
 Report and Opinion 2015;7(8) http://www.sciencepub.net/report

66

Application of Soft Computing- for Mobile Robot Tracking

Fatemeh Masoudinia

Department of Electrical Engineering, Sofyan Branch, Islamic Azad University, Sofyan, Iran
Fatemehmasoudinia@chmail.ir

Abstract: Mobile robots are mechanical devices capable of moving in an environment with a certain degree of
autonomy. Autonomous navigation is associated to the availability of external sensors that capture information of
the environment through visual images or distance or proximity measurements. A variety of evolutionary
algorithms, operating according to Darwinian concepts, have been proposed to approximately solve problems of
common engineering applications. Increasingly common applications involve automatic learning of nonlinear
mappings that govern the behavior of control systems. In many cases where robot control is of primary concern, the
systems used to demonstrate the effectiveness of evolutionary algorithms often do not represent practical robotic
systems. In this paper, genetic programming (GP) is the evolutionary strategy of interest. It is applied to learn
fuzzy control rules for a practical autonomous vehicle steering control problem, namely, path tracking. GP handles
the simultaneous evolution of membership functions and rule bases for the fuzzy path tracker. In attempts to
formulate approaches that can handle real world uncertainty, researches are frequently faced with the necessity of
considering tradeoffs between developing complex cognitive systems that are difficult to control, or adopting a host
of assumptions that lead to simplified models which are not sufficiently representative of the system or the real
world.
[Fatemeh Masoudinia. Application of Soft Computing- for Mobile Robot Tracking. Rep Opinion 2015;7(8):66-
71]. (ISSN: 1553-9873). http://www.sciencepub.net/report. 12

Keywords: Application, Soft Computing, Mobile Robot Tracking

1. Introduction

Mobile robots are mechanical devices capable of
moving in an environment with a certain degree of
autonomy. Autonomous navigation is associated to the
availability of external sensors that capture information
of the environment through visual images or distance
or proximity measurements. The most common sensors
are distance sensors (ultrasonic, laser, etc) capable of
detecting obstacles and of measuring the distance to
walls close to the robot path. When advanced
autonomous robots navigate within indoor
environments (industrial or civil buildings), they have
to be endowed the ability to move through corridors, to
follow walls, to turn corners and to enter open areas of
the rooms [1,2].

Genetic programming [3] has recently been
demonstrated to be a viable approach to learning fuzzy
logic rules for mobile robot control and navigation [4,
5]. Herein, we address the simultaneous design of
fuzzy logic controllers (FLCs) using GP, i.e. evolution
of both the input membership functions and the rule
base. In addition, we extend the evolutionary influence
of GP by incorporating the random selection of fuzzy
logic connectives (t-norms) into the learning process.
Finally, we examine the robustness of the evolved
controllers by corrupting sensory data used by the path
following robot, and by increasing the nominal forward
velocity of the vehicle. This provides an indication of
how well GP can evolve practical solutions that also

retain the tolerance of imprecision and uncertainty
characteristic of FLCs.

The robot that is to be controlled was initially
built to take part in an IEEE competition, held at
Cleveland State University in 2004. The goal of this
competition is to compete head to head on the playing
board with an opponent and obtain the most points in
an allotted amount of time. The dimensions of the robot
had to be within those specified in the competition. The
robot had to fit within a 1.5-foot square and could not
exceed 1.5 feet in height. It should be totally
autonomous, shouldn’t transmit or receive signals to or
from the outside of the playing area, and shall not be
equipped to intentionally harm its opponents. It also
shouldn’t carry any onboard cameras. The main goal of
this work, keeping in mind the requirements of the
competition, was to cover as much of the playing area
as possible within the shortest time so that the
maximum points can be scored. The robot that was
built placed second among eleven other competitors
from different schools.

A mobile robot could be modeled in numerous
ways, but the most important factor for defining the
model would be the application and the complexity
involved. The mobile robot designed in this work is a
wheeled robot intended for indoor use as opposed to
other types (legged, airborne, and submersible mobile
robots). This robot type is the easiest to model, control,
and build. There are various behaviors that could be
modeled, like wall following, collision avoidance,

 Report and Opinion 2015;7(8) http://www.sciencepub.net/report

67

corridor following, goal seeking, adaptive goal seeking,
etc. With the competition in mind we had thought of
implementing a wall following robot. This robot would
follow the boundaries of the playing area and cover a
maximum area in a predefined path programmed into
its onboard microcontroller.

Various control techniques have been proposed
and are being researched. The control strategies of
mobile robots can be divided into open loop and closed
loop feedback strategies. In open loop control, the
inputs to the mobile robots (velocities or torques) are
calculated beforehand, from the knowledge of the
initial and end position and of the desired path between
them in the case of path following. This strategy cannot
compensate for disturbances and model errors.

These functions assign a numerical degree of
membership to a crisp (precise) number. More
precisely, over a given universe of discourse (relevant
numerical range) X, the membership function of a
fuzzy set, denoted by (x) , maps elements x X into a
numerical value in the closed unit interval, i.e. (x): X
 [0, 1].

Implementation of a fuzzy controller requires
assigning membership functions for inputs and outputs.
Inputs to a fuzzy controller are usually measured
variables, associated with the state of the controlled
plant, that are fuzzified (assigned membership values)
before being processed by an inference engine. The
heart of the controller inference engine is a set of if-
then rules whose antecedents and consequences are
made up of linguistic variables and associated fuzzy
membership functions. Consequences from fired rules
are numerically aggregated by fuzzy set union and then
collapsed (defuzzified) to yield a single crisp output as
the control signal for the plant. For detailed
introductions to fuzzy control, fuzzy set operations, and
concepts of fuzzification, inference, aggregation, and
defuzzification see one of [2, 6].

In the GP paradigm, a population is comprised of
computer programs or procedures (individuals) that are
candidate solutions to a particular problem. These
individuals participate in a simulated evolution process
wherein the population evolves over time in response
to selective pressure induced by the relative fitness of
individuals in the problem domain. In our approach,
each program executes condition-action statements,
which collectively serve as a rule base to be embedded
in a fuzzy controller. To preserve diversity among
populations and vital genetic information among
individuals, genetic operators are applied to create new
individuals for succeeding generations. When the
algorithm finally converges or satisfies its termination
criteria, it is anticipated that the best (most fit)
individual will be representative of an optimum or near
optimum solution.

In the next section, we introduce the autonomous
vehicle control problem, followed by discussion of
FLC design issues to be considered when employing
GP.
2. Literature review

The position error is taken as the deviation of the
center of gravity, C, or any other desired point of the
robot from the nearest point on the path. The
orientation error is the angular deviation of the robot
from the tangent of the desired path. Hemami et al
derived a state-space kinematic model for this robot
where the state vector was comprised of the pose errors
described. The reader is referred to either of [7] or [8]
for details of the model derivation, which culminates in
the following:

d

u

dud V
MP

MPMCV
tan

/1

/

00

0

(1)

where Vu is forward linear velocity of the robot,

and d and are rates of change of the effects of
path curvature. In [8] it is concluded (based on
dynamic analysis of the same vehicle) that for small
steering angle, (tan), Equation (1)
approximates the slow dynamics of the vehicle when
its forward velocity is low. For simulations presented
later, we have simplified the robot kinematic model by
taking this small steering angle approximation into
account. Furthermore, we apply the controller to
straight-line path following and, therefore, neglect the
model effects of path curvature. Such a simplification
does not preclude autonomous tracking of reasonably
complicated paths since multi-segment paths can be
defined to be piecewise linear.

A

P

d

X

Y W
U

desired
path

b
a

M
C

2d

V

U V

W V
actual
path

Q

Figure 1. Tracking control and error variables.

For our application, we assume that the robot has

dead-reckoning/odometry sensors that provide access

 Report and Opinion 2015;7(8) http://www.sciencepub.net/report

68

to the error states at all times, or permit calculations
thereof. This sensory input data is then mapped to
control outputs according to the desired control policy.
In path following simulations the state vector of the
kinematic model is updated using the well-known
fourth-order Runge-Kutta numerical integration
method.

The path tracker to be learned by GP is a two-
input, single-output fuzzy controller that will map the
error states into a proper steering angle at each time
step. A population of candidate solutions is created
from which a solution will emerge. The allowance for
rule bases of various sizes enhances the diversity of the
population. That is, the GP system creates individuals
in the initial population that each have possibly
different numbers of rules within a range (15-30)
specified before a run. In the process of learning fuzzy
control rules and membership functions, GP
manipulates the linguistic variables directly associated
with the controller. Given a desired motion behavior,
the search space is contained in the set of all possible
rule bases that can be composed recursively from a set
of functions and a set of terminals. The function set
consists of membership function definitions (describing
controller inputs), components of the generic fuzzy if-
then rule, and common fuzzy logic connectives. More
specifically, these include functions for fuzzy sets, rule
antecedents and consequents, fuzzy set intersection and
union, and fuzzy inference. The terminal set is made
up of the input and output linguistic variables and the
corresponding membership functions associated with
the problem.

Each rule base in the current population is
evaluated to determine its fitness value for steering the
robot from initial locations near the desired path to
final locations on the path such that steady state and
final pose errors are minimized. This evaluation
involves frequent simulation of the robot’s motion
from each of a finite number of initial conditions until
either the goal state is achieved or the allotted time
expires. The initial conditions are referred to as fitness
cases in the GP community. For this problem we use
eight different initial conditions, which is a logical
choice given the pair-wise symmetry of the possible
error categories illustrated in Figure 2. Consider error
category (d), which represents a case where the robot is
located on the left of the desired path with a negative
heading orientation. There also exists a symmetric
case where the robot is located on the right of the
desired path with a positive heading orientation. These
symmetric cases are each represented by error category
(d). The same holds for category (a), (b) and (c)
illustrated in the figure, yielding a total of eight fitness
cases that fully describe the possible combinations of
errors with respect to the path.

The fitness function is a measure of performance

used to rank each individual relative to others in the
population. We compute path tracking performance by
summing the Euclidean norms (normalized) of the final

error states plus the average control effort () over all
eight fitness cases. Thus, the following fitness function
drives the evolution process

Raw Fitness =

8

1
)222(

i id
 (2)

where d and are the position error and
orientation error existing at the end of each fitness case
simulation. The objective of this fitness function is to
minimize final path tracking errors as well as the
control effort expended. As such, a perfect fitness
score is zero and, in general, lower fitness values are
associated with better controllers. Simulations thus far

showed that including as part of the path tracking
metric significantly reduces undesired steering
oscillations. Fitness functions based solely on final
error states sometimes yielded impractical controllers
that exhibited rapid oscillations in the steering control
signal, which would cause damage to the steering
mechanism of a real mobile robot.

The path tracking success of an individual in the
population is also based on its ability to minimize
tracking errors to within the following specified

tolerances,
|| d <0.15m and |

| <0.26 rad., for each
fitness case. A fitness case simulation in which these
tolerances are satisfied is considered a hit, or successful
trial. Thus, each individual has the potential of
receiving a total of eight hits during fitness evaluation.

Figure 2. Error categories for control problem.

3. Results

In this section, we present representative results
of simulated path tracking performance for an evolved
controller. The simulated robot is based on Hemami's
kinematic model with dimensions taken from the Hero-
1 mobile robot. The Hero-1 has a tricycle wheel

 Report and Opinion 2015;7(8) http://www.sciencepub.net/report

69

configuration in which the front wheel is driven by a
DC motor and steered by a stepper motor. Its two rear
wheels are passive. Dimensions employed are 0.3m for
the wheelbase, and 0.2m for the offset from the rear
axle to the front wheel. These dimensions correspond
to the constant lengths 2d and MP of Figure 1,
respectively. All simulations were conducted assuming
a controller sampling rate of 20 Hz and run for a
maximum of ten seconds. In each case, the robot
travels at a constant nominal forward speed of 1.5 m/s
unless otherwise stated.

The GP system was implemented in the C
programming language on a 260 MHz MIPS
DECstation. Five consecutive runs (initialized using
different random number generator seeds) were
executed on a population of 200 individuals for a
maximum of 50 generations. About one hour of
computation time is required for a run of this
magnitude. A rule base of 25 rules emerged as the
fittest among all five runs. This rule base used five
conjunctive rules, three employing the Mamdani t-
norm and two employing the Larsen t-norm. The
evolved input membership functions associated with
the best rule base are shown in Figure 3 and the rules
are listed in Table 1. The notations NB, NS, Z, PS, and
PB represent fuzzy linguistic terms of “negative big”,
“negative small”, “zero”, “positive small”, and
“positive big”, respectively. Terms describing the
inputs, d and , are preceded with the prefix “p” and
“o” respectively. The fixed output membership
functions are shown in Figure 4, where the linguistic
terms are labeled without prefixes.

The evolved controller received a raw fitness of
0.1091 with 8 hits. In [4], an FLC designed manually,
through a lengthy process of trial-and-error, was
presented which also used 25 rules. Hours of iterative
refinement of membership functions and rules were
invested before arriving at a suitable design. In
comparison, the hand-derived FLC received a
comparable raw fitness (0.08 with 8 hits) for the
identical tracking problem. Figure 5 shows the
temporal responses of position error, orientation error,
and control effort for the evolved controller and for the
hand-derived controller. This result corresponds to
error category (d) of Figure 2, with initial conditions of

d = 0.8 m and = -0.9 rad. In [8] it was shown
that this error category is the most general for studying
path tracking by tricycle-type vehicles. It is most
general in the sense that in the process of correcting
vehicle steering from initial states in all other error
categories, the vehicle error status ultimately reduces
the category (d) of Figure 2 or its counter-pair. In all

fitness cases, the evolved controller achieved
comparable response characteristics to those of the
hand-derived controller using an equivalent number of
rules.

0 0.27-0.27 0.36 0.6-0.3-0.54 1.0-1.0

pNB pNS pZ pPS pPB

d

d (meters)

 (rad)
0 0.17-0.13 0.52 0.88-0.55-0.92 1.04-1.04

oNB oNS oZ oPS oPB

Figure 3. Co-evolved input membership functions.

0/4

NB NS Z PS PB

 (rad)
/6 /12 /6/12 /4

Figure 4. Output membership functions.

6. Robustness Characteristics

Given the capability to evolve FLCs that can
effectively follow paths, an important next step is to
examine their robustness to practical perturbations. To
test the noise robustness of the evolved controller,
simulations were performed with the imposition of a
noise signal upon the sensor measurement related to
heading (orientation). We assume that the error states
are derived from sensor measurements which, due to
their imperfect nature, introduce an additive sinusoidal
noise signature of small amplitude and low frequency
(relative to the controller sampling frequency) that
corrupts the orientation error. For this investigation we
impose the sensor noise signal, n(t) = 0.15cos(3t) with t
= kT, where k=1,2,3,... is the sampling instant, and T is
the sampling period. Thus, the noise amplitude is
bounded by 0.15 radians (10 degrees), and at any
sampling instant the corrupted orientation error signal

lies in the range of (0.15) radians.

 Report and Opinion 2015;7(8) http://www.sciencepub.net/report

70

Figure 5. Evolved FLC path tracking performance.

Figure 6. Evolved FLC response to sensor noise and increased forward speed.

In addition to the additive noise, we also

increased the constant nominal forward speed of the
robot by 20%, which resulted in a simulated speed of
1.8m/s. A typical result is shown in Figure 6, which
illustrates the performance of both the evolved
controller and the hand-derived controller when
induced with noise and an increased vehicle speed.
While the oscillatory effects of the added noise are
clearly evident in the steady state response, the

controller successfully navigates the robot onto the
path and maintains the steady state errors within the
tolerances specified earlier. Thus, this evolved fuzzy
controller exhibits path tracking robustness to the
imposed perturbations. This result is representative of
temporal responses for each of the remaining fitness
cases. In simulations completed thus far, the most
robust fuzzy controllers were those evolved when GP
was allowed to randomly select t-norms.

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

time (s)

P
o
s
iti

o
n
 E

rr
o
r

(m
)

0 2 4 6 8 10
-1

-0.5

0

0.5

time (s)

O
ri
e
n
ta

tio
n
 E

rr
o
r

(r
a
d
)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

time (s)

S
te

e
ri
n
g
 A

n
g
le

 C
o
n
tr

o
l (

ra
d
)

 GP-Evolved FLC
---- Hand-Derived FLC

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

time (s)

P
o
si

tio
n
 E

rr
o
r

(m
)

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

time (s)

O
ri
e
n
ta

tio
n
 E

rr
o
r

(r
a
d
)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

time (s)

S
te

e
ri

n
g
 A

n
g
le

 C
o
n
tr

o
l (

ra
d
)

 GP-Evolved FLC
---- Hand-Derived FLC

 Report and Opinion 2015;7(8) http://www.sciencepub.net/report

71

The performance assessment of the evolved
controller with regard to robustness is based upon the
assumption that low frequency oscillations within the
control signal of amplitude less than 0.026 radians (1.5
degrees) are practical. In light of this assumption, the
results indicate that the evolved FLC was able to
navigate the robot along the desired path with the
imposed perturbation of sensor noise and the increase
in the robot’s nominal speed.

Table 1. Best Evolved Rule Base

1 IF oZ THEN NS
2 IF pPB THEN Z
3 IF pNB THEN Z
4 IF pPS THEN NB
5 IF pNS and oPS THEN NS (Mamdani’s min)
6 IF pNB THEN PB
7 IF oNS THEN Z
8 IF oNB THEN PS
9 IF pNS THEN NS
10 IF pNS and oZ THEN PB (Larsen’s prod)
11 IF oPB THEN NB
12 IF pNS and oPB THEN NB (Larsen’s prod)
13 IF pPS THEN NS
14 IF oNS THEN PB
15 IF pPB THEN NB
16 IF oZ THEN PS
17 IF oNB THEN PB
18 IF pNS and oNS THEN PB (Mamdani’s min)
19 IF pNS THEN Z
20 IF oPS THEN NB
21 IF pZ THEN PS
22 IF pPB and oZ THEN Z (Mamdani’s min)
23 IF pPB THEN PS
24 IF oPS THEN PS
25 IF oNS THEN PS

Conclusions

This paper has demonstrated an approach to path
tracking controller design based on soft computing
methods. GP was successfully applied to discover
fuzzy controllers capable of navigating a mobile robot
to track straight-line paths in the plane. The
performance of the best-evolved FLC was comparable
to that of a manually derived FLC, which required a
considerably longer design cycle. GP simultaneously
evolved membership functions and rules for an FLC
that demonstrated satisfactory responsiveness to
various initial conditions while utilizing minimal
human interface. The speed of evolution alone serves
as a strong basis for practical application of GP in the
controller design process. The approach enables

expeditious design of FLCs that can be directly applied
to a physical system. Alternatively, human experts can
use the rapidly evolved FLCs as design starting points
for further manual refinement. Finally, the evolved
FLC was shown to be robust to perturbations of sensor
noise and an increase in nominal robot speed. This
supports the notion that genetically evolved FLCs can
have practical utility.

References
1. Homaifar, A. and McCormick, E., "Simultaneous

Design of Membership Functions and Rule Sets
for Fuzzy Controllers Using Genetic Algorithms",
IEEE Transactions on Fuzzy Systems, Vol. 3, No.
2, 1995, pp. 129-139.

2. Jamshidi, M., Vadiee, N. and Ross, T. (Eds.),
Fuzzy Logic and Control: Software and hardware
applications, Prentice-Hall, Englewood Cliffs, NJ,
1993.

3. Koza, J. R., Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, 1992.

4. Tunstel, E. and Jamshidi, M., "On Genetic
Programming of Fuzzy Rule-Based Systems for
Intelligent Control", International Journal of
Intelligent Automation and Soft Computing, Vol.
2, No. 3, 1996, pp. 271-284.

5. Tunstel E., Lippincott, T. and Jamshidi, M.,
"Behavior Hierarchy for Autonomous Mobile
Robots: Fuzzy-behavior modulation and
evolution", International Journal of Intelligent
Automation and Soft Computing, Vol. 3, No. 1,
1997, pp. 37-49.

6. Lee, C., “Fuzzy Logic in Control Systems: Fuzzy
Logic Controller, Part I”, IEEE Transactions on
Systems, Man & Cybernetics, Vol. 20, No. 2,
1990, pp. 404-418.

7. Hemami, A., “Steering Control Problem
Formulation of Low-Speed Tricycle-Model
Vehicles”, International Journal of Control, Vol.
61, No. 4, 1995, pp. 783-790.

8. Hemami, A., Mehrabi, M., and Cheng, R.,
"Optimal Kinematic Path Tracking Control of
Mobile Robots with Front Steering", Robotica,
Vol. 12, No, 6, 1994, pp. 563-568.

9. Battle, D. D., Implementation of Genetic
Programming for Mobile Robot Navigation, MS
Thesis, Dept. of Electrical Engineering, North
Carolina A&T State University, Greensboro, NC,
1998.

8/23/2015

