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1. Introduction 

In practice, there exist some industrial 
systems that cannot be represented by the class of 
linear time-invariant model, since the behavior of the 
dynamics of these systems is random with some 
special features. As an example of such systems, we 
mention those with abrupt changes, breakdowns of 
components, etc. Such class of dynamical systems 
can be adequately described by the class of stochastic 
hybrid systems which is the subject of this paper. 

This class of systems referred to also as 
Markovian jump systems, Systems with random 
structures, have attracted a lot of researchers, 
attention and many problems have been tackled and 
solved. Among these problems, we quote those of 
stability, stabilizability, H∞ control problem and 
filtering problem. For more details on what has been 
done on this class of systems, we refer the reader to 
the recent books by Arnold (2008), Boukas (2007) 
and Boukas (2005) and the references therein where 
different results on stochastic hybrid systems with or 
without time-delay have been developed. These two 
books present a good literature review on the subject 
up to 2004. Particularly, the stabilization problem has 
attracted many researchers from control community 
and many results have been reported in the literature. 

For the singular system which also can be 
used to represent a variety of practical systems like 
electrical circuits, mechanical systems, robotics, etc. 
(see Boukas (2001) for some examples), the 
developed results in the literature for regular systems 
cannot be used and new techniques need to be 
developed. Some attempts have been made (i) to 
check the stability and (ii) to stabilize the class of 
deterministic singular systems. For more details on 
these, we refer the reader to Boukas (2002) for 
stability and to Arnold (2008), Boukas (2007) and 
Boukas (2003) for the stability and the stabilization, 
and the references therein. Note also that other 

problems have been tackled among them we address 
in this paper H∞ control problem (see Dai (1989), de 
Farias (2000) and the references therein for more 
details). For the singular stochastic hybrid systems, 
Boukas and his coauthors have attempted to tackle 
some problems for this class of systems when the 
dynamics have time-delay. For more details, we refer 
the reader to Ishihara (2002), Kats (2002) where LMI 
results on the design of stabilizing state feedback 
controllers have been developed. To the best of our 
knowledge, the stabilization of continuous-time 
singular stochastic hybrid systems using a dynamic 
output feedback controller has never been tackled and 
our objective in this paper is to study this problem. 
This technique of stabilization is, even in the 
deterministic case, a hard problem in general that 
cannot easily be formulated as an LMI problem. Our 
goal in this paper consists of designing a dynamic 
output feedback controller that makes the closed-loop 
dynamics of the class of systems we are studying, 
regular, impulse-free and stochastically stable. Under 
the assumption of the complete access to the system 
mode, a stabilizing dynamic output feedback 
controller is designed. The gains of such controller 
are determined by solving a set of LMIs. We have to 
note that to get the LMI setting, equality restrictive 
condition is used. The rest of the paper is organized 
as follows. In Section 2, the problem we are 
considering is stated and some definitions are given. 
Section 3 gives the main results of the paper that 
determines the static output feedback controller 
which assures the closed-loop dynamics of the 
stochastic hybrid system is regular, impulse-free and 
stochastically stable. 

 
2. General problem statement  

Let us consider a dynamical singular system 
defined in a fundamental probability space (  ,, ) 
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and assume that its dynamics is described by the 
following differential system: 
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where ntx )(  is the state vector, 

nx 0  is the initial state, nu(t)  is the control 

input,  0,,y(t)  trt
n  is the continuous-time 

Markov process taking values in a finite space 

 N,...,2,1  and describes the evolution of the 

mode at time t , E is a known singular matrix with 

nnE (E)rank , ( , ) n n
tA r t   and 

nn
t trB ),(  are matrices with the following forms 

for every i : 
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where ( ) , ( ) ,n n n nA i R B i R    ( ) n nC i R  , 

( ),AD i  ( ),AE i ( ), ( )B BD i E i  are real known 

matrices with appropriate dimensions, and ),( tiFA  

and ),( tiFB  are unknown real matrices that satisfy 

the following: 

( , ) ( , ) , ( , ) ( , )T T
A A B BF i t F i t I F i t F i t I              (2) 

The Markov process  0, trt  beside 

taking values in the finite set  , represents the 

switching between the different modes and its 
dynamics is described by the following probability 
transitions: 
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where ij  is the transition rate from mode i  to mode 

j  with 0ij  when ji   and 



N

ijj
ijii

,1

  

and )(ho  is such that 0
)(

lim
0


 h

ho

h
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Throughout this paper, we assume that the 

system state )(tx  is not accessible for feedback 

while the system mode tr  is.  

Remark 2.1. Notice that when E is not singular, 
system (1) can be transformed to the class of Markov 
jump linear systems and the results developed in the 
literature can be used either to check the stochastic 

stability, or to design the state feedback or the output 
feedback controllers that stochastically stabilize this 
class of systems. For more details on this matter we 
refer the reader to Arnold (2008), Boukas (2007) and 
the references therein. 
Definition 2.1. Boukas (2001). 

i. System (1) is said to be regular if the 

characteristic polynomial, ))(
~

(det iAEs   is not 

identically zero for each mode i . 

ii. System (1) is said to be impulse-free, i.e. 

)
~

()))(
~

(deg(det ErankiAEs   for each mode i . 

In the literature we can find different 
definitions for stochastic stability. Among them we 
quote the moment stability, the stability in probability 
and almost sure stability. For simplicity, we denote 

),;( 00 rxtx , as )(tx in the sequel, the solution of 

system (1) when the initial conditions are, 

respectively, 0x  and 0r , the concept of stochastic 

stability, stochastic stabilizability and their 
robustness we will use in this paper are given by the 
following definitions (see Arnold (2008), Boukas 
(2007) or Boukas (2005)). 
Definition 2.2. System (1) with 0)( tu  is said to be:  

1. Stochastically stable if there exists a 
constant 0),( 00 rxM  such that the following holds 

for any pair of initial conditions ),( 00 rx : 
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2. robust stochastically stable if it is 
stochastically stable for all admissible uncertainties. 
Definition 2.3. System (1) is said to be: 

1. Stochastically stabilizable if there exists a 

controller )(
~

sK  that 
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such that the closed loop system is stochastically 
stable. 

2. Robust stochastically stabilizable if there 
exists a control of the form (5) such that the closed-
loop system is stochastically stable for all admissible 
uncertainties. 

The aim of this paper is to (i) develop LMI-
based conditions for system (1) with 0)( tu  to 

check if a given system is regular, impulse-free and 
stochastically stable; and (ii) design a dynamic output 
feedback controller of the form (5) that makes the 
closed-loop dynamics of the class of systems under 
study regular, impulse-free and stochastically stable. 
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Before closing this section, let us give some 
Lemmas that we will use in the rest of the paper. 
Lemma 2.1 (Boukas (2007)). Let FH,  and G  be 

real matrices of appropriate dimensions, then, for any 

scalar 0  and a matrix F  satisfying IFF T  , we 
have  

GGHHHFGHFG TTTTT 1                (6) 
Lemma 2.2 Arnold (2008), Boukas (2007). The 

linear matrix inequality 0












RS

SH T

 is equivalent 

to 0,0 1   SRSHR T , where TT RRHH  ,  

and S  is a matrix with appropriate dimension. 
Lemma 2.3 Arnold (2008), Boukas (2007). For any 

matrix u , and nnv   with 0v , we have 

vuuuuv TT 1 . 
Lemma 2.4 (Boukas (2007)) System (1) is regular, 
impulse-free and stochastically stable if there exists a 

set of nonsingular matrices ))(),...,1(( NXXX  , 

such that the following coupled LMIs hold for every 
i : 
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Lemma 2.5 consider matrices P , Q  and symmetric 

matrix H , the QN  and PN  matrices with full rank 

have the below specification:  

Im ( ) , Im ( )P QN Ker P N Ker Q  , where (.)Ker  

is null space of the matrix and the Im(.)  is the rang 

of the matrix. Then there exists a matrix J  such that: 

0 JPQQJPH TTT  if and only if 

0, 0T T
P P Q QN HN N HN  . 

 
3. Main results 

Before developing the design procedure for 
the dynamic output feedback controller, let us assume 
that 0)( tu , for 0t  and study the stochastic 

stability of the nominal system (1). Our concern is to 
establish LMI conditions to check if a given 
dynamical system of this class is regular, impulse-
free and stochastically stable. Lemma (2.4) states the 
desired results on stochastic stability of such class of 
systems. 

Let us now concentrate on the design of the 
dynamic output feedback controller of form (5). 
Plugging the controller expression in the dynamical 

system (1) gives wBxAxE clclclcl   with 
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where 
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, and the I,0  are zero and 

identity matrices with appropriate dimensions. The 
objective is to obtain the state space form 
representation matrices of controller. 

As seen in (5) the closed loop state space 
matrices are linear function of the controller matrix

K
~

. The Lemma 2.5 has basic role in our theoretical 
derivations. 

- The nominal stability criteria using LMI: 
The stability of the closed loop system is the 

most important issue in the controller design. 
 
Based on Lemma 2.4, the closed-loop 

system is regular, impulse-free and stochastically 
stable if there exists a set of nonsingular matrices 

(N)) X , . . . (1), (X X   such that the following holds 

for every i : 
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Using the expression of (i)Acl , the second 

matrix inequality in equation (9) will be: 
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Now defining matrices
clxP , Q  and 

clxH  as: 
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The equation (11) is rewritten as following:  
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According to Lemma 2.5, the inequality (11) 
is equivalent to:  
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The inequality (12.a) is not an LMI of )(iX  

because )(iX  appears in both )(iH
clx  and )(iN

clxP . 
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clxT  and P  as  
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The inequality (12.a) converts to an LMI set. 
Theorem 3.1. For 0X , the inequality 

0
clxclclx Px

T
P NHN  is equivalent to:  
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T
P NTN
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Proof: the matrices 
clxP  and P  are related 

to each other as following:  
PSP

clx                                                             (16) 

XS                                                                  (17) 
therefore we have 

1

x cl
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inserting 
clxPN  from equation (18) in the inequality 
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P NHN  we have 
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According to definition of 
clxH  in equation (10) and 

clxT  in equation (14), the inequality (19) is equivalent 

to equation (15). 
Now, referring to equation (12) Theorem 3.1, the 
sufficient condition to exist a stabilizing controller is 
obtained as: 
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the inequality (20.a) is an LMI of 1X  and 
inequality (20.b) is an LMI of X . Therefore, the 
inequalities set (20) is not an LMI of X . To 

overcome this difficulty, it is assumed that the 

matrices X  and 1X  have a structure as following:  
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where X  is a symmetric positive definite 
with dimension of )()( kk nnnn   and the sub 

matrices 1X  and 1Y  are of nn   dimension. n  and 

kn  are open loop system ( )(sG ) and the controller (

)(sK ) dimension, respectively. The following 

Theorem shows how to express the inequalities (20) 
using 1X  and 1Y  in an LMI framework. 

The following Theorem shows how to 

describe the equation (20) utilizing )(1 iX  and )(1 iY . 

Theorem 3.2: the inequalities set  
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where )(iNC  and )(iNO  are full rank matrices such 

that: 
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To do this, inserting A  from equation (8) 

and )(1 iX   from equation (21.b) in the equation (14) 

and inserting the matrix )(iB  from equation (8) in 

equation (13).  
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Choosing 0PPN  we obtain PN P ker , 

we can derive Pker  as 
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row and column of the matrix 
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the inequality 0Px
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so, the equivalency of two inequalities is 

proved. 
In the same way it can be shown that 
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are equivalent. 

Selecting X  as ),( 31 XXdiagX  , we have 
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Pre- and post multiplying 
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and using Lemma 2.3, we obtain 
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and the following sufficient conditions:  
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with  
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The following Theorem summarizes the 

results of this development. 
Theorem 3.2. If there exist sets of nonsingular 

matrices ))(),.....,2(),1(( 1111 NXXXX   and 

))(),.....,2(),1(( 1111 NYYYY   and a set of symmetric 

and positive-definite matrices 

( (1),  . . . ,  ( )) W W W N , such that the following 

set of LMI s holds for each i : 


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then system (1) is regular, impulse-free and 
stochastically stable and the state space matrices of 
the controller can be computed through  
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)()(
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)()(  iQKiPiPKiQiH T
xx

TT
x clclcl

      (30) 

Remark 3.1. Notice that the conditions we developed 
are only sufficient and since the matrix X  was 
assumed diagonal, the LMIs may be conservative. 
But we have to notice that without this assumption 
the solution cannot be put in the LMI setting. 
 
7. Conclusion 
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This paper dealt with the class of singular 
stochastic hybrid systems. LMI results on stochastic 
stability and stochastic stabilizability are developed. 
Under the assumption that the state vector is not 
available for feedback a dynamic output feedback 
controller is designed to make the closed-loop 
dynamics of this class of systems regular, impulse-
free and stochastically stable. The controller state 
space matrices are determined by solving a set of 
coupled LMIs for the nominal system. 
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