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1. Introduction  

Selection of technologies is one of the most 
challenging decision making areas the management 
of a company encounters. It is difficult to clarify the 
right technology alternatives because the number of 
technologies is increasing and the technologies are 
becoming more and more complex. However, right 
technologies could create significant competitive 
advantages for a company in a complex business 
environment. The aim of technology selection is to 
obtain new know-how, components, and systems 
which will help the company to make more 
competitive products and services and more effective 
processes, or create completely new solutions 
(FarzipoorSaen, 2006).The rest of the paper is 
organized as follows: The following section presents 
a concise treatment of the basic concepts of fuzzy set 
theory. Section 3 presents the methodology of 
Logarithmic fuzzy preference programming and 
GTMA. The application of the proposed framework 
to technology selection is addressed in Section 4. 
Finally, conclusions are provided in Section 5. 
 
 
2. Fuzzy sets and Fuzzy Numbers 
 
Fuzzy set theory, which was introduced by Zadeh 
(1965) to deal with problems in which a source of 
vagueness is involved, has been utilized for 
incorporating imprecise data into the decision 
framework. A fuzzy set ��  can be defined 
mathematically by a membership function  μ��(�) , 
which assigns each element x in the universe of 
discourse X a real number in the interval [0,1]. A 

triangular fuzzy number � � can be defined by a triplet 
(a, b, c) as illustrated in Fig 1. 
 
 
 
 
 
 
 
 
 

Fig 1. A triangular fuzzy number �� 
 
The membership function μ��(�) is defined as 
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Basic arithmetic operations on triangular fuzzy 
numbers A1 = (a1,b1,c1), where  a1 ≤ b1 ≤ c1, and A2 = 
(a2,b2,c2), where a2 ≤ b2 ≤ c2,can be shown as follows: 
 
Addition:  A1 ⊕ A2 = (a1 + a2 ,b1 + b2,c1 +c2)         (2) 
 
Subtraction:  A1 ⊝ A2 = (a1 - c2 ,b1 - b2,c1 – a2)      (3)  
 

Multiplication:  if  k  is a scalar 
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A1⊗ A2 ≈ (a1a2 ,b1b2,c1c2) ,  if   a1 ≥ 0 , a2 ≥ 0        (4) 

 

Division: A1 Ø A2 ≈ (
��

��
 ,

��

��
 ,

��

��
)  ,   if  a1 ≥  0 , a2 ≥  0                                                                                                 

(5) 
 
Although multiplication and division operations on 
triangular fuzzy numbers do not necessarily yield a 
triangular fuzzy number, triangular fuzzy number 
approximations can be used for many practical 
applications (Kaufmann& Gupta, 1988). Triangular 
fuzzy numbers are appropriate for quantifying the 
vague information about most decision problems 
including personnel selection (e.g. rating for 
creativity, personality, leadership, etc.). The primary 
reason for using triangular fuzzy numbers can be 
stated as their intuitive and computational-efficient 
representation (Karsak, 2002). A linguistic variable is 
defined as a variable whose values are not numbers, 
but words or sentences in natural or artificial 
language. The concept of a linguistic variable appears 
as a useful means for providing approximate 
characterization of phenomena that are too complex 
or ill-defined to be described in conventional 
quantitative terms (Zadeh, 1975). 
  
3. Research Methodology  
 
In this paper, the weights of each criterion are 
calculated using of Logarithmic fuzzy preference 
programming. After that, GTMA is utilized to rank 
the alternatives. Finally, we select the best technology 
based on these results. 
 
3.1. The LFPP-based nonlinear priority method 
 
In this method for the fuzzy pairwise comparison 
matrix, Wang et al (2011) took its logarithm by the 
following approximate equation: 
 
ln �� = (ln ���, ln ��� ,ln ����), i,j = 1….,n          (6) 

 
That is, the logarithm of a triangular fuzzy judgment 
aij can still be seen as an approximate triangular fuzzy 
number, whose membership function can accordingly 
be defined as 
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(7) 
 

Where ���    �ln�
� �

� �
�� is the membership degree of 

ln�
� �

� �
� belonging to the approximate triangular fuzzy 

judgment ln �� = ( ln ���, ln ��� , ln ����). It is very 

natural that we hope to find a crisp priority vector to 
maximize the minimum membership degree λ= min 

{ ���    �ln�
� �

� �
�� | i=1,…,n-1 ; j=i+1,…, n} . The 

resultant model can be constructed (Wang et al, 
2011) as 
 
Maximize     λ 
Subject to   

�
���    �ln�

� �

� �
�� ≥  �, � = 1, … , � − 1; � = � + 1, … , �,
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�    

                                     (8) 
Or as 
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It is seen that the normalization constraint ∑ ��  

�
��� = 

1 is not included in the above two equivalent models. 
This is because the models will become 
computationally complicated if the normalization 
constraint is included. Before normalization, without 
loss of generality, we can assume ��    ≥ 1  for all 
� = 1, … , �  such that ln �� ≥ 0  for � = 1, … , �. Note 
that the nonnegative assumption for ln �� ≥ 0  (i = 1,. 
. . ,n) is not essential. The reason for producing a 
negative value for λ is that there are no weights that 
can meet all the fuzzy judgments in � � within their 
support intervals. That is to say, not all the 

inequalities ln �� − ln ��  − � ln�
� ��

���
� ≥ ln ��� 

or− ln �� + ln ��  − � ln�
���

� ��
� ≥ − ln ��� can hold at 

the same time. To avoid k from taking a negative 
value, Wang et al (2011) introduced nonnegative 
deviation variables ���  and  ŋ��  for � = 1, … , � −

1; � = � + 1, … , �, such that they meet the following 
inequalities: 
 

ln �� − ln ��  − � ln�
� ��

���

�  ≥ ln ���, �

= 1, … , � − 1; � = � + 1, … , � 
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− ln �� + ln ��  − � ln�
���

� ��
� ≥ − ln ���, � =

1, … , �; � = � + 1, … , �                                          (10) 
 
It is the most desirable that the values of the 
deviation variables are the smaller the better. Wang et 
al (2011) thus proposed the following LFPP-based 
nonlinear priority model for fuzzy AHP weight 
derivation: 
 
Minimize     J= (1-λ)2+M.∑ ∑ (���

� + ŋ ��
� )�

�����
���
���  
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Where ��= ln �� for i = 1,. . . ,n and M is a specified 
sufficiently large constant such as M = 103. The main 
purpose of introducing a big constant M into the 
above model is to find the weights within the support 
intervals of fuzzy judgments without violations or 
with as little violations as possible. 
 
3.2. Graph Theory and Matrix Approach 
(GTMA) 
 
A graph G = (V, E) consists of a set of objects V = 
{v1, v2,….} called vertices or nodes, and another set 
E = {e1, e2, ….}, of which the elements are called 
edges, such that each edge ek is identified with a pair 
of vertices. The vertices vi and vj associated with 
edge ek are called the end vertices of ek. The most 
common representation of a graph is by means of a 
diagram, in which the vertices are represented by 
small points or circles, and each edge as a line 
segment joining its end vertices. The application of 
graph theory was known centuries ago, when the 
longstanding problem of the Konigsberg bridge was 
solved by Leonhard Euler in 1736 by means of a 
graph. Since then, graph theory has proved its mettle 
in various fields of science and technology such as 
physics, chemistry, mathematics, communication 
science, computer technology, electrical engineering, 
sociology, economics, operations research, 
linguistics, internet, etc. Graph theory has served an 
important purpose in the modeling of systems, 
network analysis, functional representation, 
conceptual modeling, diagnosis, etc. Graph theory is 

not only effective in dealing with the structure 
(physical or abstract) of the system, explicitly or 
implicitly, but also useful in handling problems of 
structural relationship. The theory is intimately 
related to many branches of mathematics including 
group theory, matrix theory, numerical analysis, 
probability, topology, and combinatory. The 
advanced theory of graphs and their applications are 
well documented (Harary, 1985; Wilson and 
Watkins, 1990; Chen, 1997; Deo, 2000; Jense and 
Gutin, 2000; Liu and Lai, 2001; Tutte, 2001; 
Pemmaraju and Skiena, 2003; Gross and Yellen, 
2005; Biswal, 2005). 
 
3.2.1. Methodology of GTMA 
The main steps are given below: 
Step 1: Identify the pertinent attributes and the 
alternatives involved in the decision-making problem 
under consideration. Obtain the values of the 
attributes (Ai) and their relative importance (aij). An 
objective or subjective value, or its range, may be 
assigned to each identified attribute as a limiting 
value or threshold value for its acceptance for the 
considered decision-making problem. An alternative 
with each of its selection attributes, meeting the 
acceptance value, may be short-listed. After short-
listing the alternatives, the main task in choosing the 
alternative is to see how it serves the considered 
attributes. 
Step 2: 

1. Develop the attributes digraph considering 
the identified pertinent attributes and their 
relative importance. The number of nodes 
shall be equal to the number of attributes 
considered in Step 1 above. The edges and 
their directions will be decided upon based 
on the interrelations among the attributes 
(aij).  

2. Develop the attributes matrix for the 
attributes digraph. This will be the M*M 
matrix with diagonal elements as Ai and off-
diagonal elements as aij. 

3. Obtain the permanent function for the 
attributes matrix. 

4. Substitute the values of Ai and aij, obtained 
in step 1. 

5. Arrange the alternatives in the descending 
order of the index. The alternative having 
the highest value of index is the best choice 
for the decision-making problem under 
consideration. 

6. Obtain the identification set for each 
alternative. 

7. Evaluate the coefficients of dissimilarity and 
similarity. List also the values of the 
coefficients for all possible combinations. 
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8. Document the results for future 
analysis/reference. 

 
Step 3: Take a final decision, keeping practical 
considerations in mind. All possible constraints likely 
to be experienced by the user are looked into during 
this stage. These include constraints such as: 
availability or assured supply, management 
constraints, political constraints, economic 
constraints, environmental constraints, etc. However, 
compromise may be made in favor of an alternative 
with a higher index. 
       
4. A Numerical Application of Proposed Approach  

This paper, the proposed methodology that may 
be applied to a wide range of technology selection 
problems is used for robot selection. We considered 
cost as a non-beneficial attribute and Vendor 
reputation, Load capacity and Velocity and as 
beneficial attributes for Technology selection. These 
attributes are taken from Farzipoorsaen (2006). These 
attributes are shown in Table 1. 
 

 
Table 1. Attributes for robot selection 

criteria Attributes 

C� 
C� 
C� 
C� 

Cost (10000$) 
Vendor reputation 
Load capacity(kg) 
Velocity(m/s) 

 
In this paper, the weights of criteria are 

calculated using of LFPP, and these calculated weight 
values are used as GTMA inputs. Then, after GTMA 
calculations, evaluation of the alternatives and 
selection of technology is realized. 
 

Logarithmic Fuzzy Preference Programming: 
In LFPP, firstly, we should determine the 

weights of each criterion by utilizing pair-wise 
comparison matrices. We compare each criterion 
with respect to other criteria. You can see the pair-
wise comparison matrix for Flexible Manufacturing 
System criteria in Table 2.  
 

 
 

Table 2.Inter-criteria comparison matrix 
 C1 C2 C3 C4 
C1 (1.00,1.00,1.00) (3.67,4.50,5.67) (2.00,2.73,4.38) (0.25,1.84,3.66) 
C2 (0.18,0.22,0.28) (1.00,1.00,1.00) (1.78,3.28,4.30) (0.62,0.89,1.30) 
C3 (0.25,0.40,0.61) (0.23,0.31,0.56) (1.00,1.00,1.00) (0.84,2.07,2.96) 
C4 (0.28,0.55,4.59) (0.81,1.15,2.18) (0.46,0.71,3.38) (1.00,1.00,1.00) 
 
 

After forming the model (11) for the 
comparison matrix and solving this model using of 
Genetic algorithms, the weight vector is obtained as 
follow: 
 

��= (0.3970, 0.2171, 0.1329, 0.2529) T 
Then, weighted normalized matrix is formed 

by multiplying each value with their weights. All 
weighted values are aggregated to form Table 3. 
 

 
Table 3: Total weighted values of criteria 

 
C1 C2 C3 C4 

A1 0.913023 1 0.931198 0.326592903 

A2 1 0.779032 0.496737 0.531095002 

A3 0.812753 0.806452 0.807816 0.772987409 

A4 0.55288 0.98871 1 1 

A5 1.264689 1.677419 2.698079 0.78214422 

A6 0.679927 0.508065 0.747882 2.80847005 

 
Then, according to GTMA method, we carry out pair-wise comparison with respect to their weight that 

shows from Table 4 to Table 10. 
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Table 4: pair-wise comparison of criteria with respect to each other 

 
C1 C2 C3 C4 

C1 
 

0.644544 0.734455 0.610324 

C2 0.355456 
 

0.60401 0.463448 

C3 0.265545 0.39599 
 

0.361543 

C4 0.389676 0.536552 0.638457 
 

wj 0.391924 0.21614 0.141702 0.250234 

 
Table 5: pair-wise comparison of criteria with respect to A1 

A1 C1 C2 C3 C4 

C1 0.913023 0.644544 0.734455 0.610324 

C2 0.355456 1 0.60401 0.463448 

C3 0.265545 0.39599 0.931198 0.361543 

C4 0.389676 0.536552 0.638457 0.326593 

 
Table 6: pair-wise comparison of criteria with respect to A2 

A2 C1 C2 C3 C4 

C1 1 0.644544 0.734455 0.610324 

C2 0.355456 0.779032 0.60401 0.463448 

C3 0.265545 0.39599 0.496737 0.361543 

C4 0.389676 0.536552 0.638457 0.531095 

 
Table 7: pair-wise comparison of criteria with respect to A3 

A3 C1 C2 C3 C4 

C1 0.812753 0.644544 0.734455 0.610324 

C2 0.355456 0.806452 0.60401 0.463448 

C3 0.265545 0.39599 0.807816 0.361543 

C4 0.389676 0.536552 0.638457 0.772987 

 
Table 8: pair-wise comparison of criteria with respect to A4 

A4 C1 C2 C3 C4 

C1 0.55288 0.644544 0.734455 0.610324 

C2 0.355456 0.98871 0.60401 0.463448 

C3 0.265545 0.39599 1 0.361543 

C4 0.389676 0.536552 0.638457 1 

 
Table 9: pair-wise comparison of criteria with respect to A5 

A5 C1 C2 C3 C4 

C1 1.264689 0.644544 0.734455 0.610324 

C2 0.355456 1.677419 0.60401 0.463448 

C3 0.265545 0.39599 2.698079 0.361543 

C4 0.389676 0.536552 0.638457 0.782144 
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Table 10: pair-wise comparison of criteria with respect to A6 

A6 C1 C2 C3 C4 

C1 0.679927 0.644544 0.734455 0.610324 

C2 0.355456 0.508065 0.60401 0.463448 

C3 0.265545 0.39599 0.747882 0.361543 

C4 0.389676 0.536552 0.638457 2.80847 

 
After that we calculate the permanent matrix using of MATLAB software. The permanent matrix of each 

alternative is indicated in Table 11. 
 

 
Table 11: ranking alternative 

alternative Permanent matrix rank 

A1 1.881 5 

A2 1.653 6 

A3 2.320 3 

A4 2.219 4 

A5 2.652 2 

A6 3.231 1 

 
According to Table 11, A6 is the best alternative among other. 

 
5. Conclusions  

Selection of technologies is one of the most 
challenging decision making areas the management 
of a company encounters. It is difficult to clarify the 
right technology alternatives because the number of 
technologies is increasing and the technologies are 
becoming more and more complex. This paper 
illustrates an application of LFPP along with GTMA 
in selecting best technology. Fuzzy set theory is 
incorporated to overcome the vagueness in the 
preferences. A two-step LFPP and GTMA 
methodology is structured here that GTMA uses 
LFPP result weights as input weights. Then a 
numerical example is presented to show applicability 
and performance of the methodology.  
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