^{9} N·m²/C²

 $\mathbf{F_g} = \mathbf{Gm_pm_e} \ /r^2 = 6.6726 \times 10^{-8} \times 1.6727 \times 10^{-24} \times 9.1096 \times 10^{-28} / r^2 = 101.67 \times 10^{-60} / r^{2} [1]$ (2a)

 $\mathbf{F_e} = \mathbf{k}e^2/r^2 = 9.0 \times 10^9 \ \mathbf{N} \cdot \mathbf{m}^2/\mathbf{C}^2 \times (1.6022 \times 10^{-19} \text{C})^2 / r^2 = 9.0 \times 10^9 \times 10^5 \times 10^4 \times (1.6022 \times 10^{-19} \text{C})^2 / r^2 = 23.10 \times 10^{-20} / r^2 [1]$ (2b)

$$\mathbf{F}_{e}/\mathbf{F}_{g} = \mathbf{L}_{n} = 23.10 \times 10^{-20}/101.67 \times 10^{-00} = 2.35 \times 10^{39} \, ^{[1]}$$
(2c)

(2c) shows, that under the distance r, between two particles, the non-dimension constant $L_n = ke^2/Gm_pm_e = 2.35 \times 10^{39}$ is the times of the electromagnetic force F_e to the universal gravitational force F_g .

【3】 • Since $L_n = F_e/F_g = ke^{2}/Gm_pm_e$ is equal to a constant 2.35×10^{39} , two patterns of $Gm_pm_e/e^2 = 1/L_n$ and $hC/(2\pi e^2) = 1/\alpha$ are analogous; and $1/L_n$ and $1/\alpha$ are all non-dimension constants, $1/\alpha = hC/(2\pi e^2)$ might be guessed as a proportion of two different forces. Let's apply some formulas of black holes (BH) as analogous comparison. Suppose M_b is mass

of any black hole, m_{ss} is a Hawking quantum radiation emitted from the radius of the Event Horizon R_b of BH M_b , so,

$$\frac{\mathbf{m}_{ss} \mathbf{M}_{b} = \mathbf{h}\mathbf{C}/8\pi\mathbf{G}^{[2]}}{\text{Then,}}$$

$$4G\mathbf{m}_{ss}\mathbf{M}_{b} = \mathbf{h}\mathbf{C}/2\pi$$
(3a)
(3b)

$$4Gm_{ss}M_{b}/e^{2} = hC/2\pi e^{2} \qquad (3c)$$

Let $Gm_{b}M_{c}/R_{c}^{2} = E$, which is fi

Let $Gm_{ss}M_b/R_b^2 = F_b$, which is the gravitational force of M_b to its m_{ss} , and $F_e = e^2/r_n^2$, if $r_n = 2R_b$, then,

$$\frac{Fn/F_e = hC/2\pi e^2 = 1/\alpha = 137.036}{(3d)}$$

Correspondingly, Fn might be guessed as the strong force, i.e. acting forces between quarks in the atomic nucleus. Therefore, under $r_n = 2R_b$,

 $Fn = hC/2\pi r_n^2 = 4F_b$ (3e)

How strong is the strong force Fn? 1*. Let $r_n \approx 10^{-13}$ cm, Fn = hC/2 πr_n^2 = 6.626 ×10⁻²⁷× 2.998 ×10¹⁰/2 π ×10⁻²⁶ = 0.316×10¹⁰ dyne. And F_e = e^2/r_n^2 = (4.80325×10⁻¹⁰)²/10⁻²⁶ = 23.07×10⁶ dyne. Then, Fn/F_e = 0.316×10¹⁰/23.07×10⁶ = 136.97 <u>≈137.036 = 1/α</u>. 2*. Let = R_b = 10⁻¹³ cm, as the calculated result from formula 2GM_b = C²R_b, M_b = 10¹⁵ g, m_{ss} = 1.76×10⁻²⁴g ≈ mass of a proton. It shows, in case of $r_n = 2R_b \approx 10^{-13}$ cm. Thus, the strong force $F_n = 4F_b$, i.e. F_n is about equal to the gravitational force of a BH of M_b = 10¹⁵ g to a m_{ss} ≈ 1 proton on its R_b. The reason why F_n is analogous to F_b on property and numerical values is both might accord with the quantum mechanics.

4 • Conclusion:

1*. Just as $F_e/F_g = 10^{39} = 1/L_n$, so, $Fn/F_e = 137 = 1/\alpha$ may be completely possible. Therefore, L_n and α may be considered as the coupling coefficients. Since $L_n = F_e/F_g$ is the coupling coefficient of the electromagnetic force F_e to the universal gravitational force F_g , and analogously, $1/\alpha = Fn/F_e$ might be seen as the coupling coefficient of the strong force Fn to F_e . Owing to

that Fn has not been clearly recognized and calculated out right now, thus, some formulas of black holes are applied by author as analogous comparison. I think, Fn = $hC/2\pi r_n^2$ as the strong force in atomic nucleus and $1/\alpha = Fn / F_e$ as a coupling coefficient are better reasonable.

 2^* . Just as Dirac's large number $1/L_n$ has no general meaning tn the Universe; analogously, $1/\alpha$ may have no general meaning in the Universe; each of both may only be a special coupling coefficient between two different acting forces.

====The End====

[references] :

[1]. Dongsheng Zhang: 《Why Could Paul Dirac Not Derive The Correct Conclusions From His "Large Number Hypothesis"? 》。Nature and Science, 2008;6(4), ISSN 1545-0740, http://www.sciencepub.org/nature/0604.

[2]. Dongsheng Zhang: 《Information Amount and Entropy of Black Holes(BH) Mb and its Hawking Quantum Radiation(HQR) mss » . Report and Opinion, 2011;3(4). http://www.sciencepub.net/report/report0304/.

7/24/2011