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Abstract:  Face recognition is one of the most popular problems in the field of image analysis. In this paper, we 
discuss the design of an optimal multi-layer neural network for the task of face recognition. There are many issues 
while designing the neural network like number of nodes in input layer, output layer and hidden layer(s), setting the 
values of learning rate and momentum, updating of weights. Lastly, the criteria for evaluating the performance of 
the neural network and stopping the learning are to be decided. We discuss all these design issues in the light of the 
eigenfaces based face recognition. We report the effects of variations of these parameters on number of training 
cycles required to get optimal results. We also list the optimized values for these parameters. In our experiments, we 
use two face databases namely ORL and UMIST. These databases are used to construct the eigenfaces. The original 
faces are reconstructed using the top eigenfaces. The factors used in the reconstruction of the faces are used as the 
inputs to the neural network.  
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1. Introduction  

Face recognition is one of the well-known 
problems in the field of image processing. In face 
recognition problem, a given face is compared with the 
faces stored in a face database in order to identify the 
person, who have the given face. The purpose is to find 
a face in the database, which has the highest similarity 
with the given face. One of the important algorithms 
for face recognition is the eigenface algorithm [1]. 
Since, face recognition is a high-dimensional pattern 
recognition problem, eigenface algorithm, which 
reduces the dimensionality of the input face space, is 
found to be one of the most successful methodologies. 
Eigenface algorithm uses the Principal Component 
Analysis (PCA) for dimensionality reduction to find 
the vectors which best account for the distribution of 
face images within the entire image space. These 
vectors define the subspace of face images and the 
subspace is called face space. All faces in the training 
set are projected onto the face space to find a set of 
weights that describes the contribution of each vector 
in the face space. To identify a test image, it requires 
the projection of the test image onto the face space to 
obtain the corresponding set of weights. By comparing 
the weights of the test image with the set of weights of 
the faces in the training set, the face in the test image 
can be identified. Multi-layer perceptron (MLP), a 
multi-layer neural network that was first proposed by 
Frank Rosenblatt [2], has also been widely used for the 
task of face recognition [3, 4]. 

In this paper, we discuss the design of an 
optimal multi-layer perceptron  for eigenfaces based 

face recognition. There are many issues while 
designing the multi-layer neural network like number 
of nodes in input layer, output layer and hidden 
layer(s), setting the values of learning rate and 
momentum, updating of weights. Lastly, the criteria for 
evaluating the performance of the neural network and 
stopping the learning are to be decided. We discuss all 
these design issues in the light of the eigenfaces based 
face recognition. We try to get optimal value for all 
these parameters. 

The paper is organized as follows. In section 
2, we discuss the suitability of multi-layer perceptron 
for task of face recognition. In section 3, we discuss all 
the design parameters in detail. We briefly look at the 
related work in section 4. We present our results in 
section 5. Finally, we conclude in section 6. 
 
2. Multilayer Perceptron  

The single layer perceptrons have two layers 
consisting of neurons, an input layer and an output 
layer. The output of a discrete neuron can only have the 
values zero (non firing) and one (firing). Each neuron 
has a real-valued threshold and fires if and only if its 
accumulated input exceeds that threshold. Each 
connection from an input node j to an output neuron i 
has a real-valued weight wij. For some problems, like 
the famous XOR problem, the single layer perceptrons 
fail to perform. This paves the way for the more 
advanced multi-layer perceptrons. MLPs are feed 
forward neural networks trained with the standard back 
propagation algorithm and have one input layer, one 
output layer and one or more hidden layers.  
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Figure 1. A Multi-layer Perceptron 

 
By training a MLP, the output space is separated into regions. The ability of a MLP to correctly classify 

input data patterns, which has not been used for training the MLP, is termed as generalization [5]. The multi-layer 
perceptrons are highly suitable for any classification task e.g. pattern recognition, character recognition and face 
recognition. This is due to the reason that the MLPs build hypersurfaces that divide the output space into different 
classes that have dissimilar properties. In the face recognition process it is desired to have all the faces of the same 
person to belong to the same class and the faces of different persons to be classified as different classes. A 
remarkable thing about MLP is that it has good extrapolative and interpolative properties and is thus able to 
correctly classify faces that it has not been trained with as belonging to the correct class. The MLPs are trained with 
the back-propagation algorithm which is an error-minimizing and optimization approach. 

 
Figure 2. Division of Output Space into Different Classes 

 
3. Designing an Optimal Multi-layer Neural 
Network 
While designing an optimal multi-layer Neural 
Network, we have to decide upon a number of 
parameters. In this section, we discuss the different 
parameters and the way in which, we determine the 
optimal values for these parameters. 
 
3.1. Number of Nodes in the Input Layer 

The number of input nodes can generally be easily 
determined because the number of nodes in the input 
layer is equal to the number of inputs that we want to 
feed into the network. In the typical neural networks for 
the recognition of the faces, the number of input nodes is 
equal to the number of pixels in the face image. It leads 
to the huge complexity of the neural network 
architecture. But in the Principal Component Analysis, 
rather than applying the pixel values as the input, only the 
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multipliers of the eigenfaces are used as the input. This 
approach greatly reduces the complexity of the neural 
network architecture. The original faces are represented 
as the sum of products of the eigenfaces and these 
multipliers. So these multipliers can be used to 
differentiate between the faces of different persons. The 
main hurdle is the determination of the number of 
eigenfaces that are sufficient to correctly represent the 
variation in the faces. The number of input nodes is then 
equal to the number of eigenfaces and the input values 
are the multipliers with which these eigenfaces should be 
multiplied to correctly reconstruct the original faces. 
 
3.2. Number of Nodes in the Output Layer 
The number of nodes in the output layer is equal to the 
number of persons that are to be recognized. The value of 
the output node corresponding to the correct face will be 
highest while the other output nodes will have very less 
values. The output nodes have competition among 
themselves for the highest output value and the node 
having the highest value is the winner that decides the 
identity of the person. It is also possible to have one extra 
output node for the faces of persons that are outside the 
training set of faces.  
 
3.3. Number of Hidden Layers 

Generally one hidden layer with sufficient 
number of nodes is enough for most of the problems that 
use neural networks.  It is advisable to use as few hidden 
layers as possible because the addition of each hidden 
layer significantly increases the network complexity, 
increases the number of weighted connections between 
the nodes and unnecessary addition of the hidden layers 
will lead to slower learning. However, having more than 
one hidden layer has few advantages when they are used 
in the networks where their use is essential, like better 
learning of relationship between inputs and outputs, faster 
learning and at times having more than one hidden layer 
can help in avoiding the pitfalls of the local minimums. 
For the design of an optimal multi-layer perceptron, we 
may vary the number of hidden layers and study the 
effect of these variations. We may also vary the number 
of nodes in the first hidden layer and see the effects of 
these variations. Then, we may add the second hidden 
layer and vary the number of nodes in both the hidden 
layers and note the effects of these variations. We may 
repeat the process until we decide upon an optimal value 
for the number of hidden layers. 

 
3.4. Number of Hidden Nodes 

Determining the number of hidden nodes is a 
tricky problem and there are no absolutely correct 
guidelines for the number of nodes. The number of 
hidden nodes determines the mapping ability of the 
network. In other words, larger the number of hidden 
nodes, more powerful is the network. However, if this 

number is too large, the generalization may get worse. 
This is due to over-fitting the training set, which can be 
solved by using cross-validation. If there are too many 
hidden nodes in the network, many problems may 
occur e.g. too much training time, the network may fail 
to generalize the input data and it may instead 
memorize the correct response to each input pattern. 
On the other hand, if there are too few hidden layer units, 
the network may fail to train correctly because this may 
result in insufficient and incorrect mapping between the 
inputs and the outputs. If we examine the weight values 
on the hidden nodes periodically as the network trains, 
we can see that weights on certain nodes change very 
little from their starting values. These nodes may not be 
participating in the learning process, and fewer hidden 
nodes may suffice. Some rules that may be used for 
determining the number of hidden nodes are given as 

outinphid NNN  , inphid NN   and 

outhid NN   

where, hidN  is number of hidden nodes, 

inpN  is number of input nodes and outN  is the number 

of output nodes. 
 

3.5. Number of Training Examples 
From the available training data, a subset of data is 
needed to train the network successfully. The remaining 
data can be used to test the network to verify that the 
network can perform the desired mapping on input 
vectors it has never encountered during training. In 
contrast to generalization, the back-propagation network 
does not extrapolate well. If it is inadequately or 
insufficiently trained on a particular class of input 
examples, subsequent identification of members of that 
class may be unreliable. The faces of the same person can 
have a large number of variations like presence or 
absence of glasses; facial expressions like smile, frown, 
etc; changes in pose in horizontal and vertical plane. This 
necessitates a large number of faces per person that 
capture almost all of the variations that a person’s face 
can have. We work with two face databases namely 
ORL [6] and UMIST [7]. The ORL face database 
consists of 10 faces for each person, out of which, we use 
8 faces per person in training the neural network and the 
rest 2 for testing the neural network. For the UMIST face 
database, 14 faces of a person are used in training the 
neural network and 5 faces are used in testing the neural 
network. This may be noted that the number of training 
examples should neither be so less that the MLP is not 
able to correctly generalize the classes, nor it should so 
large that the network memorizes the faces. 

 
3.6. Dealing with the Local Minima 
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Sometimes during training it is observed, that after 
long training, the algorithms seem to stall. In other 
words, error remains high and the continuous training 
does not lead to its reduction. One of the explanations 
is that the optimization algorithm has found a local 
minimum, but not the global minimum. Once the 
network settles on a minimum, whether local or global, 
learning ceases. Since back-propagation uses a 
gradient-descent procedure, a back-propagation 
network follows the contour of an error surface with 
weight updates moving it in the direction of steepest 
descent.  

As a general rule of thumb, the more hidden 
nodes we have in a network the less likely we are to 

encounter a local minimum during training. Although 
additional hidden nodes increase the complexity of the 
error surface, the extra dimensionality increases the 
number of possible escape routes.  

In case the back-propagation seems to stall, 
some help is needed. The various suggestions to deal 
with the local minima and get out of it, may be listed as 
1. We may make use of the adaptive learning rate.  
2. Weights can be re-randomized and the process be 

repeated.  
3. The number of hidden nodes can be changed.  
4. Addition of the momentum term may help in 

taking large steps in the correct direction thus 
over-stepping some of the local minimums.  

 

 
 Figure 3.  Variation of learning error with weight adjustment  

 
3.7. Momentum 
The original back-propagation algorithm is quite slow. 
By adding a term to the weight adjustment that is 
proportional to the amount of the previous weight 
change, the performance of the back-propagation 
algorithm can be improved. Such term is called 
momentum. The purpose of the momentum method is 
to accelerate the convergence of the back-propagation 
algorithm. The concept of momentum is that previous 
changes in the weights should influence the current 
direction of movement in weight space.  

The benefits of using momentum in terms of 
optimization for the neural network learning are: it 
speeds up the back-propagation of errors, keeps the 
error minimization process going in the same direction 
and also helps in jumping out of a local minimum and 
guides in finding the global minima. 

The benefits of using momentum in terms of 
optimization for the neural network learning are listed 
as follows. 
1. It speeds up the back-propagation of errors. 

2. It keeps the error minimization process going in 
the same direction. 

3. It helps in preventing the oscillations, which are 
very common in the traditional back-propagation 
approach. 

4. The momentum term helps in jumping out of a 
local minimum and guides in finding the global 
minima. 

 
3.8. Learning Rate 
The back-propagation algorithm requires that the 
weight changes be proportional to the derivative of the 
error. The larger the learning rate the larger the weight 
changes on each epoch, and the quicker the network 
learns. However, the size of the learning rate can also 
influence whether the network achieves a stable 
solution. If the learning rate gets too large, then the 
weight changes no longer approximate a gradient 
descent procedure (true gradient descent requires 
infinitesimal steps). Oscillation of the weights is often 
the result. Ideally then, one should like to use the 
largest learning rate possible without triggering 
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oscillation. This would offer the most rapid learning 
and the least amount of time spent waiting for the 
network to train. We may obtain the optimum value the 
learning rate by hit and trial. The learning rate may be 
kept the least in the beginning and then, it may be 
slowly increased in steps of 0.1 up to the optimum 
value, after which, its increase may lead to errors in 
correct recognition.  
 
3.9. Updating the Weights 

Back-propagation is essentially a learning 
algorithm that modifies the weights as is dictated by 
the error. The error is propagated backwards through 
the network and used to update the weights. After the 
weights are updated, the next instance is used to 
calculate the output, compute the errors, calculate the 
weights’ updates, etc. There are two ways in which the 
weights can be updated. Updating the weights in a 
back-propagation network can be done either after the 
presentation of each pattern (say, pattern learning), or 
after all of the patterns in the training set have been 
presented (say, epoch learning). If the learning rate is 
small, there is little difference between the two 
procedures. However, substantial differences can be 
observed when the learning rate is large, as the 
derivation of the back-propagation algorithm assumes 
that the error derivatives are summed over all of the 
patterns. When the weights are updated immediately it 
leads to slow learning but the network learns in a better 
manner. On the other hand, when the weights are 
updated after each epoch it leads to faster convergence, 
speeding up of the learning process but may lead to 
improper training. In our case, the weights are updated 
after all the training examples have been presented. 
  
3.10. Initialization with Free Parameter 
The parameters that need to be set before the learning 
can start are: weights, biases and thresholds. A good 
choice for the initial values of the synaptic weights, 
biases and thresholds of the network can significantly 
accelerate learning. 

A common practice is to set all the free 
parameters of the network to random numbers that are 
uniformly distributed inside a small range of values. If 
the weights are too large the sigmoid functions will 
start saturating from the very beginning of training and 
the system will become stuck in a kind of saddle point 
near the starting point itself. This phenomenon is 
known as “premature saturation”. Premature saturation 
can be avoided by getting the initial values of the 
weights and threshold levels of the network, to be 
uniformly distributed inside a small range of values. 
The weights may be randomly set to some random 
values, when the process of training is started.  
 
3.11. Pruning 

When a MLP network is created the layers are fully 
connected with weights between all the nodes of the 
input, output and hidden layers. Some networks can 
learn with a much lower number of connections. The 
process of removing the weights that contain no useful 
information but just add to the network complexity is 
called pruning. When we examine the weights of the 
various connections, we may find many weights that 
are not changing at all or very leFGss.  Such weights 
are redundant and do not help the network in learning. 
Pruning of the neural network serves two purposes. 
First, it speeds up the neural network learning by 
eliminating redundant weights and second, it reduces 
the network complexity. Pruning is performed when 
the values of the weights fall below some thresholds.  

 
3.12. Stopping Criteria 
Eventually training of the neural network has to 
terminate so that it can be queried to get the response 
for some input. The neural network will continue to 
learn until some stopping criteria is satisfied and the 
training can be stopped. There are a number of ways to 
suggest when the network training should stop. For 
example, the network training may be stopped if any of 
the following three criteria is satisfied. 
1. The average/maximum/minimum training error falls 

below some user-defined level 
2.  The number of training cycles or epochs exceeds a 

certain value. 
3.  All the validation tests have been performed. 
 
3.13. Performance Criteria 
The performance criteria are parameters on the basis of 
which the performance of the network can be 
evaluated. Three of the performance criteria, which are 
suitable for the face recognition neural network, are- 1. 
the accuracy of the recognition results, 2. the number 
of cycles and 3. the absolute or relative errors in the 
training and testing phases.  
 
4. Related Work 
Attempts have been made in past to use the neural 
network for the problem of face recognition [3, 4, 8, 9]. 
For example, in [3], the first 50 principal components 
of the images are extracted and reduced to 5 
dimensions using an auto associative neural network. 
The resulting representation is classified using a 
standard multi-layer perceptron. Good results are 
reported but the database is quite simple, the pictures 
are manually aligned and there is no lighting variation, 
rotation, or tilting. There are 20 people in the database. 
Pan Z. et al., in their study [4], used the multilayer 
perceptron neural network. There is just one hidden 
layer with number of hidden units being in between 60 
to 80. The input of neural network is a set of discrete 
cosine transform coefficients. They report that the 
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achieved recognition rate is in between 94% to 97%. In 
[8], Henry Rowley et. al. used three types of hidden 
units, 4 looking at 10x10 pixel sub-regions, 16 looking 
at 5x5 pixel sub-regions and 6 looking at 20x5 pixel 
sub-regions. These sub-regions are chosen to represent 
facial features that are important to face detection. 
Overlapping detections are merged. To improve the 
performance of their system, multiple networks are 
applied. They are trained under different initial 
condition and have different self-selected negative 
examples. The outputs of these networks are arbitrated 
to produce the final decision. In [9], there is only one 
hidden layer in the network with 20 to 30 units in it. 
The number of units in the input layer is equal to the 
number of image pixels, 2576 (i.e. 46 × 56). Gray level 
of every pixel is linearly scaled from range (0, 255) to 
(-0.05, +0.05). The number of output units is equal to 

the number of classes, which is 40, the number of 
persons in the ORL database. 
 
5. Experiments and Results 
We experimented with the ORL[6] and UMIST[7] face 
databases using a  neural network simulater called 
EasyNN-Plus[8]. The UMIST university face database 
consists of 564 images of 20 people, each covering a 
range of poses from profile to frontal views. Subjects 
cover a range of race/sex/appearance. Each subject 
exists in its own directory labeled as 1a, 1b, ... ,1t and 
the images are numbered consecutively as they were 
taken. The files are all in Portable Gray Map (PGM) 
format, 220 x 220 pixels in 256 shades of grey. As an 
example, the different images of face of a person in the 
directory 1a are shown in fig.4. 

 
 

   
Figure 4. Different images of the subject 1a in UMIST face database. 

 
On the other hand, ORL database contains a set of faces taken between April 1992 and April 1994 at Olivetti 
Research Laboratory (ORL) in Cambridge, U.K. There are 10 different images of 40 distinct subjects. There are 
variations in facial expression (open/closed eyes, smiling/non-smiling), and facial details (glasses/no glasses). All 
the images are against a dark homogeneous background with the subjects in an up-right, frontal position, with 
tolerance for some tilting and rotation of up to about 20 degrees. There is some variation in scale of up to about 
10%. The images are grayscale with a resolution of 92 x 112 pixels. As an example, 10 different images of face of a 
person are shown in fig.5. 
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Figure 5. The set of 10 images for a subject in ORL database.  

 
We report here, the recognition accuracies for the different faces of different persons. We obtain the 

optimal values of different design parameters such as number of training examples, number of hidden layers, 
number of nodes in hidden layers, learning rate, momentum, number of input nodes and number of output nodes. 
 
 
5.1 Number of Training Examples 
It is observed that as the number of training examples are increased the recognition accuracy increases. Fig. 6 shows 
the recognition accuracy for the first person in the ORL database as the number of faces is increased from 1 to 10. 
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Figure 6. Variation of recognition accuracy as number of training faces is increased. 

 
5.2 Number of Hidden Layers 
If only one hidden layer is taken, then, the number of training cycles that are required, might be very less, but, the 
accuracy may not be acceptable. The ORL faces have great variation in terms of presence of glasses, moustaches, 
beard, female faces, etc. So, one hidden layer is not found to be resulting in correct accuracy. So, we include two 
hidden layers in the multi-layer perceptron and discover that the accuracy is increased. 

In the case of UMIST faces, there is not much variation in the faces and the faces differ only slightly from 
each other in terms of the pose. So only a single hidden layer is found to be sufficient for these faces and it gives 
excellent results. 
 
5.3 Number of Nodes in Each Hidden Layer 
The number of nodes in the hidden layer(s) should be such that it is neither too large to result in unnecessary 
network complexity nor too small to result in slow and inaccurate learning. The criteria to judge the optimum 
number of nodes is number of training cycles and the recognition accuracy.  
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Figure 7.  Variation in training cycles as number of nodes in first hidden layer is increased. 

 
Fig. 7 shows that as the number of nodes is increased, lesser number of training cycles is required. But, in 

order to reduce the network complexity, the optimum number of nodes is taken as 11 and the recognition accuracy 
for this number of nodes is found to be around 99%. 

For the ORL faces, it is observed that a MLP having 16 nodes in the first hidden layer gives good accuracy. 
As shown in fig.8, number of training cycles is least, when the second hidden layer has 8 hidden nodes. So, for ORL 
faces, the neural network is optimized if, we include 16 and 8 nodes in first and second hidden layer, respectively.  
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Figure 8. Variation in training cycles as number of nodes in second hidden layer is increased. 

 
5.4 Learning Rate and Momentum 
The back-propagation algorithm that is used to train the MLP has two very important parameters namely, learning 
rate and momentum. We vary the learning rate and momentum by carrying out several simulations and discover that 
these parameters do not play a significant role in the accuracy of the recognition system. But, they have a great 
bearing on the number of cycles that the system takes to converge and reach the level, where the error is acceptable. 
If the values of the learning rate and momentum are very large then the neural network shows oscillations and does 
not converge even after 4200 cycles for a target error of 1%. If on the other hand, the values of learning rate and 
momentum are very less then the neural network takes a lot of time to converge to the desired error level. When 
both the learning rate and momentum are kept at 0.1 then the learning takes more than 5000 cycles. Fig. 9 shows the 
variation of cycles with changing momentum and learning rate. The number of cycles first decreases with increase 
in these parameters but after the values exceed a certain threshold the number of cycles takes an upward swing.  
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Figure 9. Effect of learning rate and momentum on the number of cycles. 

 
So, the optimal values of learning rate and momentum are selected as follows. 
1. For the ORL database, learning rate is taken to be 0.4 and momentum is also taken to be 0.4.  
2. For the UMIST database, learning rate is taken to be 0.3 and momentum is taken to be 0.4.  
 
5.5 Number of Training Cycles 
As it is clear from fig. 9, the number of training cycles decreases as the learning rate and momentum are increased. 
But this happens only up to some threshold values of learning rate and momentum after which, the number of cycles 
required increases because of the oscillations in the learning process. Fig. 10 and fig. 11 show the effect of increase 
in the number of nodes in the first hidden layer, on the number of training cycles. It is found that number of training 
cycles generally decreases with increase in the number of nodes. It is also clear that when the target error is halved 
from 1% to 0.5%, the number of training cycles roughly doubles. We find that, when the number of hidden layers is 
increased, the number of cycles needed to converge also increases. 
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Figure 10. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to 

1%. 
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Variation in number of cycles with changing 
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Figure 11. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to 

0.5%. 
 

We list the values of different design parameters for the optimal multi-layer perceptron for ORL and 
UMIST databases in the table 1 and 2 respectively. From the table 1 and 2, it is clear that the different parameters 
get different values for the two different databases, for the same target error. While for ORL database, we require 
two hidden layers, just one hidden is layer required for face recognition in UMIST database. 
 

Table 1. The optimized neural network for ORL faces. 
NAME OF THE VARIABLE VALUE 
Number of nodes in input layer 50 

Number of nodes in output layer 25 
Number of hidden layers 2 

Number of nodes in first hidden layer 16 
Number of nodes in second hidden layer 8 

Learning rate 0.4 
Momentum 0.4 
Target error 0.5 % 

 
Table 2. The optimized neural network for UMIST faces. 

NAME OF THE VARIABLE VALUE 
Number of nodes in input layer 40 
Number of nodes in output layer 15 

Number of hidden layers 1 
Number of nodes in first hidden layer 11 

Learning rate 0.3 
Momentum 0.4 
Target error 0.5 % 

 
6. Conclusion 
In this paper, we discussed the design of an optimal 
multi-layer perceptron for eigenfaces based face 
recognition. We discussed the various design issues 
and obtained the optimal values of different design 
parameters. The design of the neural network was 
discussed in the context of the face recognition on two 
face database namely ORL and UMIST.  Important 
findings of the study may be summarized as follows. 

1. If the number of faces that are used in training of the 
neural network is increased, the accuracy of 
recognition generally improves because the system is 
able to draw better generalizations with the increase 
in the number of training faces. 

2. Learning rate and momentum have a significant 
effect on the number of training cycles that the 
neural network takes to converge but does not have 
much impact on the accuracy of the face recognition 
system.  
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3. The number of eigenfaces that are used to represent 
the actual faces have a significant bearing on the 
accuracy of the face recognition system. Increasing 
the number of eigenfaces leads to more inputs to the 
system thus leading to better learning and accuracy. 

4.  The number of training cycles that the system needs 
for convergence also depends on the number of 
hidden layers and the number of nodes in the hidden 
layer(s). 
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