
 Report and Opinion 2014;6(10) http://www.sciencepub.net/report

70

Measurement Of Software Complexity In Object Oriented Systems Abstract

Hari Om Sharan1, Garima1, Md. Haroon1, and Rajeev Kumar2

1Deptt. of Computer Science, COE, Teerthankar Mahaveer University, Moradabad, (India).
2Department of Computer Application, Teerthanker Mahaveer University Moradabad(U.P.) India

Email ID: rajeev2009mca@gmail.com,

Abstract: Our measurement for testability and complexity also shares our thought and understanding about the
complexity in the object oriented system. In this document we have explained the concept of software complexity of
object oriented in very sophisticated manner. Some examples are also given to support the results. This document
examines the state of art in software products measurement, with focus in the object oriented approach, which has
become high popular because of his benefits: quick development, re- usability, complexity management, etc., all of
this, characteristics that increase directly the quality of software products.
[Hari Om Sharan, Garima, Md. Haroon, Rajeev Kumar. Measurement of Software Complexity in Object
Oriented Systems. Rep Opinion 2014;6(10):70-75]. (ISSN: 1553-9873). http://www.sciencepub.net/report. 14

Keywords: Software Testing, Software Testability, Simplicity, Complexity.

Introduction

For producing high quality object oriented
applications, it is necessary to develop a strong
emphasis on design aspects, especially during the early
phases of software. Design metrics play an vital role in
helping developers to appreciate design aspects of
software to improve software quality.It is clear that
software measurement is necessary for the software
development process to be successful. The main goals
of the software measurement are:

 Evaluate the software systems.
 Improve quality of software systems.
 Identify and correct problems early.
 Defend and justify decisions.
One side of the concept of software engineering is

the idea that the software should be under control. As
De Marco said:”You cannot control what you cannot
measure”[De Marco, 1982]. Fenton and Pfleeger
added: ”You cannot predict what you cannot measure”
[Fenton and Pfleeger, 1997].

Most of the measure strategies have as the main
goal to evaluate the different characteristics of software
quality, such as reliability, ease of use, maintainability,
robustness.

In this paper we are presenting the object-oriented
software metrics proposed by Chidamber, Kemerer and
several studies were conducted to validate the metrics.
Chidamber, Kemerer proposed six software metrics as
Weighted Methods per Class (WMC), Depth of
Inheritance Tree (DIT), Number of Children (NOC) ,
Coupling Between Object classes (CBO), Response
For a Class (RFC), Lack of Cohesion in Methods
(LCOM)[1,2,3].
Basic Features of object-oriented technology
Object-Oriented Technology: A way to develop and
package Software that draws heavily from common

experience and the manner in which real world objects
relate to each other.
Object-Oriented Systems: All programming
languages, tools and methodologies that support
Object-Oriented Technology. The main properties of
object oriented technology are following:

 Objects
 Classes
 Data abstraction and encapsulation
 Inheritance
 Polymorphism
 Dynamic binding

1. Object: Objects are the basic run time entities
in an object oriented system. They may represent a
person, a bank account or any item that the program
has to handle. They may also represent user-defined
data such as vector, time and lists.
2. Classes: The entire set of data and code of an
object can be made a user-defined data type with the
help of class. In fact, objects are variable of the type
class. Once a class has been defined, we can create any
number of objects belonging to that class. Or we can
say that a class is a collection of object of similar type.
3. Abstraction: An essential element of object-
oriented technology is abstraction. Abstraction refers to
the act of representing essential feature without
including the background details or explanations. Or in
other word we can say that an abstraction is a
mechanism that allows a complex, real-world situation
to be represented using a simplified model. Object
orientation abstracts the real world based on objects
and their interactions with other objects. For example,
one possible abstraction of a color is the RGB model.
4. Encapsulation: The wrapping up of data and
functions into a single unit (called class) is known as
encapsulation Or the process of hiding all the internal
details of an object from the outside world.

 Report and Opinion 2014;6(10) http://www.sciencepub.net/report

71

5. Inheritance: Inheritance is the process by
which one object acquires the properties of another
object. This is important because it supports the
concept of hierarchical classification. Most knowledge
is made manageable by hierarchical (that is, top-down)
classifications. For example, a Golden Retriever is part
of the classification dog, which in turn is part of the
mammal class, which is under the larger class animal.
Without the use of hierarchies, each object would need
to define all of its characteristics explicitly. However,
by use of inheritance, an object need only define those
qualities that make it unique within its class. It can
inherit its general attributes from its parent. Thus, it is
the inheritance mechanism that makes it possible for
one object to be a specific instance of a more general
case.
6. Polymorphism: Polymorphism (from the
Greek, meaning “many forms”) is a feature that allows
one interface to be used for a general class of actions.
7. Dynamic Binding: Binding refers to the
linking of a procedure call to the code to be executed in
response to the call. Dynamic binding (Also known as
late binding) means that a code associated with a given
procedure call is not known until the time of the call at
run time.
Object oriented metrics taxonomy

Software Engineering introduces the measures in
each step in a life cycle of a software project,
independently of the used model: waterfall, spiral.

Then, the metrics can be viewed from a three
dimensional approach, with the next dimensions:

• Software attributes to measure (complexity,
reusability)

• Step in the life cycle in which is done the
measure (design, analysis)

• Granularity level in which the measure is taken
(system level, program level, class level)

Metrics cannot be applied to any software
attribute that want to be measured indiscriminately.
The typical case of a mistaken measure is to measure
the lines of code (LOC) as a complexity program
measure, when this is valid as a measure of the size
program, not as complexity program measure.
Minkiewicz [5] considered the value of various
measures of size, lines of code and function points. The
model [8] estimated size, measured by function points
[16] directly from a conceptual model of the system
being built. A model proposed by Tan et al. estimated
lines of code based on the counts of entities,
relationships, and attributes from the conceptual data
model [7]

In another way, all the metrics don’t have to be
taken in the implementation stage, although part of
them are taken from this step. It should be desirable to

get them in the earlier design step. The OO technology
forces the growth of OO software metrics [15].

[Chindamber and Kemerer, 1994] proposed six
metrics for object oriented design:

Weight Methods per Class (WMC),
Depth of Inheritance Tree (DIT),
Number of Children (NOC),
Coupling Between Object classes (CBO),
Response For a Class (RFC) and
Lack of Cohesion in Methods (LCOM)

 Metric 1: Weighted Methods Per Class
(WMC)

This metric is an average of the number of
methods per class, where each method is weighted by a
complexity based on the type of method, the number of
properties the method effects and the number of
services this method provides to the system. The details
of this weighting will be covered in more detail in later
sections. This metric is the heart of the POPs count.
Research indicates there are two prominent schools of
thought in the determination of object-oriented metrics
suitable for size estimation (remember this is size as it
relates to effort and productivity). One uses a count of
the total number of distinct objects [10], [12]. The
other uses a count of the Weighted Methods Per Class
of objects [9], [14], [11], [13]. While the number of
objects has shown promise as a useful effort estimator,
we favor using a WMC count for several reasons:

 Methods relate to behavior and in so doing
provide a metric that has meaning to non-software
savvy individuals.

 Intended behaviors of the system are known
early in the analysis, making it easier to develop a
credible estimate early in the software lifecycle.

 WMC counting methods can be established to
impose some rigor on the counting process.

Weighted methods per class encompass both the
functionality and the inter-object communication in the
POPs count.
 Metric 2: Depth of Inheritance Tree (DIT)

Each class described can be characterized as
either a base class or a derived class. Those classes that
are derived classes, fall somewhere in the class
hierarchy other than the root. The DIT for a class
indicates it’s depth in the inheritance tree i.e. it is the
length (in number of levels) from the root of the tree to
that particular class. For example, in Figure 2, the DIT
for Class C is 3 because there are three levels between
the root, A, and class C. The average DIT, along with
TLC and NOC, is used to help establish the reuse
through inheritance dimension and the overall system
size.

 Report and Opinion 2014;6(10) http://www.sciencepub.net/report

72

 Metric 3: Number Of Children (NOC)
NOC = number of immediate sub-classes

subordinated to a class in the class hierarchy.
NOC relates to the notion of scope of properties.

It is a measure of how many subclasses are going to
inherit the methods of the parent class.

• Greater the number of children, greater the
reuse, since inheritance is a form of reuse.

• Greater the number of children, the greater the
likelihood of improper abstraction of the parent class.
If a class has a large number of children, it may be a
case of misuse of sub-classing.

• The number of children gives an idea of the
potential influence a class has on the design. If a class
has a large number of children, it may require more
testing of the methods in that class.
 Metric 4: Coupling Between Objects (CBO)

CBO for a class is a count of the number of other
classes to which it is coupled.CBO relates to the notion
that an object is coupled to another object if one of
them acts on the other, i.e., methods of one use
methods or instance variables of another. As stated
earlier, since objects of the same class have the same
properties, two classes are coupled when methods
declared in one class use methods or instance variables
defined by the other class.

• Excessive coupling between object classes is
detrimental to modular design and prevents reuse. The
more independent a class is, the easier it is to reuse it in
another application.

• In order to improve modularity and promote
encapsulation, inter-object class couples should be kept
to a minimum. The larger the number of couples, the
higher the sensitivity to changes in other parts of the
design, and therefore maintenance is more difficult.

• A measure of coupling is useful to determine
how complex the testings of various parts of a design
are likely to be. The higher the inter-object class

coupling, the more rigorous the testing needs to be.
• Metric 5: Response For a Class (RFC)

The response set of a class (RFC) is defined as set
of methods that can be potentially executed in response
to a message received by an object of that class. No
ambiguity or inadequacy is reported for this metric.
RFC measures both external and internal
communication, but specifically it includes methods
called from outside the class [3, 6].

It is given by
RFC=|RS|, where RS, the response set of the

class, is given by

where Mi = set of all methods in a class (total n)

and
Ri = {Rij} = set of methods called by Mi.
RFC is more sensitive measure of coupling than

CB since it considers methods instead of classes
• Metric 6: Lack of Cohesion in Methods (LCOM)

This metric is a count of the number of disjoint
method pairs minus the number of similar method
pairs. The disjoint methods have no common instance
variables, while the similar methods have at least one
common instance variable.

The appearance of the Unified Modelling
Language (UML) [Booch et al., 1999] as a standard of
modelling object oriented information systems have
provided a great contribution toward building quality
object oriented systems. In [Genero et al., 2000]
propose a set of metrics in order to assess the
complexity of UML class diagrams from the relations
in UML, such as association, aggregation. If none of
the methods of a class display any instance behavior,
i.e., do not use any instance variables, they have no
similarity and the LCOM value for the class will be
zero [3, 4].

 Report and Opinion 2014;6(10) http://www.sciencepub.net/report

73

Consider a class C1 with n methods M1,
M2,….,Mn. Let (Ij) = set of all instance variables used
by method Mi. There as n such sets {I1},….{In}. Let P
= {(Ii, Ij) | Ii ∩ Ij = 0} and Q = {(Ii, Ij) | Ii ∩ Ij ≠ 0}. If
all n sets

{(Ii),….(In)} are 0 then P=0
LCOM=|P| - |Q|, if |P|>|Q|
= 0 otherwise

Benefits of object-oriented system
The Advantage or benefits of object oriented

system are following:
 The use of objects as basic modules

assists the designer to model complex real-world
systems (Model Complexity).

 The flexibility of object-oriented code
allows a rapid response to changes in their
requirements.

 The reuse of standard components
reduces both the development time for new
applications and the volume of code generated.

 The increased maintainability of
software makes it more reliable and reduces
maintenance costs.

 Improve Productivity
 Designed for Change

Complexity Measurement
Cyclomatic complexity is software metric

(measurement). It was developed by Thomas J.
McCabe [7] and is used to measure the complexity of a
program. It directly measures the number of linearly
independent paths through a program's source code.
Cyclomatic complexity is computed using the control
flow graph of the program: the nodes of
the graph correspond to the commands of a program,
and a directed edge connects two nodes if the second
command might be executed immediately after the first
command. A method with a low cyclomatic complexity
may imply that decisions are deferred through message
passing, not that the methods is not complex. The
cyclomatic complexity cannot be used to measure the
complexity of a class because of inheritance, but the
cyclomatic complexity of individual methods can be
combined with other measures to evaluate the
complexity of the class [3].

The cyclomatic complexity of a flow graph is as
follows
M = E − N + 2P

Where
M = Cyclomatic complexity
E = Number of edges of the graph

N = Number of nodes of the graph
P = Number of connected components.

Example:
For understanding and the analysis the role of

complexity in the software testability we are taking
examples of vending machine.In this example, in the
first step we measure the testability by using the
method of John McGregor and S. Srinivas . Than in the
second step we draw the Control flow graph and find
the complexity of the program.
Vending Machine

1. public class VendingMachine
2. {
3. final private int COIN = 25;
4. final private int VALUE = 50;
5. private int totValue;
6. private int currValue;
7. private Dispenser d;
8. public VendingMachine()
9. {
10.totValue = 0;
11.currValue = 0;
12.d = new Dispenser();
13.}
14. public void insert()
15. {
16. currValue += COIN;
17. System.out.println("Current value = " +

currValue);
18. }
19. public void return()
20. {
21. if (currValue == 0)
22. System.err.println("no coins to return");
23. else
24. {
25. System.out.println("Take your coins");
26. currValue = 0;}
27. }
28. public void vend(int selection)
29. {
30. int expense;
31. expense = d.dispense(currValue, selection);
32. totValue += expense;
33. currValue -= expense;
34. System.out.println("Current value = " +

currValue);
35. }
36.}

Step 1. Testability Analysis

 Report and Opinion 2014;6(10) http://www.sciencepub.net/report

74

Table 4.1

S.No Method Name
Visibility

Component(ζ)
Method Testability(ή)

Class Testability
(θ)

1 VendingMachine() 3/3=1 2*1=2

2

2 void insert() 3/3=1 2*1=2
3 void return() 3/3=1 2*1=2
4 void vend() 4/4=1 2*1=2

Cyclometic Complexity

Fig shows the flow graph of the vending machine, its
complexity is 2.

Implimentation
Base Converter:

This program enables a user to convert from
numbers of different bases to numbers of different
bases. The number bases supported are decimal, binary,
hexadecimal, octal, and a user defined base. This

means that you can theoretically convert from any base
to any base if you so choose.

This project has only one class. The testability
and complexity analysis of this project is as follows:

Fig. Base converter testability and complexity graph

S. No Class No. LOC Testability Complexity
1 1 589 10 15
Complexity of Base Converter is = 15

References
1. Arti Chhikara, R.S.Chhillar, Sujata

Khatri,Evaluating The Impact Of Different Types
Of Inheritance On The Object Oriented Software
Metrics, International Journal of Enterprise
Computing and Business Systems,Volume 1 Issue
2 July 2011 ISSN (Online): 223-8849
http://www.ijecbs.com.

2. Dr. Rkesh Kumar, Gurvinder Kaur, Comparing
Complexity in Accordance with Object Oriented
Metrics, International Journal of Computer
Applications (0975 –8887) Volume 15– No.8,
February 2011.

3. Amjan Shaik, C. R. K. Reddy, Bala Manda,
Prakashini. C, Deepthi. K, An Empirical
Validation of Object Oriented Design Metrics in

Object Oriented Systems Journal of Emerging
Trends in Engineering and Applied Sciences
(JETEAS) 1 (2): 216-224,2010 (ISSN: 2141-
7016)].

4. Dr. M.P.Thapaliyal and Garima Verma.”Software
Defects and Object Oriented Metrics” - An
Empirical Analysis. International Journal of
Computer Applications 9(5):41–44, November
2010.

5. [MIN09] Minkiewicz A., "The evolution of
software size: A search for value," CROSSTALK,
Vol. 22, No. 3,2009 pp. 23-26.

6. Ms Puneet Jai kaur, Ms Amandeep Verma , Mr.
Simrandeep (2007) Thapar3,“Software Quality
Metrics for Object-Oriented Environments,
Proceedings of National Conference on

B

C

E

A

F

D

 Report and Opinion 2014;6(10) http://www.sciencepub.net/report

75

Challenges & Opportunities in Information
Technology (COIT-2007), RIMT-IET, Mandi
Gobindgarh. March 23.

7. [TAN06]Tan H. B. K., Y. Zhao, and H. Zhang,
"Estimating LOC for information systems from
their conceptual data models," Proceedings of the
28th International Conference on Software
Engineering, Shanghai, China, ACM Press, New
York, 2006, pp. 321-330.

8. [FRA06] Fraternali P., M. Tisi, and A. Bongio,
"Automating function point analysis with model
driven development," Proceedings of the
Conference of the Center for Advanced Studies
on Collaborative Research, Toronto, Canada,
ACM Press, New York, 2006, pp. 1-12.

9. [BRA06]Braz M. R. and S. R. Vergilio,
“Software Effort Estimation Based on Use
Cases”, Proceedings of 30th Annual International
Computer Software and Applications Conference
(COMPASAC ’06), IEEE Computer Society,
September 2006, pp. 221-228.

10. [COSO5] Costagliola G., F. Ferrucci, G. Tortora,
and G. Vitiello, “Class Point: An Approach for
the Size Estimation of Object-Oriented Systems”,
 IEEE Transaction on Software engineering,
Vol. 31, No. 1, January 2005, pp. 52-74.

11. [CHU95]Chucher N.I. and M.J. Shepperd,
“Comments on a metrics Suite for Object-oriented
Design” IEEE Transaction on Software
Engineering, Vol. 21, No.3, 1995, pp. 263-265.

12. [CHI94]Chidamber S. R. and C. F. Kemerer, “A
Metrics Suite for Object Oriented Design”, IEEE
Transactions on Software Engineering, Vol. 20,
No. 6, June 1994, pp. 476-493.

13. [GRA92]Grady R.B., “Practical Software Metrics
for Project Management and Process
Improvement” (Prentice Hall, Englewood Cliffs,
NJ, 1992; ISBN: 0-13-720384-5).

14. [CHI91]Chidamber S. R. and C. F. Kemerer,
“Towards a Metrics Suite for Object Oriented
Design”, Proceeding on Object Oriented
Programming Systems, Languages and
Applications Conference (OOPSLA’91), ACM,
Vol. 26, Issue 11, Nov 1991, pp. 197-211.

15. [CA 1991] Booch.G,” Object-Oriented Design
and Application”, Benjamin/Cummings, Mento
Park, CA, 1991.

16. [ALB83] Albrecht A. and J. Gaffney, "Software
function, source lines of code and development
effort prediction," IEEE Transactions on Software
Engineering, Vol. 9, 1983,pp.639-648.

10/17/2014

