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Abstract: In this paper we analyze the influences of thermal radiation, viscous dissipation, buoyancy force and 
internal heat generation on steady laminar convection flow over a semi-moving vertical plate in the presence of a 
convective surface boundary condition. In the analysis, we assumed that the left surface of the plate is in contact 
with a hot fluid while the cold fluid on the right surface of the plate contains a heat source that decays exponentially 
with the classical similarity variable. We utilized similarity variable to transform the governing non-linear partial 
differential equations into a system of ordinary differential equations, which are solved numerically by applying 
shooting iteration technique alongside with sixth order Runge-Kutta integration scheme for better accuracy. The 
effects of the local Biot number, the Prandtl number, the internal heat generation parameter, the thermal radiation, 
the local Grashof number and the Eckert number on the velocity and temperature profiles are illustrated and 
interpreted in physical terms. A comparison with previously published results on similar special cases showed 
excellent agreement. Finally, numerical values of physical quantities, such as the local skin-friction coefficient and 
the local Nusselt number are presented in tabular form. 
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1. Introduction 

The problem of laminar hydrodynamic and thermal 
boundary layers over the flat plate in a uniform stream 
of fluid is a thoroughly researched problem in fluid 
mechanics. The velocity distribution in the 
hydrodynamic boundary layer is given by the well 
known Blasius similarity solution. The similarity 
solution for the thermal boundary layer for the case of 
constant surface temperature at the plate is also well 
established and widely quoted in heat transfer textbooks 
such as [1]. For the boundary condition of constant heat 
flux at the plate, Kays and Crawford [2] claimed that a 
similarity solution does not exist. 
However, Bejan [3] refuted their claim by suggesting a 
different similarity temperature variable which reduced 
the energy equation to an ordinary differential equation. 
Although numerous studies such as [4,5] have 
considered different variations of temperature and heat 
flux at the plate. 

The first and foremost work regarding 
boundary-layer behaviour in moving surfaces in a 
quiescent fluid was performed by Sakiadis [6] and many 
researchers [7-14] have worked on the problem of 
moving or stretching plates under different situations. In 
the boundary-layer theory, similarity solutions were 
found to be useful in the interpretation of certain fluid 
motions at large Reynolds numbers. Similarity solutions 
often exist for the flow over semi-infinite plates and 
stagnation point flow for two-dimensional, 

axisymmetrical and three-dimensional bodies. In special 
cases, when there is no similarity solution, one has to 
solve a system of non-linear partial differential 
equations. For similarity boundary-layer flows, velocity 
profiles are similar. But this kind of similarity is lost for 
non-similarity flows (see [15-18]. Obviously, the 
non-similarity boundary-layer flows are more general in 
nature and are more important, not only in theory but also 
in application.  

The heat-transfer analysis of boundary-layer flows 
with radiation is also important in electrical power 
generation, astrophysical flows, solar power technology, 
space vehicle re-entry and other industrial areas. 
Extensive literature that deals with flows in the presence 
of radiation effects is now available. Raptis et al. [19] 
studied the effect of thermal radiation on the 
magnetohydrodynamic flow of a viscous fluid past a 
semi-infinite stationary plate. Hayat et al. [20] extended 
the analysis of reference [19] for a second-grade fluid. 
Convective heat transfer studies are very important in 
processes involving high temperatures, such as gas 
turbines, nuclear plants and thermal energy storage. 
Recently, Ishak [21] examined the similarity solutions 
for flow and heat transfer over a permeable surface with 
convective boundary condition. Moreover, Aziz [22] 
studied a similarity solution for laminar thermal 
boundary layer over a flat plate with a convective 
surface boundary condition and also studied 
hydrodynamic and thermal slip flow boundary layers 
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over a flat plate with a constant heat flux boundary 
condition. Makinde and Olanrewaju [23] investigated 
the buoyancy effects on a thermal boundary layer over a 
vertical plate with a convective surface boundary 
condition. More recently, Makinde [24] studied 
similarity solution for natural convection from a moving 
vertical plate with internal heat generation and a 
convective boundary condition. Olanrewaju et al. [25] 
examined the effects of internal heat generation, thermal 
radiation and buoyancy force on a boundary layer over a 
vertical plate with a convective surface boundary 
condition. Makinde and Olanrewaju [26] investigated 
the combined effects of internal heat generation and 
buoyancy force on boundary layer flow over a vertical 
plate with a convective surface boundary condition 

Viscous dissipation changes the temperature 
distributions by playing a role like an energy source, 
which leads to affected heat transfer rates. The merit of 
the effect of viscous dissipation depends on whether the 
plate is being cooled or heated. Heat transfer analysis 
over porous surface is of much practical interest due to 
its abundant applications. To be more specific, 
heat-treated materials traveling between a feed roll and 
wind-up roll or materials manufactured by extrusion, 
glass-fiber and paper production, cooling of metallic 
sheets or electronic chips, crystal growing just to name 
a few. In these cases, the final product of desired 
characteristics depends on the rate of cooling in the 
process and the process of stretching. The work of 
Sonth et al. [27] deals with the effect of the viscous 
dissipation term along with temperature dependent heat 
source/sink on momentum, heat and mass transfer in a 
visco-elastic fluid flow over an accelerating surface. 
Chen [28] examined the effect of combined heat and 
mass transfer on MHD free convection from a vertical 
surface with ohmic heating and viscous dissipation. The 
effect of viscous dissipation and Joule heating on MHD 
free convection flow past a semi-infinite vertical flat 
plate in the presence of the combined effect of Hall and 
non-slip currents for the case of power-law variation of 
the wall temperature is analyzed by Abo-Eldahab and El 
Aziz [29].  

In many new engineering areas processes such as 
fossil fuel combustion energy processes, solar power 
technology, astrophysical flows, gas turbines and the 
various propulsion devices for aircraft, missiles, 
satellites, and space vehicle re-entry occur at high 
temperatures so knowledge of radiation heat transfer 
beside the convective heat transfer plays a very 
important role and hence its effect cannot be neglected. 
Also thermal radiation is of major importance in many 
processes in engineering areas which occur at a very 
high temperature for the design of many advanced 
energy conversion systems and pertinent equipment. 
The Rosseland approximation is used to describe the 
radiative heat flux in the energy equation.  Pal and 

Mondal [30] investigate the unsteady two-dimensional 
MHD non-Darcian mixed convection heat and mass 
transfer past a semi-infinite vertical permeable plate 
embedded in a porous medium by taking into account of 
Soret and Dufour effects in the presence of suction or 
injection, thermal radiation and first-order chemical 
reaction. Hence the present study investigates the 
similarity solution for natural convection from a moving 
vertical plate with internal heat generation and a 
convective boundary condition in the presence of 
thermal radiation and viscous dissipation which is an 
extension of Makinde [24] with the addition of thermal 
radiation and viscous dissipation for more physical 
implications. Using a similarity approach, the governing 
equations are transformed into nonlinear ordinary 
equations and solved numerically using shooting 
iteration technique together with sixth order 
Runge-Kutta integration scheme. The pertinent results 
are displayed graphically and discussed quantitatively. 

 
1. 2. Mathematical formulation 
We consider the steady laminar incompressible natural 

convection boundary layer flows over the right surface of a vertical 
flat plate moving with uniform velocity U0 in contact with a 
quiescence cold fluid at temperature T. The cold fluid on the 
right surface of the plate generates heat internally at the 

volumentric rate q . The left surface of the plate is 

heated by convection from a hot fluid at temperature Tf 
which provides a heat transfer coefficient hf as shown in 
fig. 1. Under the Boussinesq for fluid density variation, 
the continuity, momentum, and energy equations 
describing the flow can be written as: 
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Fig. 1.  Flow configuration and coordinate 
system 
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where u and v are the x (along the plate) and the y 
(normal to the plate) components of the velocities, 
respectively, T is the temperature, μ is the fluid viscosity, 
 is the kinematics viscosity of the fluid, and k is the 
thermal conductivity of the fluid and β is the thermal 

expansion coefficient, q  is the internally generated 

heat at volumentric rate, g is the gravitational 
acceleration and qr is the radiative heat flux, 
respectively. The velocity boundary conditions can be 
expressed as  

    ,00,,0, 0  xvUxu    (4) 

  .0, xu       (5) 

The boundary conditions at the plate surface and far into 
the cold fluid may be written as  

   ],0,[0, xTThx
y

T
k ff 



   (6) 

      .,  TxT      (7) 

The radiative heat flux qr is described by Roseland 
approximation such that  
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where Kand*  are the Stefan-Boltzmann 

constant and the mean absorption coefficient, 
respectively. Following Chamkha [31], we assume that 
the temperature differences within the flow are 
sufficiently small so that the T4 can be expressed as a 
linear function after using Taylor series to expand T4 

about the free stream temperature T and neglecting 

higher-order terms. This result is the following 
approximation: 
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Using (8) and (9) in (3), we obtain 
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Introducing a similarity variable η and a 
dimensionless stream function f(η) and temperature () 
as:  
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where prime symbol denotes differentiation with respect 
to η and Rex =U0x/ is the local Reynolds number.  Eqs. 
(1) – (7) reduce to  
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For the momentum and energy equations to have a 
similarity solution, the parameters Grx , λx, and  Bix 

must be constants and not functions of x as in Eq. (16). 
This condition can be met if the heat transfer coefficient 

hf is proportional to 2
1x  , the thermal expansion 

coefficient  is proportional to x-1  and the l internal 

generation q  is proportional to x-1 .  We therefore 

assume 

 2

1


cxhf ,
1mx , 

 elxq ,1  (17) 

where c, m, and l are constants. Substituting Eq. (17) 
into Eq. (16), we have  
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With Bi, λ, and Gr defined by Eq. (18), the 
solutions of Eqs. (12)- (15) yield the similarity solutions, 
however, the solutions generated are the local similarity 
solutions whenever Bix , λx and Grx are defined as in Eq. 
(13). 
 

 
3.   Numerical solutions 

The coupled non-linear equations (12) – (13) with 
the boundary conditions in Eqs. (14) – (15) are solved 
numerically using the sixth-order Runge-Kutta method 
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with a shooting technique and implemented on Maple 
[32]. The step size 0.001 is used to obtain the numerical 
solution with seven-decimal place accuracy as the 
criterion of convergence. 
 4.    Results and discussion 
Numerical calculations have carried out for different 
values of the thermophysical parameters controlling the 
fluid dynamics in the flow regime. The Prandtl number 
used are 0.72, 1, 3, 7.1, convective parameter Bix used 
are 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1, 5, 10, 20, the 

Grashof number (Grashof number Grx) used are Gr >0 
(which corresponds to the cooling problem), the thermal 
radiation used are 0.1, 0.5, 1 and the Eckert number 
used are 1, 2 and 5. The cooling problem is often 
encountered in engineering applications; for example in 
the cooling of electronic components and nuclear 
reactors. Comparisons of the present results with 
previously work is performed and excellent agreement 
has been obtained. We obtained the results as shown in 
tables (1)- (2)  and figures (2)-(13) below;

 
Table 1  
A comparison of the values obtained for the local skin-friction, the local Nusselt number and the surface temperature 
by Makinde [a] in the absent of thermal radiation and Eckert number, i.e.  Ra = Ec = 0. 
Bix Grx Pr 

x  )0(f  Makinde[24] )0(   

Makinde[24] 

)0(  

Makinde[24] 

)0(f   

Present 

)0(   

Present 

)0(  

Present 
0.1 0.1 0.72 1 -0.2000518 0.076578477 1.76578477 -0.2000519 0.076578478 1.76578478 
1.0 0.1 0.72 1 -0.2459676 0.281651449 1.28165144 -0.2459676 0.281651449 1.28165145 
10 0.1 0.72 1 -0.2695171 0.382952717 1.03829527 -0.2695171 0.382952718 1.038295272 
0.1 0.5 0.72 1 0.4221216 0.048257030 1.48257030 0.4221217 0.048257030 1.482570304 
0.1 1.0 0.72 1 0.9895493 0.034011263 1.34011263 0.9895494 0.034011263 1.340112630 
0.1 0.1 3.00 1 -0.3748695 -0.023814576 0.76185423 -0.3748696 -0.02381458 0.761854232 
0.1 0.1 7.10 1 -0.4138825 -0.057164001 0.42835998 -0.4138825 -0.057164002 0.428359981 
0.1 0.1 0.72 5 0.3741286 0.576670381 6.76670381 0.3741286 0.5766703814 6.766703814 
0.1 0.1 0.72 10 0.9010790 1.106605802 12.0660580 0.9010791 1.1066058028 12.06605803 

 
Table 2 

Computation showing )0(f  , )0(   and )0(  for different embedded flow parameter values 

Bix Grx Pr 
x  

Ec Ra )0(f   )0(   )0(  

0.1 0.1 0.72 1 1 0.1 -0.00559356550615563 0.216556134999959516 3.16556134999959492 
1.0 0.1 0.72 1 1 0.1 -0.14433555929307157 0.734173416277385416 1.73417341627738653 
10 0.1 0.72 1 1 0.1 -0.20982197423365378 0.950599829815936381 1.09505998298159346 
0.1 0.5 0.72 1 1 0.1 1.94922003941417632 0.344568434522710964 4.44568434522710910 
0.1 1.0 0.72 1 1 0.1 5.33467259894761092 0.551527748304988630 6.51527748304989007 
0.1 0.1 3.00 1 1 0.1 -0.18765862159613869 0.178943107428566034 2.78943107428565940 
0.1 0.1 7.10 1 1 0.1 -0.22883280272867598 0.198605192198536200 2.98605192198536296 
0.1 0.1 0.72 5 1 0.1 0.573612212020427003 0.729613352819421856 8.29613352819422366 
0.1 0.1 0.72 10 1 0.1 1.10770291495196527 1.26695594901374964 13.6695594901375036 
0.1 0.1 0.72 1 2 0.1 0.241670685752199021 0.414742971040799768 5.14742971040799802 
0.1 0.1 0.72 1 5 0.1 1.34977954076616834 1.44357448270189437 15.4357448270189419 
0.1 0.1 0.72 1 1 0.5 -0.00758112230575465 0.181454592477094334 2.81454592477094279 
0.1 0.1 0.72 1 1 1.0 -0.01813084843143244 0.150980890223783970 2.50980890223783915 

 
Table 1 shows the comparison of Makinde [24] 

work with the present work for Ec = Ra = 0 and it 
noteworthy that there is a perfect agreement. Table 2, 
shows the values of the skin-friction coefficient, the 
Nusselt number and the surface temperature in terms 

of )0(f  , )0(  , )0(  respectively for various 
values embedded flow parameters. From Table 2, it is 
understood that the skin-friction, the rate of heat 
transfer and the wall surface temperature at the plate 
surface increases with an increase in local Grashof 
number, the internal heat generation and the Eckert 
number. However, an increase in the convective 
surface heat transfer parameter, the local Biot number 
and the radiation parameter decreases the 

skin-friction but increases the rate of heat transfer and 
the wall temperature at the plate surface except that 
increasing radiation parameter decreases the rate of 
heat transfer at the wall plate and the wall 
temperature. Similarly, from figure2, it was clearly 
seen that increases in the Prandtl number increases 
the skin-friction at the plate surface but increases the 
rate of heat transfer and the surface wall temperature 
at the plate wall surface. 

 
A. Velocity profiles 

Figures 2-7 depicts the effects of various 
thermophysical parameters on the fluid velocity 
profile. It was observed that generally, the fluid 
velocity increases gradually away from the plate, 
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attain its peak value within the boundary layer and 
the decreases to the free stream zero value satisfying 
the boundary conditions. From figure 2, it was 
observed that increases the local Grashof number 
thickens the velocity boundary layer thickness across 
the flow channel. Figure 3 depicts the effects of 
convective surface heat transfer parameter on the 
fluid velocity and it was observed that increases in 
the convective surface heat transfer or local Biot 
number thinning the velocity boundary layer 
thickness. In figure 4, the influence of Prandtl 
number on the fluid velocity was displayed and it is 
interesting to note that velocity boundary layer 
thickness decreases with an increase in the Prandtl 
number. Figure 5 depicts the effects of local internal 
heat generation parameter on the fluid velocity. An 
increase in the exponentially decaying internal heat 
generation causes a further increase in the velocity 
boundary layer thickness. Similarly, figure 6 depicts 
the influence of thermal radiation on the fluid 
velocity and it is interesting to note that increases the 
radiation parameter thickens the velocity boundary 
layer thickness away from the plate surface. Figure 7 
represents the curve of fluid velocity against 
spanwise coordinate η for various values of Eckert 
number which shows that increase in Eckert number 
leads to a sudden increase in the fluid velocity 
immediately away from the wall plate before 

satisfying the boundary conditions. It is interesting to 
note that it thickens the velocity boundary layer 
thickness close to the wall plate when the velocity 
profile attains its maximum value point. 
 

B. Temperature profiles 
Figures 8-13 illustrate the fluid temperature profiles 
within the boundary layer. Generally, the fluid 
temperature is maximum at the plate surface and 
decreases exponentially to zero value far away from 
the plate satisfying the boundary conditions. From 
this figures, it is noteworthy that the thermal 
boundary layer thickness increases with an increases 
with an increase in exponentially decaying internal 
heat generation and the Eckert number and decreases 
with an increase in the values of local Grashof 
number, local Biot number, Prandtl number and 
thermal radiation. At high Prandtl fluid has low 
velocity, which in turn also implies that that at lower 
fluid velocity the specie diffusion is comparatively 
lower and hence higher specie concentration is 
observed at high Prandtl number. It is interesting to 
note that as thermal radiation increases, the thermal 
boundary layer thickness decreases at the wall 
surface plate but a little away from the wall surface 
plate it thickens the thermal boundary layer thickness 
satisfying the boundary conditions. 

 

 
Figure 2: Effects of local Grashof number on the 
velocity 
 profile for Pr = 0.72, Bix = 0.1, λx =10, Ra = 0.1, Ec = 
1. 
 
 
 
 
 
 
 
 
 

 

 
Figure 3: Effects of local Biot number on the velocity 
 profile for Pr = 0.72, , λx =10, Ra = 0.1, Ec = 1, Ra = 
0.1. 
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Figure 4: Effects of Prandtl number on the velocity 
 profile for Bix = 0.1, λx =10, Ra = 0.1, Ec = 1, Ra = 
0.1. 
 

 
Figure 5: Effects of internal heat generation on the 
velocity 
 profile for Bix = 0.1, Pr =0.72, Ra = 0.1, Ec = 1, Ra = 
0.1. 

 
Figure 6: Effects of Radiation parameter on the 
velocity 
 profile for Bix = 0.1, Pr =0.72, λx = 10, Ec = 1, Grx = 
0.1. 

 
Figure 7: Effects of Eckert number on the velocity 
 profile for Bix = 0.1, Pr =0.72, λx = 10, Grx = 0.1, Ra 
= 0.1. 

 
Figure 8: Effects of local Grashof number on the 
temperature 
 profile for Pr = 0.72, Bix = 0.1, λx =10, Ra = 0.1, Ec = 
1. 

 
Figure 9: Effects of local Biot number on the 
temperature 
 profile for Pr = 0.72,  λx =10, Ra = 0.1, Ec = 1, Ra = 
0.1. 
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Figure 10: Effects of Prandtl number on the 
temperature profile for Bix = 0.1, λx =10, Ra = 0.1, Ec 
= 1, Ra = 0.1. 

 
Figure 11: Effects of internal heat generation on the 
temperature profile for Bix = 0.1, Pr =0.72, Ra = 0.1, 
Ec = 1, Ra = 0.1. 
 

 
Figure 12: Effects of Radiation parameter on the 
temperature profile for Bix = 0.1, Pr =0.72, λx = 10, Ec 
= 1, Grx = 0.1. 

 
Figure 13: Effects of Eckert number on the 
temperature profile for Bix = 0.1, Pr =0.72, λx = 10, Grx 
= 0.1, Ra = 0.1. 
 
5. Conclusions 

The Similarity solution for natural convection 
from a moving vertical plate with internal heat 
generation and a convective boundary condition in the 
presence of thermal radiation and viscous dissipation is 
studied. A set of non-linear coupled differential 
equations governing the fluid velocity and temperature 
is solved numerically for various material parameters. 
A comprehensive set of graphical results for the 
velocity and temperature is presented and discussed. 
Our results reveal among others, that the internal heat 
generation, thermal radiation and the Eckert number 
prevents the flow of heat from the left surface to the 
right surface of the plate unless the local Grashof 
number is strong enough to convert away both the 
internally generated heat in the fluid. Generally, the 
fluid velocity increases gradually away from the plate, 
attain its peak value within the boundary layer and the 
decreases to the free stream zero value satisfying the 
boundary conditions. It is interesting to note that the 
fluid velocity within the boundary layer increases with 
increasing values of exponentially decaying internal 
heat generation, thermal radiation and the Eckert 
number a little away from the wall plate and attain its 
peak before obeying the boundary conditions. 
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Nomenclature 
Bix - local Biot number, [-] 
cp - specific heat at constant pressure, [-] 
c, m, l - positive constants, [-] 
f - dimensionless stream function, [-] 
Grx - local Grashof number, [-] 

         Pr = 0.72 
ooooooooo   Pr = 1.0 
++++++++   Pr = 3.0 
…………..   Pr = 7.1 

        1.0x  

ooooooooo  0.1x  
++++++++  0.5x  
…………   10x  

        Ra = 0.1 
ooooooooo  Ra = 0.4 
++++++++  Ra = 0.8 
………….  Ra = 1.2 

         Ec = 0.1 
ooooooooo   Ec = 0.5 
++++++++   Ec = 1.0 
…………..   Ec = 2.0 
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Ra - thermal radiation parameter, [-] 
Ec - Eckert number, [-] 
g - gravitational acceleration, [Ls-2] 
k - thermal conductivity, [Wm-1K-1] 
Pr - Prandtl number, [-] 
Rex - local Reynolds number, [-] 
T - fluid temperature, [K] 

T  - free stream temperature, [K] 

Tf - hot fluid temperature, [K] 

U  - free stream velocity, [Ls-1] 

u, v - Cartesian co-ordinates, [m] 
Greek letters 
α thermal diffusivity, [m 2s-1] 
β thermal expansion coefficient, [K -1] 
  - kinematic viscosity, [m2s-1] 
λ - internal heat generation parameter, [-] 
η - similarity variable, [m] 
ρ - fluid density, [kgm-3] 
θ - dimensionless temperature, [-] 
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