Automorphic Functions And Fermat’s Last Theorem (2)

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
Jiangchunxuan@vip.sohu.com

Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous proof, which this margin is too small to contain.” This means: \(x^n + y^n = z^n (n > 2) \) has no integer solutions, all different from 0 (i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent \(P \). Fermat proved FLT for exponent 4. Euler proved FLT for exponent 3. In this paper using automorphic functions we prove FLT for exponents \(6P \) and \(P \), where \(P \) is an odd prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

Keywords: automorphic function; cyclotomic field; Fermat; theorem

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

\[
\exp \left(\sum_{i=1}^{2n-1} t_i J^i \right) = \sum_{i=1}^{2n} S_i J^{i-1} \tag{1}
\]

where \(J \) denotes a \(2n \)th root of unity, \(J^{2n} = 1 \), \(n \) is an odd number, \(t_i \) are the real numbers.

\(S_i \) is called the automorphic functions (complex hyperbolic functions) of order \(2n \) with \(2n-1 \) variables [5,7].

\[
S_i = \frac{1}{2n} \left[e^{A_i} + 2 \sum_{j=1}^{n-1} \left(-1 \right)^{(i-1)jB_j} \cos \left(\frac{j(i-1)j\pi}{n} \right) \right] + \frac{1}{2n} \left[e^{D_i} + 2 \sum_{j=1}^{n-1} \left(-1 \right)^{(i-1)j} e^{D_j} \cos \left(\frac{j(i-1)j\pi}{n} \right) \right], \tag{2}
\]

where \(i = 1, ..., 2n \);

\[
A_i = \sum_{a=1}^{2n-1} t_a, \quad B_j = \sum_{a=1}^{2n-1} t_a (-1)^{aj} \cos \frac{\alpha j \pi}{n}, \quad \theta_j = (-1)^{(j+1)} \sum_{a=1}^{2n-1} t_a (-1)^{aj} \sin \frac{\alpha j \pi}{n},
\]

\[
A_2 = \sum_{a=1}^{2n-1} t_a (-1)^a, \quad D_j = \sum_{a=1}^{2n-1} t_a (-1)^{(j-1)\alpha} \cos \frac{\alpha j \pi}{n},
\]

\[
\phi_j = (-1)^j \sum_{a=1}^{2n-1} t_a (-1)^{(j-1)a} \sin \frac{\alpha j \pi}{n}, A_i + A_2 + 2 \sum_{j=1}^{n-1} (B_j + D_j) = 0 \tag{3}
\]

From (2) we have its inverse transformation[5,7]

\[
e^{A_i} = \sum_{i=1}^{2n} S_i, \quad e^{A_i} = \sum_{i=1}^{2n} S_i (-1)^{1+i}
\]
\[
e^{B_j} \cos \theta_j = S_1 + \sum_{i=1}^{2n-1} S_{i+1} (-1)^i \cos \frac{ij\pi}{n},
\]
\[
e^{B_j} \sin \theta_j = (-1)^{j+1} \sum_{i=1}^{2n-1} S_{i+1} (-1)^i \sin \frac{ij\pi}{n},
\]
\[
e^{D_j} \cos \phi_j = S_1 + \sum_{i=1}^{2n-1} S_{i+1} (-1)^{j-i} \cos \frac{ij\pi}{n},
\]
\[
e^{D_j} \sin \phi_j = (-1)^j \sum_{i=1}^{2n-1} S_{i+1} (-1)^{j-i} \sin \frac{ij\pi}{n},
\]
(4)

(3) and (4) have the same form.
From (3) we have
\[
\exp \left[A_1 + A_2 + 2 \sum_{j=1}^{n-1} (B_j + D_j) \right] = 1
\]
(5)

From (4) we have
\[
\exp \left[A_1 + A_2 + 2 \sum_{j=1}^{n-1} (B_j + D_j) \right] = \begin{vmatrix} S_1 & S_{2n} & \cdots & S_2 \\ S_2 & S_1 & \cdots & S_3 \\ \vdots & \vdots & \ddots & \vdots \\ S_{2n} & S_{2n-1} & \cdots & S_1 \end{vmatrix}
\]
\[
= \begin{vmatrix} S_1 & (S_1)_1 & \cdots & (S_1)_{2n-1} \\ S_2 & (S_2)_1 & \cdots & (S_2)_{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ S_{2n} & (S_{2n})_1 & \cdots & (S_{2n})_{2n-1} \end{vmatrix}
\]
(6)

where \((S_j)_j = \frac{\partial S_j}{\partial t_j}\) [7].

From (5) and (6) we have circulant determinant
\[
\exp \left[A_1 + A_2 + 2 \sum_{j=1}^{n-1} (B_j + D_j) \right] = \begin{vmatrix} S_1 & S_{2n} & \cdots & S_2 \\ S_2 & S_1 & \cdots & S_3 \\ \vdots & \vdots & \ddots & \vdots \\ S_{2n} & S_{2n-1} & \cdots & S_1 \end{vmatrix} = 1
\]
(7)

If \(S_i \neq 0 \), where \(i = 1,2,3,\ldots,2n \), then (7) have infinitely many rational solutions.

Let \(n = 1 \). From (3) we have \(A_1 = t_1 \) and \(A_2 = -t_1 \). From (2) we have
\[
S_1 = \text{ch} t_1 \quad S_2 = \text{sh} t_1
\]
(8)

we have Pythagorean theorem
\[
\text{ch}^2 t_1 - \text{sh}^2 t_1 = 1
\]
(9)

(9) has infinitely many rational solutions.

Assume \(S_1 \neq 0, S_2 \neq 0, S_i \neq 0 \), where \(i = 3,\ldots,2n \). \(S_i = 0 \) are \((2n-2)\) indeterminate equations with \((2n-1)\) variables. From (4) we have
\[e^{A} = S_1 + S_2, \quad e^{B_j} = S_1 - S_2, \quad e^{2D_j} = S_1^2 + S_2^2 + 2S_1S_2(-1)^j \cos \frac{j\pi}{n}, \]

\[e^{2D_j} = S_1^2 + S_2^2 + 2S_1S_2(-1)^j \cos \frac{j\pi}{n} \] \hfill (10)

Example. Let \(n = 15 \). From (3) and (10) we have Fermat’s equation

\[\exp[A_i + A_2 + 2\sum_{j=1}^{2} (B_j + D_j)] = S_1^{30} - S_2^{30} = (S_1^{10})^3 - (S_2^{10})^3 = 1 \] \hfill (11)

From (3) we have

\[\exp(A_i + 2B_3 + 2B_6) = [\exp(\sum_{j=1}^{5} t_{5j})]^5 \] \hfill (12)

From (10) we have

\[\exp(A_i + 2B_3 + 2B_6) = S_1^5 + S_2^5 \] \hfill (13)

From (12) and (13) we have Fermat’s equation

\[\exp(A_i + 2B_3 + 2B_6) = S_1^5 + S_2^5 = [\exp(\sum_{j=1}^{5} t_{5j})]^5 \] \hfill (14)

Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational solutions for exponent 5.

Theorem. Let \(n = 3P \), where \(P \) is an odd prime. From (7) and (8) we have Fermat’s equation

\[\exp(A_i + A_2 + 2\sum_{j=1}^{2} (B_j + D_j)] = S_1^{6P} - S_2^{6P} = (S_1^{2P})^3 - (S_2^{2P})^3 = 1 \] \hfill (15)

From (3) we have

\[\exp\left(A_i + 2\sum_{j=1}^{p-1} B_{3j}\right) = \left[\exp\left(\sum_{j=1}^{5} t_{jp}\right) \right]^p \] \hfill (16)

From (10) we have

\[\exp\left(A_i + 2\sum_{j=1}^{p-1} B_{3j}\right) = S_1^p + S_2^p \] \hfill (17)

From (16) and (17) we have Fermat’s equation

\[\exp\left(A_i + 2\sum_{j=1}^{p-1} B_{3j}\right) = S_1^p + S_2^p = \left[\exp\left(\sum_{j=1}^{5} t_{jp}\right) \right]^p \] \hfill (18)

Euler prove that (15) has no rational solutions for exponent 3[8]. Therefore we prove that (18) has no rational solutions for prime exponent \(P \) [5,7].

Remark. It suffices to prove FLT for exponent 4. Let \(n = 4P \), where \(P \) is an odd prime. We have the Fermat’s equation for exponent \(4P \) and the Fermat’s equation for exponent \(P \) [2,5,7]. This is the proof that Fermat thought to have had. In complex hyperbolic functions let exponent \(n \) be \(n = \Pi P \), \(n = 2\Pi P \) and \(n = 4\Pi P \). Every factor of exponent \(n \) has the Fermat’s equation [1-7]. In complex trigonometric functions let exponent \(n \) be \(n = \Pi P \), \(n = 2\Pi P \) and \(n = 4\Pi P \). Every factor of exponent \(n \) has Fermat’s equation [1-7]. Using modular elliptic curves Wiles and Taylor prove FLT [9, 10]. This is not the proof that Fermat thought to have.
had. The classical theory of automorphic functions, created by Klein and Poincare, was concerned with the study of analytic functions in the unit circle that are invariant under a discrete group of transformation. Automorphic functions are the generalization of trigonometric, hyperbolic, elliptic, and certain other functions of elementary analysis. The complex trigonometric functions and complex hyperbolic functions have a wide application in mathematics and physics.

Acknowledgments.

We thank Chenny and Moshe Klein for their help and suggestion.

References

7/1/2012