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Abstract: Soil erodibility factor (K- factor) is one of the most important factors on USLE model. This factor is 
calculated on the basis of some soil properties such as soil texture (percentage of soil particles less than 0.1 mm and 
percentage of coarse sand particles larger than 0.1 mm), soil organic matter, soil structure and basic permeability of 
the soil profile. So far, various methods have been introduced for the measurement of K- factor. The objective of 
this research is to determine the soil erodibility factor using fuzzy rule base system. Sixty samples were collected 
from sixty homogenous units based on the Wischmeier`s nomograph method. After generating the fuzzy rules and 
calculating the soil erodibility factor, the results were compared with those of Wischmeier`s nomograph method. 
The results showed that the values of K- factor calculated by the fuzzy system are quite close to the values obtained 
by the USLE model and therefore, the fuzzy rule base model is introduced as the most suitable site selection strategy 
for determining soil erodibility factor. 
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1. Introduction 

Soil erosion is a major global environmental 
problem, having widespread and serious negative 
effects on agricultural production, infrastructure, 
water quality, biodiversity and promoting the 
emission of climate changing greenhouse gases 
(Pimentel et al., 1995; Lal, 1998; Lal, 2004). The 
Universal Soil Loss equation (USLE) remains the 
most popular tool for water erosion hazard 
assessment. However, the model has several 
shortcomings, two of which are likely to have 
prominent implications for the model results. First, the 
mathematical form of the USLE, the multiplication of 
six factors, easily leads to large errors whenever one 
of the input data is unspecified. Second, the USLE has 
a modest correlation between observed soil losses and 
model calculations, even with the same data that was 
used for its calibration (Sonneveld and Nearing, 
2003). The term soil erodibility has a different 
meaning from soil erosion (Bybordi, 1993; Refahi, 
1997). It is an expression of some inherent 
characteristic of soil susceptibility to erosion and of 
the soil particles to be separated from their base and 
transported to other locations. By definition, the soil 
erodibility factor is the average soil erosion in terms 
of ton/ha due to one unit of erosivity factors from a 
control plot (standard plot). A control plot would be 
22.1m long with a 9% uniform slope and two 
consecutive years in fallow, without any plant cover 
and plowed down slopes (Refahi, 1997; Torri et al., 
1997). Up to now, various methods of direct 

measurement and indirect prediction using models 
have been introduced for the measurement of the soil 
erodibility factor. The first method has good accuracy 
but it is cumbersome and expensive in the effort to 
predict the soil loss rates (Tran et al., 2002; Mitra and 
Scatte, 1998). The second method is Wischmeier`s 
nomograph method that it has low accuracy rather 
than the first method. So, this is the reason for 
improving the usage of model base included 
Wischmeier`s nomograph in USLE model. 

This factor is calculated on the basis of soil 
texture, organic matter, soil structure and basic 
permeability of the soil profile in the USLE model 
and only based on soil texture in the RUSLE model 
(Wang et al., 2001). Some investigators have reported 
that using a fuzzy system to predict soil erosion would 
improve our ability to predict (Tran et al., 2002; Mitra 
and Scatte, 1998). Because of fuzzy inference system 
more closely resemble the way we think than do more 
explicit mathematical rules. Fuzzy logic programming 
can be used in two main ways: as a way of trying to 
model the behavior of a human expert, and as a way 
of relating a set of outputs to a set of inputs in a 
‘model-free’ way- in ‘fuzzy inference method. Thus, a 
fuzzy logic system is flexible and transparent. 

Fuzzy logic  has not only made possible a more 
flexible and more realistic procedure in describing the 
relationship between the soil erodibility factor and the 
variables contributing to make up this factor, but it 
also overcomes the problems of uncertainty in the 
model parameters. The most important step in the 
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fuzzy system is the expression of the process in the 
IF-THEN logic. It is quite important to be able to 
determine which entry would produce the largest 
output with the smallest incremental change (Bardosy 
and Duckstien, 1995; Mukaidono, 2001). The studies 
by Wischmeier and Manning showed that an 
incremental change in the percentage of silt often 
results in a considerable change in the value of the 
erodibility factor so that soils with 40-60% silt exhibit 
the greatest erodibility among the soils (Refahi, 1997). 
Another report indicates that a percentage figure for 
soil particles of less than 0.1 mm shows a good 
regression with the maximum run off as well as soil 
erosion among a vast number of soils examined 
(Barthes and Roose, 2002; Loch and Slater, 1998). 
Soil organic matter regression with the maximum run-
off as well as soil erosion among a vast number of 
scatter is the second most important parameter that 
affects the soil erodibility factor. Soil organic matter 
positively affects on the stability of the soil 
permeability (Refahi, 1997). It is claimed that such 
rules more closely resemble the way we think than do 
more explicit mathematical rules. The objective of this 
research is to investigate the new topics of fuzzy 
system to predict the value of soil erodibility factor. 
The method of fuzzy system, USLE model with five 
parameters and data from wischmeier`s nomograph 
are used. In this paper, we consider the fuzzy system 
based on the singleton fuzzyfier, centeriod defuzzifier 
and minimum Mamdani`s inference engine. 
 
2. Material and Methods 
2.1 Study area 

The research commenced in 2008 and ended in 
2010. The study was carried out in Zayande-rood-olya 
watershed, chahar-mahal-va-bakhtyari province in 
Iran (Fig. 1) and is located between latitudes of 32°40´ 
and 32°42´ N and between longitudes of 50° 1´ and 
50°37´ E which has the area about 83000 hectares. 
The soil moisture and temperature regimes of the 
region by means of Newhall software are Xeric and 
Mesic, respectively. The soils were classified 
according to USDA classification system (Soil Survey 
Staff, 2010) as belonging to the Alfisols, Entisols and 
Mollisols orders (USDA, 2010). 
2.2 Fuzzy rules and modeling procedure 

The USLE model is one of the most successful 
and widely applied erosion prediction tools for 
purposes of soil conservation and created by the 
Agricultural Research Service (ARS) of the USDA by 
Wischmeier and Smith (1965). The USLE predicts the 
long-term average annual rate of erosion on a field 
slope based on rainfall, soil type, topography, land 
cover and management practice. The USLE predicts 
soil loss due to sheet and rill erosion on a single slope 
and does not account for erosion due to other practices 

such as gully, wind or tillage erosion. Results of the 
USLE are reported in the in the metric System of units 
and the equation is represented as follows (Refahi, 
1997): 

PCLSKRA ....                                                (1) 
Where: A is the potential long-term average 

annual soil loss in tons per ha per year, R is the 
rainfall energy-intensity factor in j.ton per ha, K is the 
soil erodibility factor, LS is the length- percent slope, 
C is the land cover factor and P is the crop 
management practice factor. 

 

 
Figure 1. Location of the study area 

 

 
Figure 2: Homogeneous units in the study area 
 
Determination of the soil erodibility factor (K-

factor) in the USLE model depends on five parameters 
such as: percentage of soil particles less than 0.1 mm 
(FSS), percentage of coarse sand particles larger than 
0.1 mm (CS), soil structure class (SC), permeability 
class and organic matter (OM) content. To determine 
the parameters, at first, the map was prepared using 
overlapping homogeneous regions of different 
geological layers, vegetation, physiographic units and 
geomorphological land forms in ILWIS software (Fig. 
2). In each homogeneous region, soil samples in three 
replications were collected and finally sixty samples 
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were collected from sixty homogenous units based on 
the Wischmeier`s nomograph method. 

After obtaining the information of wischmeier`s 
nomograph, the fuzzy system was developed to 
determine the system output as K-factor with five 
inputs including percentage of particles smaller than 
0.1 mm (FSS), percentage of coarse sand particles 
larger than 0.1 (CS), soil structure class (SC), soil 
infiltration (PC) and percentage of soil organic matter 
(OM). According to Table 1 (Wang, 1997; Bahrami et 
al., 2005) fuzzy system was produced. Fuzzy 
linguistic terms for these variables are as follow: 

A C.S = {A1: etermely low, A2: very very low, 
A3: very low, A4: low, A5: less than medium, A6: 
medium, A7: less than high, A8: high, A9: very high, 
A10: very very high, A11: extermely high} 

B S.C = {B1: very low, B2: low, B3: less than 
medium, B4: medium, B5: less than high, B6: high} 

C F.S.S = {C1: extremely low, C2: very very low, 
C3: very low, C4: low, C5: less than medium, C6: 
medium, C7: less than high, C8: high, C9: very high} 

D P.C = {D1: very low, D2: low, D3: less than 
medium, D4: medium, D5: less than high, D6: high} 

E O.M = {E1: very low, E2: low, E3: less than 
medium, E4: medium, E5: high, E6: very high} 

F K-factor = {F1: very low, F2: very low, F3: low, 
F4: less than medium, F5: medium, F6: less than high, 
F7: high, F8: very high} 

The fuzzy system has the following block 
diagram (Wang, 1997; bahrami et al., 2005) (Fig. 3). 
The design of the fuzzy system must include all of the 
four blocks in the diagram. Accordingly, we selected 
the singleton fuzzyfier, minimum Mamdani`s 
inference engine and centriod defuzzyfier. The 
singleton fuzzyfier will involve the smallest volume 
of calculations. It has been shown that using the 
singleton fuzzifier offers a reasonable accuracy with 
calculations and provides possibility of mathematical 
analysis. The centriod defuzzyfier gives the best 
accuracy with the system output compared to other 
defuzzifiers (Wang, 1997; bahrami et al., 2005). For 
derived analytical formula, we can select two 
approaches in the inference engine; the multiplier 
Mamdani and minimum Mamdani. Since the 
membership function is in the range of [0, 1], the first 
approach results in a few values for the K-factor with 
respect to the second approach. 

 

 
 
Figure 3: A block diagram of the fuzzy system 

 
Table 1. The fuzzy system of inputs and output with the intervals 

K-factor (SI) OM (%)1 PC (cm.h-1)2 FSS (%)3 SC4 CS (%)5 
-0.15,0,0.15 -0.5,0,0.5 0,0.07,0.33 0,0.5,15 -0.005,0,0.5 0-0,005,0.02 
0,0.05,0.15 0,0.5,2 0.075,0.33,1.015 5,15,25 0,0.5,1 0.005,0.02,0.045 
0.05,0.15,0.25 0.5,2,4 0.33,1.015,3.3 15,25,40 0.5,1,2 0.02,0.045,0.095 
0.15,0.25,0.4 2,4,6 1.015,3.3,8.185 25,40,55 1,2,3 0.045,0.095,0.15 
0.25,0.4,0.6 4,6,8 3.3,8.185,12.145 40,55,65 2,3,4 0.095,0.15,0.21 
0.4,0.6,0.8 6,8,10 8.185,12.145,13 55,65,75 3,4,5 0.15,0.21,0.26 
0.6,0.8,1 - - 65,75,85 - 0.21,0.26,0.3 
- - - 75,85,95 - 0.26,0.3,0.34 
- - - 85,95,100 - 0.3,0.34,0.36 
- - - - - 0.34,0.36,0.45 
- - - - - 0.36,0.45,0.585 

 
1 Percentage of organic matter, 2 Soil 

Permeability Class, 3 Soil particle size less than 
0.1mm, 4 Soil Structure Code, 5Percentage of Coarse 
Sand (0.1-0.02 mm) 

For this reason we selected the minimum 
Mamdani`s inference engine. The membership 
functions for each of the above parameters are given 
in figures 4-9. It is obvious that the membership 
functions consist of overlap functions, which will 
increase the system accuracy. After deriving the 
membership functions for the inputs and output, the 

rule base should be develop. All rules are between 
input and output  variables based on the effects soil 
erodibility factor. So, many configurations have been 
extracted to write these rules, then use IF and THEN, 
and linguistic variables that were mentioned above. 
The example of three fuzzy rules relating to soil 
erodibility factor is summarized and shown in Table 
2. 

Although this method is basically slow it is very 
accurate (Wang, 1997). Now we have a fuzzy system 
that can take the 5 inputs and give the K-factor. 
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Table 2. Fuzzy rules relating to soil erodibility factor  

Rule 
No. 

IF 
particles 

larger 
than 0.1 

and 
structure 

class 
and 

particles 
smaller 
than 0.1 

and 
soil 

permeability 
and 

organic 
matter 

THEN 
erodibility 

factor 

1 IF EL and VL and H and L and L THEN VH 
2 IF EH and VH and EL and VH and VH THEN VVL 
3 IF M and M and VL and H and H THEN VL 

(VVL=Very Very Low; EL= Extremely Low; VL= Very Low; L=Low; M= Moderate; H= High; VH=Very High; 
EH= Extremely High) 

 

 
Figure 4. Fuzzy membership functions for organic matter 

 

 
Figure 5: Fuzzy membership functions for soil structure 

 

 
Figure 6: Fuzzy membership functions for percentage of particle less than 0.1 mm 
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Figure 7: Fuzzy membership functions for permeability parameter 

 

 
Figure 8: Fuzzy membership functions for percentage of sand particles larger than 0.1 mm 

 

 
Figure 9: Fuzzy membership functions for soil erodibility factor (ton.ha.h/Mj.ha.mm) 

 
 

3. Results and discussion 
Ten experimental data have been chosen and 

applied to the fuzzy system in order to verify the 
performance of designed fuzzy system. Table 3 shows 
a summary of the result. In this table, the soil 
erodibility factor is given on the basis of the 
Wischmeier`s nomograph. The comparison in Table 3 
indicates that the values of the soil erodibility factor 

calculated by the fuzzy system are quite close to the 
values obtained by the USLE model. 

Where: K_FUZ and K_USLE are computed 
values of sample i, based on the fuzzy system and 
USLE model, respectively, and  is the mean of 
measured values. The  coefficient for our experiments 
produced the following value by applying the above 
formula to Table 3: 
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Predictions from the K wischmeier and fuzzy 
model (K-FUZ) were compared by calculating the 

coefficient of determination (
2R  ) defined by Nash 

and Sutcliffe (1970) which is calculated as follow: 

 
  





 


N

1i
USLE(K(KFUZZY)

(KUSLE))((KFUZZY)
1

2

N

1i

2

2
SNR

            (2) 

2
SNR  =0.998                                                           (3)  

 
 
Table 3. The results of soil erodibility factors obtained with the fuzzy system and with the USLE model 

No. O.M (%) PC C.S (%) F.S.S (%) SC K-USLE K-Fuzzy 
1 5.50 3 17.10 52.90 2 0.16 0.21 
2 4.18 3 3.50 48.50 2 0.12 0.14 
3 3.53 3 30.00 42.00 2 0.16 0.20 
4 3.12 3 9.50 43.50 2 0.13 0.13 
5 3.01 3 16.70 50.30 2 0.20 0.23 
6 2.71 3 11.50 52.50 2 0.20 0.21 
7 2.60 3 3.30 52.70 2 0.18 0.19 
8 2.57 3 11.90 46.10 2 0.16 0.18 
9 2.51 3 7.50 53.50 2 0.20 0.21 

10 2.28 3 14.40 46.60 2 0.18 0.19 
 
Bahrami et al. (2005) used a new method for 

determining the soil erodibility factor using fuzzy 
system. The K values obtained with this method were 
compared with those of USLE method. Kohli and 
Khera (2006) investigated the soil erodibility 
estimates using lab-scale simulated rainstorms in 
Punjab northern India. They compared their results 
with erodibility estimated using a nomograph, an 
empirical equation and a fuzzy k- frequency 
distribution generated by FUZKBAS program. The 
results showed that the measured soil erodibility was 
significantly correlated with nomographic estimates of 
soil erodibility when steady state infiltration rate was 
used to delineate the permeability classes. The value 
of soil erodibility at maximum membership obtained 
from fuzzy K-frequency distributions and the value at 
fuzzy centroid determined by FUZKBAS were also 
significantly correlated with measured soil erodibility. 
Estimated K values were considerably higher than the 
measured K values. Torri et al. (1997) developed a 
multiple regression equation and a procedure based on 
fuzzy logic and fuzzy mathematical theories using the 
program FUZKBAS, which describes the frequency 
distribution of observed K- factor for a given soil data. 
A multiple regression equation accounted for only 
41% of the observed variance, because of the large 
unexplained variance and the best predictor (valid 
only for 207 data points) was characterised by a r2 = 
0.41, which is fairly low and gives unreliable 
predictions. They showed that by using fuzzy 
mathematics erosion risk or erodibility classes can be 

drawn in a more natural way than simply using 
subjective class limits. 

As we observed the result of fuzzy system, 
coefficient of determination between two models (K-
USLE and K-Fuzzy) is near to 1 (R2=1) and fuzzy 
system can be used instead of Wischmeier`s 
nomograph to predict soil erodibility factor. In this 
paper, we achieved a greater generality with the 
Wischmeier`s nomograph based on fuzzy system 
because the fuzzy system does not require the real 
model of K-factor and so has more flexibility. Also, 
good performance of the designed system has been 
shown by validated experimental data. In the fuzzy 
system, we can combine some inputs and make new 
input. Also, we have a rule base that can be developed 
by new data and therefore high accuracy is 
achievable. The fuzzy system provides a base for 
more studies such as neglecting any input without 
losing accuracy in the estimation of the soil erodibility 
factor. The experimental values of the five parameters 
of the Wischmeier`s nomograph have errors at various 
steps of laboratory work caused by the instruments 
and human error. The fuzzy system model can be a 
practical way to obtain a more general method to 
determine the soil erodibility factor in the world. In 
this regard, a greater value base and more accurate 
interval of inputs and output yield more a accurate 
value for the K factor. Therefore, we have applied 
experimented data to the rule base of fuzzy system 
where the Wischmeier`s nomograph is not practical, 
and so we have designed a more generally applicable 
model. 
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4. Conclusion 
The fuzzy system with the singleton fuzzyfier, 

the minimum Mamdani`s inference engine and 
centriod defuzzyfier is able to calculate the soil 
erodibility factor quite accurately. Comparing the 
value calculated using the designed fuzzy system with 
K values obtained from the USLE model showed that 
the fuzzy logic based modeling for determination of 
the soil erodibility factor is superior to the traditional 
statistical approaches and suggests a promising new 
direction for other empirically-based modeling needs. 
It has made possible a more flexible and more realistic 
procedure for describing the relationship between soil 
erodibility factor and the variables contributing to 
make up this factor. 
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