
Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

30

A novel approach of an Optimal Multi-layer Neural Network for Eigenfaces Based Face Recognition in image
processing

Sumit kumar srivastava

M. Tech. (CSE) Student & Faculty of Computer Science & Engineering, D.B.I.T, Dehradun, Uttarakhand

Email: sumitsri15.007@gmail.com

Abstract: Face recognition is one of the most popular problems in the field of image analysis. In this paper, we
discuss the design of an optimal multi-layer neural network for the task of face recognition. There are many issues
while designing the neural network like number of nodes in input layer, output layer and hidden layer(s), setting the
values of learning rate and momentum, updating of weights. Lastly, the criteria for evaluating the performance of
the neural network and stopping the learning are to be decided. We discuss all these design issues in the light of the
eigenfaces based face recognition. We report the effects of variations of these parameters on number of training
cycles required to get optimal results. We also list the optimized values for these parameters. In our experiments, we
use two face databases namely ORL and UMIST. These databases are used to construct the eigenfaces. The original
faces are reconstructed using the top eigenfaces. The factors used in the reconstruction of the faces are used as the
inputs to the neural network.
[Sumit kumar srivastava. A novel approach of an Optimal Multi-layer Neural Network for Eigenfaces Based
Face Recognition in image processing. Rep Opinion 2012;4(9):30-40]. (ISSN: 1553-9873).
http://www.sciencepub.net/report. 7

Keywords- Neural network, eigenfaces, face recognition, hidden layer, back propagation.

1. Introduction

Face recognition is one of the well-known
problems in the field of image processing. In face
recognition problem, a given face is compared with the
faces stored in a face database in order to identify the
person, who have the given face. The purpose is to find
a face in the database, which has the highest similarity
with the given face. One of the important algorithms
for face recognition is the eigenface algorithm [1].
Since, face recognition is a high-dimensional pattern
recognition problem, eigenface algorithm, which
reduces the dimensionality of the input face space, is
found to be one of the most successful methodologies.
Eigenface algorithm uses the Principal Component
Analysis (PCA) for dimensionality reduction to find
the vectors which best account for the distribution of
face images within the entire image space. These
vectors define the subspace of face images and the
subspace is called face space. All faces in the training
set are projected onto the face space to find a set of
weights that describes the contribution of each vector
in the face space. To identify a test image, it requires
the projection of the test image onto the face space to
obtain the corresponding set of weights. By comparing
the weights of the test image with the set of weights of
the faces in the training set, the face in the test image
can be identified. Multi-layer perceptron (MLP), a
multi-layer neural network that was first proposed by
Frank Rosenblatt [2], has also been widely used for the
task of face recognition [3, 4].

In this paper, we discuss the design of an
optimal multi-layer perceptron for eigenfaces based

face recognition. There are many issues while
designing the multi-layer neural network like number
of nodes in input layer, output layer and hidden
layer(s), setting the values of learning rate and
momentum, updating of weights. Lastly, the criteria for
evaluating the performance of the neural network and
stopping the learning are to be decided. We discuss all
these design issues in the light of the eigenfaces based
face recognition. We try to get optimal value for all
these parameters.

The paper is organized as follows. In section
2, we discuss the suitability of multi-layer perceptron
for task of face recognition. In section 3, we discuss all
the design parameters in detail. We briefly look at the
related work in section 4. We present our results in
section 5. Finally, we conclude in section 6.

2. Multilayer Perceptron

The single layer perceptrons have two layers
consisting of neurons, an input layer and an output
layer. The output of a discrete neuron can only have the
values zero (non firing) and one (firing). Each neuron
has a real-valued threshold and fires if and only if its
accumulated input exceeds that threshold. Each
connection from an input node j to an output neuron i
has a real-valued weight wij. For some problems, like
the famous XOR problem, the single layer perceptrons
fail to perform. This paves the way for the more
advanced multi-layer perceptrons. MLPs are feed
forward neural networks trained with the standard back
propagation algorithm and have one input layer, one
output layer and one or more hidden layers.

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

31

Figure 1. A Multi-layer Perceptron

By training a MLP, the output space is separated into regions. The ability of a MLP to correctly classify

input data patterns, which has not been used for training the MLP, is termed as generalization [5]. The multi-layer
perceptrons are highly suitable for any classification task e.g. pattern recognition, character recognition and face
recognition. This is due to the reason that the MLPs build hypersurfaces that divide the output space into different
classes that have dissimilar properties. In the face recognition process it is desired to have all the faces of the same
person to belong to the same class and the faces of different persons to be classified as different classes. A
remarkable thing about MLP is that it has good extrapolative and interpolative properties and is thus able to
correctly classify faces that it has not been trained with as belonging to the correct class. The MLPs are trained with
the back-propagation algorithm which is an error-minimizing and optimization approach.

Figure 2. Division of Output Space into Different Classes

3. Designing an Optimal Multi-layer Neural
Network
While designing an optimal multi-layer Neural
Network, we have to decide upon a number of
parameters. In this section, we discuss the different
parameters and the way in which, we determine the
optimal values for these parameters.

3.1. Number of Nodes in the Input Layer

The number of input nodes can generally be easily
determined because the number of nodes in the input
layer is equal to the number of inputs that we want to
feed into the network. In the typical neural networks for
the recognition of the faces, the number of input nodes is
equal to the number of pixels in the face image. It leads
to the huge complexity of the neural network
architecture. But in the Principal Component Analysis,
rather than applying the pixel values as the input, only the

Inputs Outputs

 Hidden Layers
 Layer 0
Input Layer

 Layer 1

 Layer 2

Layer 3

 Layer 4
Output Layer

A

A

A
 A

A

B

B
 B

 B
 B

C
C

C

C

C
 D D

D

D

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

32

multipliers of the eigenfaces are used as the input. This
approach greatly reduces the complexity of the neural
network architecture. The original faces are represented
as the sum of products of the eigenfaces and these
multipliers. So these multipliers can be used to
differentiate between the faces of different persons. The
main hurdle is the determination of the number of
eigenfaces that are sufficient to correctly represent the
variation in the faces. The number of input nodes is then
equal to the number of eigenfaces and the input values
are the multipliers with which these eigenfaces should be
multiplied to correctly reconstruct the original faces.

3.2. Number of Nodes in the Output Layer
The number of nodes in the output layer is equal to the
number of persons that are to be recognized. The value of
the output node corresponding to the correct face will be
highest while the other output nodes will have very less
values. The output nodes have competition among
themselves for the highest output value and the node
having the highest value is the winner that decides the
identity of the person. It is also possible to have one extra
output node for the faces of persons that are outside the
training set of faces.

3.3. Number of Hidden Layers

Generally one hidden layer with sufficient
number of nodes is enough for most of the problems that
use neural networks. It is advisable to use as few hidden
layers as possible because the addition of each hidden
layer significantly increases the network complexity,
increases the number of weighted connections between
the nodes and unnecessary addition of the hidden layers
will lead to slower learning. However, having more than
one hidden layer has few advantages when they are used
in the networks where their use is essential, like better
learning of relationship between inputs and outputs, faster
learning and at times having more than one hidden layer
can help in avoiding the pitfalls of the local minimums.
For the design of an optimal multi-layer perceptron, we
may vary the number of hidden layers and study the
effect of these variations. We may also vary the number
of nodes in the first hidden layer and see the effects of
these variations. Then, we may add the second hidden
layer and vary the number of nodes in both the hidden
layers and note the effects of these variations. We may
repeat the process until we decide upon an optimal value
for the number of hidden layers.

3.4. Number of Hidden Nodes

Determining the number of hidden nodes is a
tricky problem and there are no absolutely correct
guidelines for the number of nodes. The number of
hidden nodes determines the mapping ability of the
network. In other words, larger the number of hidden
nodes, more powerful is the network. However, if this

number is too large, the generalization may get worse.
This is due to over-fitting the training set, which can be
solved by using cross-validation. If there are too many
hidden nodes in the network, many problems may
occur e.g. too much training time, the network may fail
to generalize the input data and it may instead
memorize the correct response to each input pattern.
On the other hand, if there are too few hidden layer units,
the network may fail to train correctly because this may
result in insufficient and incorrect mapping between the
inputs and the outputs. If we examine the weight values
on the hidden nodes periodically as the network trains,
we can see that weights on certain nodes change very
little from their starting values. These nodes may not be
participating in the learning process, and fewer hidden
nodes may suffice. Some rules that may be used for
determining the number of hidden nodes are given as

outinphid NNN  , inphid NN  and

outhid NN 

where, hidN is number of hidden nodes,

inpN is number of input nodes and outN is the number

of output nodes.

3.5. Number of Training Examples
From the available training data, a subset of data is
needed to train the network successfully. The remaining
data can be used to test the network to verify that the
network can perform the desired mapping on input
vectors it has never encountered during training. In
contrast to generalization, the back-propagation network
does not extrapolate well. If it is inadequately or
insufficiently trained on a particular class of input
examples, subsequent identification of members of that
class may be unreliable. The faces of the same person can
have a large number of variations like presence or
absence of glasses; facial expressions like smile, frown,
etc; changes in pose in horizontal and vertical plane. This
necessitates a large number of faces per person that
capture almost all of the variations that a person’s face
can have. We work with two face databases namely
ORL [6] and UMIST [7]. The ORL face database
consists of 10 faces for each person, out of which, we use
8 faces per person in training the neural network and the
rest 2 for testing the neural network. For the UMIST face
database, 14 faces of a person are used in training the
neural network and 5 faces are used in testing the neural
network. This may be noted that the number of training
examples should neither be so less that the MLP is not
able to correctly generalize the classes, nor it should so
large that the network memorizes the faces.

3.6. Dealing with the Local Minima

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

33

Sometimes during training it is observed, that after
long training, the algorithms seem to stall. In other
words, error remains high and the continuous training
does not lead to its reduction. One of the explanations
is that the optimization algorithm has found a local
minimum, but not the global minimum. Once the
network settles on a minimum, whether local or global,
learning ceases. Since back-propagation uses a
gradient-descent procedure, a back-propagation
network follows the contour of an error surface with
weight updates moving it in the direction of steepest
descent.

As a general rule of thumb, the more hidden
nodes we have in a network the less likely we are to

encounter a local minimum during training. Although
additional hidden nodes increase the complexity of the
error surface, the extra dimensionality increases the
number of possible escape routes.

In case the back-propagation seems to stall,
some help is needed. The various suggestions to deal
with the local minima and get out of it, may be listed as
1. We may make use of the adaptive learning rate.
2. Weights can be re-randomized and the process be

repeated.
3. The number of hidden nodes can be changed.
4. Addition of the momentum term may help in

taking large steps in the correct direction thus
over-stepping some of the local minimums.

 Figure 3. Variation of learning error with weight adjustment

3.7. Momentum
The original back-propagation algorithm is quite slow.
By adding a term to the weight adjustment that is
proportional to the amount of the previous weight
change, the performance of the back-propagation
algorithm can be improved. Such term is called
momentum. The purpose of the momentum method is
to accelerate the convergence of the back-propagation
algorithm. The concept of momentum is that previous
changes in the weights should influence the current
direction of movement in weight space.

The benefits of using momentum in terms of
optimization for the neural network learning are: it
speeds up the back-propagation of errors, keeps the
error minimization process going in the same direction
and also helps in jumping out of a local minimum and
guides in finding the global minima.

The benefits of using momentum in terms of
optimization for the neural network learning are listed
as follows.
1. It speeds up the back-propagation of errors.

2. It keeps the error minimization process going in
the same direction.

3. It helps in preventing the oscillations, which are
very common in the traditional back-propagation
approach.

4. The momentum term helps in jumping out of a
local minimum and guides in finding the global
minima.

3.8. Learning Rate
The back-propagation algorithm requires that the
weight changes be proportional to the derivative of the
error. The larger the learning rate the larger the weight
changes on each epoch, and the quicker the network
learns. However, the size of the learning rate can also
influence whether the network achieves a stable
solution. If the learning rate gets too large, then the
weight changes no longer approximate a gradient
descent procedure (true gradient descent requires
infinitesimal steps). Oscillation of the weights is often
the result. Ideally then, one should like to use the
largest learning rate possible without triggering

Plateau
areas

Local
minimum

Global minimum

Weights

Error

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

34

oscillation. This would offer the most rapid learning
and the least amount of time spent waiting for the
network to train. We may obtain the optimum value the
learning rate by hit and trial. The learning rate may be
kept the least in the beginning and then, it may be
slowly increased in steps of 0.1 up to the optimum
value, after which, its increase may lead to errors in
correct recognition.

3.9. Updating the Weights

Back-propagation is essentially a learning
algorithm that modifies the weights as is dictated by
the error. The error is propagated backwards through
the network and used to update the weights. After the
weights are updated, the next instance is used to
calculate the output, compute the errors, calculate the
weights’ updates, etc. There are two ways in which the
weights can be updated. Updating the weights in a
back-propagation network can be done either after the
presentation of each pattern (say, pattern learning), or
after all of the patterns in the training set have been
presented (say, epoch learning). If the learning rate is
small, there is little difference between the two
procedures. However, substantial differences can be
observed when the learning rate is large, as the
derivation of the back-propagation algorithm assumes
that the error derivatives are summed over all of the
patterns. When the weights are updated immediately it
leads to slow learning but the network learns in a better
manner. On the other hand, when the weights are
updated after each epoch it leads to faster convergence,
speeding up of the learning process but may lead to
improper training. In our case, the weights are updated
after all the training examples have been presented.

3.10. Initialization with Free Parameter
The parameters that need to be set before the learning
can start are: weights, biases and thresholds. A good
choice for the initial values of the synaptic weights,
biases and thresholds of the network can significantly
accelerate learning.

A common practice is to set all the free
parameters of the network to random numbers that are
uniformly distributed inside a small range of values. If
the weights are too large the sigmoid functions will
start saturating from the very beginning of training and
the system will become stuck in a kind of saddle point
near the starting point itself. This phenomenon is
known as “premature saturation”. Premature saturation
can be avoided by getting the initial values of the
weights and threshold levels of the network, to be
uniformly distributed inside a small range of values.
The weights may be randomly set to some random
values, when the process of training is started.

3.11. Pruning

When a MLP network is created the layers are fully
connected with weights between all the nodes of the
input, output and hidden layers. Some networks can
learn with a much lower number of connections. The
process of removing the weights that contain no useful
information but just add to the network complexity is
called pruning. When we examine the weights of the
various connections, we may find many weights that
are not changing at all or very leFGss. Such weights
are redundant and do not help the network in learning.
Pruning of the neural network serves two purposes.
First, it speeds up the neural network learning by
eliminating redundant weights and second, it reduces
the network complexity. Pruning is performed when
the values of the weights fall below some thresholds.

3.12. Stopping Criteria
Eventually training of the neural network has to
terminate so that it can be queried to get the response
for some input. The neural network will continue to
learn until some stopping criteria is satisfied and the
training can be stopped. There are a number of ways to
suggest when the network training should stop. For
example, the network training may be stopped if any of
the following three criteria is satisfied.
1. The average/maximum/minimum training error falls

below some user-defined level
2. The number of training cycles or epochs exceeds a

certain value.
3. All the validation tests have been performed.

3.13. Performance Criteria
The performance criteria are parameters on the basis of
which the performance of the network can be
evaluated. Three of the performance criteria, which are
suitable for the face recognition neural network, are- 1.
the accuracy of the recognition results, 2. the number
of cycles and 3. the absolute or relative errors in the
training and testing phases.

4. Related Work
Attempts have been made in past to use the neural
network for the problem of face recognition [3, 4, 8, 9].
For example, in [3], the first 50 principal components
of the images are extracted and reduced to 5
dimensions using an auto associative neural network.
The resulting representation is classified using a
standard multi-layer perceptron. Good results are
reported but the database is quite simple, the pictures
are manually aligned and there is no lighting variation,
rotation, or tilting. There are 20 people in the database.
Pan Z. et al., in their study [4], used the multilayer
perceptron neural network. There is just one hidden
layer with number of hidden units being in between 60
to 80. The input of neural network is a set of discrete
cosine transform coefficients. They report that the

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

35

achieved recognition rate is in between 94% to 97%. In
[8], Henry Rowley et. al. used three types of hidden
units, 4 looking at 10x10 pixel sub-regions, 16 looking
at 5x5 pixel sub-regions and 6 looking at 20x5 pixel
sub-regions. These sub-regions are chosen to represent
facial features that are important to face detection.
Overlapping detections are merged. To improve the
performance of their system, multiple networks are
applied. They are trained under different initial
condition and have different self-selected negative
examples. The outputs of these networks are arbitrated
to produce the final decision. In [9], there is only one
hidden layer in the network with 20 to 30 units in it.
The number of units in the input layer is equal to the
number of image pixels, 2576 (i.e. 46 × 56). Gray level
of every pixel is linearly scaled from range (0, 255) to
(-0.05, +0.05). The number of output units is equal to

the number of classes, which is 40, the number of
persons in the ORL database.

5. Experiments and Results
We experimented with the ORL[6] and UMIST[7] face
databases using a neural network simulater called
EasyNN-Plus[8]. The UMIST university face database
consists of 564 images of 20 people, each covering a
range of poses from profile to frontal views. Subjects
cover a range of race/sex/appearance. Each subject
exists in its own directory labeled as 1a, 1b, ... ,1t and
the images are numbered consecutively as they were
taken. The files are all in Portable Gray Map (PGM)
format, 220 x 220 pixels in 256 shades of grey. As an
example, the different images of face of a person in the
directory 1a are shown in fig.4.

Figure 4. Different images of the subject 1a in UMIST face database.

On the other hand, ORL database contains a set of faces taken between April 1992 and April 1994 at Olivetti
Research Laboratory (ORL) in Cambridge, U.K. There are 10 different images of 40 distinct subjects. There are
variations in facial expression (open/closed eyes, smiling/non-smiling), and facial details (glasses/no glasses). All
the images are against a dark homogeneous background with the subjects in an up-right, frontal position, with
tolerance for some tilting and rotation of up to about 20 degrees. There is some variation in scale of up to about
10%. The images are grayscale with a resolution of 92 x 112 pixels. As an example, 10 different images of face of a
person are shown in fig.5.

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

36

Figure 5. The set of 10 images for a subject in ORL database.

We report here, the recognition accuracies for the different faces of different persons. We obtain the

optimal values of different design parameters such as number of training examples, number of hidden layers,
number of nodes in hidden layers, learning rate, momentum, number of input nodes and number of output nodes.

5.1 Number of Training Examples
It is observed that as the number of training examples are increased the recognition accuracy increases. Fig. 6 shows
the recognition accuracy for the first person in the ORL database as the number of faces is increased from 1 to 10.

Variation of accuracy with changing number of

training faces

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Number of faces used in training

R
e

c
o

g
n

it
io

n
 A

c
c
u

ra
c
y

Recognition
Accuracy

Figure 6. Variation of recognition accuracy as number of training faces is increased.

5.2 Number of Hidden Layers
If only one hidden layer is taken, then, the number of training cycles that are required, might be very less, but, the
accuracy may not be acceptable. The ORL faces have great variation in terms of presence of glasses, moustaches,
beard, female faces, etc. So, one hidden layer is not found to be resulting in correct accuracy. So, we include two
hidden layers in the multi-layer perceptron and discover that the accuracy is increased.

In the case of UMIST faces, there is not much variation in the faces and the faces differ only slightly from
each other in terms of the pose. So only a single hidden layer is found to be sufficient for these faces and it gives
excellent results.

5.3 Number of Nodes in Each Hidden Layer
The number of nodes in the hidden layer(s) should be such that it is neither too large to result in unnecessary
network complexity nor too small to result in slow and inaccurate learning. The criteria to judge the optimum
number of nodes is number of training cycles and the recognition accuracy.

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

37

Variation in number of cycles with changing

number of nodes in first hidden layer

0

50

100

150

200

250

4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes in first hidden layer

N
u

m
b

e
r

o
f

c
y
c
le

s

Cycles

Figure 7. Variation in training cycles as number of nodes in first hidden layer is increased.

Fig. 7 shows that as the number of nodes is increased, lesser number of training cycles is required. But, in

order to reduce the network complexity, the optimum number of nodes is taken as 11 and the recognition accuracy
for this number of nodes is found to be around 99%.

For the ORL faces, it is observed that a MLP having 16 nodes in the first hidden layer gives good accuracy.
As shown in fig.8, number of training cycles is least, when the second hidden layer has 8 hidden nodes. So, for ORL
faces, the neural network is optimized if, we include 16 and 8 nodes in first and second hidden layer, respectively.

Variation in number of cycles with changing

number of nodes in second hidden layer

0

200

400

600

800

1000

1200

1400

4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes in second hidden layer

N
u

m
b

e
r

o
f

c
y
c
le

s

Cycles

Figure 8. Variation in training cycles as number of nodes in second hidden layer is increased.

5.4 Learning Rate and Momentum
The back-propagation algorithm that is used to train the MLP has two very important parameters namely, learning
rate and momentum. We vary the learning rate and momentum by carrying out several simulations and discover that
these parameters do not play a significant role in the accuracy of the recognition system. But, they have a great
bearing on the number of cycles that the system takes to converge and reach the level, where the error is acceptable.
If the values of the learning rate and momentum are very large then the neural network shows oscillations and does
not converge even after 4200 cycles for a target error of 1%. If on the other hand, the values of learning rate and
momentum are very less then the neural network takes a lot of time to converge to the desired error level. When
both the learning rate and momentum are kept at 0.1 then the learning takes more than 5000 cycles. Fig. 9 shows the
variation of cycles with changing momentum and learning rate. The number of cycles first decreases with increase
in these parameters but after the values exceed a certain threshold the number of cycles takes an upward swing.

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

38

Variation in number of cycles with changing

momentum and learning rate

0

50

100

150

200

250

300

350

0.2 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7

0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8

Momentum & Learning Rate

N
u

m
b

e
r

o
f

T
ra

in
in

g
 C

yc
le

s
Cycles

Figure 9. Effect of learning rate and momentum on the number of cycles.

So, the optimal values of learning rate and momentum are selected as follows.
1. For the ORL database, learning rate is taken to be 0.4 and momentum is also taken to be 0.4.
2. For the UMIST database, learning rate is taken to be 0.3 and momentum is taken to be 0.4.

5.5 Number of Training Cycles
As it is clear from fig. 9, the number of training cycles decreases as the learning rate and momentum are increased.
But this happens only up to some threshold values of learning rate and momentum after which, the number of cycles
required increases because of the oscillations in the learning process. Fig. 10 and fig. 11 show the effect of increase
in the number of nodes in the first hidden layer, on the number of training cycles. It is found that number of training
cycles generally decreases with increase in the number of nodes. It is also clear that when the target error is halved
from 1% to 0.5%, the number of training cycles roughly doubles. We find that, when the number of hidden layers is
increased, the number of cycles needed to converge also increases.

Variation in number of cycles with changing

number of nodes in first hidden layer with

error = 1%

0

50

100

150

200

250

300

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of nodes in first hidden layer

N
u

m
b

e
r

o
f

c
y
c
le

s

Cycles

Figure 10. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to

1%.

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

39

Variation in number of cycles with changing

number of nodes in first hidden layer with

error = 0.5%

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of nodes in first hidden layer

N
u

m
b

e
r

o
f

C
y
c
le

s
Cycles

Figure 11. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to

0.5%.

We list the values of different design parameters for the optimal multi-layer perceptron for ORL and
UMIST databases in the table 1 and 2 respectively. From the table 1 and 2, it is clear that the different parameters
get different values for the two different databases, for the same target error. While for ORL database, we require
two hidden layers, just one hidden is layer required for face recognition in UMIST database.

Table 1. The optimized neural network for ORL faces.
NAME OF THE VARIABLE VALUE
Number of nodes in input layer 50

Number of nodes in output layer 25
Number of hidden layers 2

Number of nodes in first hidden layer 16
Number of nodes in second hidden layer 8

Learning rate 0.4
Momentum 0.4
Target error 0.5 %

Table 2. The optimized neural network for UMIST faces.

NAME OF THE VARIABLE VALUE
Number of nodes in input layer 40
Number of nodes in output layer 15

Number of hidden layers 1
Number of nodes in first hidden layer 11

Learning rate 0.3
Momentum 0.4
Target error 0.5 %

6. Conclusion
In this paper, we discussed the design of an optimal
multi-layer perceptron for eigenfaces based face
recognition. We discussed the various design issues
and obtained the optimal values of different design
parameters. The design of the neural network was
discussed in the context of the face recognition on two
face database namely ORL and UMIST. Important
findings of the study may be summarized as follows.

1. If the number of faces that are used in training of the
neural network is increased, the accuracy of
recognition generally improves because the system is
able to draw better generalizations with the increase
in the number of training faces.

2. Learning rate and momentum have a significant
effect on the number of training cycles that the
neural network takes to converge but does not have
much impact on the accuracy of the face recognition
system.

Report and Opinion 2012;4:(9) http://www.sciencepub.net/report

40

3. The number of eigenfaces that are used to represent
the actual faces have a significant bearing on the
accuracy of the face recognition system. Increasing
the number of eigenfaces leads to more inputs to the
system thus leading to better learning and accuracy.

4. The number of training cycles that the system needs
for convergence also depends on the number of
hidden layers and the number of nodes in the hidden
layer(s).

 References:
[1] M. Turk and A. Pentland, “Eigenfaces for

recognition,” Journal of Cognitive Neuroscience,
vol. 3, no. 1, pp. 71–86, Mar. 1991.

[2] F. Rosenblatt, “The Perceptron: A Probabilistic
Model for Information Storage and Organization
in the Brain”, Psychological Review, vol. 65, issue
6, pp. 386-408, 1958.

[3] D. DeMers and G.W. Cottrell, “Non-linear
dimensionality reduction”, In S.J. Hanson, J.D.
Cowan, and C. Lee Giles, editors, Advances in
Neural Information Processing Systems, vol. 5,

Morgan Kaufmann Publishers, San Mateo, CA,
pp. 580-587, 1993.

[4] Z. Pan, A. G. Rust and H. Bolouri, “Image
Redundancy Reduction for Neural Network
Classification using Discrete Cosine Transforms”,
Proceedings of the International Joint Conference
on Neural Networks, vol. 3, pp 149-154, 2000.

[5] M. L. Minsky and S. S. Papert, “Perceptrons: An
Introduction to Computational Geometry”, MIT
Press, Cambridge, MA, 1969.

[6] ORL face database,
http://www.uk.research.att.com/facedatabase.html

[7] UMIST face database,
http://images.ee.umist.ac.uk/danny/database.html

[8] H. A Rowely, “A Trainable View-based object
for face detection”, IEEE ASSP Magzine, April
1987

[9] D. Bryliuk and V. Starovoitov. “Access control by
face recognition using neural networks and
negative examples”. Proceedings of the 2nd
International Conference on Artificial Intelligence,
Crimea, Ukraine, pp. 428-436, Sep. 2002

[10] EasyNN-Plus, http://www.easynn.com/

1/24/2012

