
 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

40

Application of Neural Networks for Gesture Recognition

Mohammad Kamali Moghaddam

Electrical Department, Ghuchan University of advance technology
MohammadKamaliMoghaddam@chmail.ir

Abstract: Using orientation histograms a simple and fast algorithm will be developed to work on a workstation. It
will recognize static hand gestures, namely, a subset of American Sign Language (ASL). Previous systems have
used datagloves or markers for input in the system. A pattern recognition system will be using a transform that
converts an image into a feature vector, which will then be compared with the feature vectors of a training set of
gestures. The final system will be implemented with a Perceptron network.
[Mohammad Kamali Moghaddam. Application of Neural Networks for Gesture Recognition. Rep Opinion
2015;7(9):40-54]. (ISSN: 1553-9873). http://www.sciencepub.net/report. 7

Keywords: Neural Networks for Gesture Recognition

1- Introduction

Since the introduction of the most common input
computer devices not a lot have changed. This is
probably because the existing devices are adequate. It
is also now that computers have been so tightly
integrated with everyday life, that new applications and
hardware are constantly introduced. The means of
communicating with computers at the moment are
limited to keyboards, mice, light pen, trackball,
keypads etc

These devices have grown to be familiar but
inherently limit the speed and naturalness with which
we interact with the computer. As the computer
industry follows Moore’s Law since middle 1960s,
powerful machines are built equipped with more
peripherals. Vision based interfaces are feasible and at
the present moment the computer is able to “see”.
Hence users are allowed for richer and user-friendlier
man-machine interaction. This can lead to new
interfaces that will allow the deployment of new
commands that are not possible with the current input
devices.

Recently, there has been a surge in interest in
recognizing human hand gestures. Handgesture
recognition has various applications like computer
games, machinery control (e.g. crane), and thorough
mouse replacement. One of the most structured sets of
gestures belongs to sign language. In sign language,
each gesture has an assigned meaning (or meanings).

Computer recognition of hand gestures may
provide a more natural-computer interface, allowing
people to point, or rotate a CAD model by rotating
their hands. Hand gestures can be classified in two
categories: static and dynamic. A static gesture is a
particular hand configuration and pose, represented by
a single image. A dynamic gesture is a moving gesture,
represented by a sequence of images. We will focus on
the recognition of static images.

Interactive applications pose particular
challenges. The response time should be very fast. The
user should sense no appreciable delay between when
he or she makes a gesture or motion and when the
computer responds. The computer vision algorithms
should be reliable and work for different people.

There are also economic constraints: the vision-
based interfaces will be replacing existing ones, which
are often very low cost. A hand-held video game
controller and a television remote control each cost
about $40. Even for added functionality, consumers
may not want to spend more. When additional
hardware is needed the cost is considerable higher.

Academic and industrial researchers have recently
been focusing on analyzing images of people. While
researchers are making progress, the problem is hard
and many present day algorithms are complex, slow or
unreliable. The algorithms that do run near real-time do
so on computers that are very expensive relative to the
existing hand-held interface devices.
2- Literature review

Excellent work has been done in support of
machine sign language recognition by Sperling and
Parish, who have done careful studies on the
bandwidth necessary for a sign conversation using
spatially and temporally sub-sampled images. Point
light experiments (where “lights” are attached to
significant locations on the body and just these points
are used for recognition), have been carried out by
Poizner. Most systems to date study isolate/static
gestures. In most of the cases those are finger spelling
signs.
2-1- Object Recognition

In some interactive applications, the computer
needs to track the position or orientation of a hand that
is prominent in the image. Relevant applications might
be computer games, or interactive machine control. In
such cases, a description of the overall properties of the
image, may be adequate. Image moments, which are

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

41

fast to compute, provide a very coarse summary of
global averages of orientation and position. If the hand
is on a uniform background, this method can
distinguish hand positions and simple pointing
gestures.

The large-object-tracking method makes use of a
low-cost detector/processor to quickly calculate
moments. This is called the artificial retina chip. This
chip combines image detection with some low-level
image processing (named artificial retina by analogy
with those combined abilities of the human retina). The
chip can compute various functions useful in the fast
algorithms for interactive graphics applications.
2-2- Shape recognition

Most applications, such as recognizing particular
static hand signal, require a richer description of the
shape of the input object than image moments provide.
If the hand signals fell in a predetermined set, and the
camera views a close-up of the hand, we may use an
example-based approach, combined with a simple
method top analyze hand signals called orientation
histograms.

These example-based applications involve two
phases; training and running. In the training phase, the
user shows the system one or more examples of a
specific hand shape. The computer forms and stores the
corresponding orientation histograms. In the run phase,
the computer compares the orientation histogram of the
current image with each of the stored templates and
selects the category of the closest match, or interpolates
between templates, as appropriate. This method should
be robust against small differences in the size of the
hand but probably would be sensitive to changes in
hand orientation.
3- Proposed method

Neural networks are composed of simple
elements operating in parallel. These elements are
inspired by biological nervous systems. As in nature,
the network function is determined largely by the
connections between elements. We can train a neural
network to perform a particular function by adjusting
the values of the connections (weights) between
elements.

Commonly neural networks are adjusted, or
trained, so that a particular input leads to a specific
target output. Such a situation is shown in fig(2).
There, the network is adjusted, based on a comparison
of the output and the target, until the network output
matches the target. Typically many such input/target
pairs are used, in this supervised learning (training
method studied in more detail on following chapter), to
train a network.

Neural networks have been trained to perform
complex functions in various fields of application
including pattern recognition, identification,
classification, speech, vision and control systems.

Today neural networks can be trained to solve
problems that are difficult for conventional computers
or human beings. The supervised training methods are
commonly used, but other networks can be obtained
from unsupervised training techniques or from direct
design methods. Unsupervised networks can be used,
for instance, to identify groups of data. Certain kinds of
linear networks and Hopfield networks are designed
directly. In summary, there are a variety of kinds of
design and learning techniques that enrich the choices
that a user can make.

Figure 1: Neural Net block diagram

The field of neural networks has a history of some

five decades but has found solid application only in the
past fifteen years, and the field is still developing
rapidly. Thus, it is distinctly different from the fields of
control systems or optimization where the terminology,
basic mathematics, and design procedures have been
firmly established and applied for many years.
3-1- Neuron Model

A neuron with a single scalar input and no bias is
shown on the left below.

The scalar input p is transmitted through a
connection that multiplies its strength by the scalar
weight w, to form the product wp, again a scalar. Here
the weighted input wp is the only argument of the
transfer function f, which produces the scalar output a.
The neuron on the right has a scalar bias, b. You may
view the bias as simply being added to the product wp
as shown by the summing junction or as shifting the
function f to the left by an amount b. The bias is much
like a weight, except that it has a constant input of 1.
The transfer function net input n, again a scalar, is the
sum of the weighted input wp and the bias b. This sum
is the argument of the transfer function f. Here f is a
transfer function, 15 typically a step function or a
sigmoid function, that takes the argument n and
produces the output a. Examples of various transfer
functions are given in the next section. Note that w and
b are both adjustable scalar parameters of the neuron.
The central idea of neural networks is that such
parameters can be adjusted so that the network exhibits
some desired or interesting behavior.

Thus, we can train the network to do a particular
job by adjusting the weight or bias parameters, or

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

42

perhaps the network itself will adjust these parameters
to achieve some desired end. All of the neurons in the
program written in MATLAB have a bias.

However, you may omit a bias in a neuron if you
wish. A
3-2- Supervised Learning

Supervised learning is based on the system trying
to predict outcomes for known examples and is a
commonly used training method. It compares its
predictions to the target answer and "learns" from its
mistakes. The data start as inputs to the input layer
neurons. The neurons pass the inputs along to the next
nodes. As inputs are passed along, the weighting, or
connection, is applied and when the inputs reach the
next node, the weightings are summed and either
intensified or weakened. This continues until the data
reach the output layer where the model predicts an
outcome. In a supervised learning system, the predicted
output is compared to the actual output for that case. If
the predicted output is equal to the actual output, no
change is made to the weights in the system. But, if the
predicted output is higher or lower than the actual
outcome in the data, the error is propagated back
through the system and the weights are adjusted
accordingly. This feeding errors backwards through the
network is called "back-propagation." Both the Multi-
Layer Perceptron and the Radial Basis Function are
supervised learning techniques. The Multi-Layer
Perceptron uses the back-propagation while the Radial
Basis Function is a feed-forward approach which trains
on a single pass of the data.
3-3-Advantages of Neural Computing

There are a variety of benefits that an analyst
realizes from using neural networks in their work.
Pattern recognition is a powerful technique for
harnessing the information in the data and generalizing
about it. Neural nets learn to recognize the patterns
which exist in the data set.

The system is developed through learning rather
than programming. Programming is much more time

consuming for the analyst and requires the analyst to
specify the exact behavior of the model. Neural nets
teach themselves the patterns in the data freeing the
analyst for more interesting work.

Neural networks are flexible in a changing
environment. Rule based systems or programmed
systems are limited to the situation for which they were
designed--when conditions change, they are no longer
valid. Although neural networks may take some time to
learn a sudden drastic change, they are excellent at
adapting to constantly changing information.

Neural networks can build informative models
where more conventional approaches fail. Because
neural networks can handle very complex interactions
they can easily model data which is too difficult to
model with traditional approaches such as inferential
statistics or programming logic.

Performance of neural networks is at least as good
as classical statistical modeling, and better on most
problems. The neural networks build models that are
more reflective of the structure of the data in
significantly less time.

Neural networks now operate well with modest
computer hardware. Although neural networks are
computationally intensive, the routines have been
optimized to the point that they can now run in
reasonable time on personal computers. They do not
require supercomputers as they did in the early days of
neural network research.
3-4- Single Perceptron

The perceptron is a program that learns concepts,
i.e. it can learn to respond with True (1) or False (0) for
inputs we present to it, by repeatedly "studying"
examples presented to it.

The structure of a single perceptron is very
simple. There are two inputs, a bias, and an output. A
simple schematic diagram is shown in fig(5).

Note that both the inputs and outputs of a
perceptron are binary - that is they can only be 0 or 1.

Figure 2: Perceptron Schematic Diagram

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

43

Each of the inputs and the bias is connected to the
main perceptron by a weight. A weight is generally a
real number between 0 and 1. When the input number
is fed into the perceptron, it is multiplied by the
corresponding weight. After this, the weights are all
summed up and fed through a hard-limiter. Basically, a
hard-limiter is a function that defines the threshold
values for 'firing' the perceptron. For example, the
limiter could be:

For example, if the sum of the input multiplied by
the weights is -2, the limiting function would return 0.
Or if the sum was 3, the function would return 1.

Now, the way a perceptron learns to distinguish
patterns is through modifying its weights

- the concept of a learning rule must be
introduced. In the perceptron, the most common form
of learning is by adjusting the weights by the difference
between the desired output and the actual output.
Mathematically, this can be written:

Learning on a perceptron is guaranteed, as stated
by the Perceptron Convergence Theorem which states
that if a solution can be implemented on a perceptron,
the learning rule will find the solution in a finite
number of steps.

Proof of this theorem can be found in Minsky and
Papert's 1989 book, Perceptrons.
3-5- The Perceptron Convergence Algorithm

For the development of the error-correction
learning algorithm for a single-layer perceptron, we
will work with the signal-flow graph shown in fig(6).
In this case the threshold θ(n) is treated as a synaptic
weight connected to a fixed input equal to –1.

Figure 3: Perceptron Signal Flow Graph

We may then define the (p+1)-by-1 input vector:

�(�) = [−1, �� (�), �� (�), , �� (�)] �
Correspondingly we define the (p+1)-by-1 weight

vector:
�(�) = [� (�), �� (�), �� (�), , �� (�)] �
Below are some variable and parameters used in

the convergence algorithm
� (�)=threshold

y(n) = actual response
d(n) = desired response
η = learning rate parameter, 0< η <1
So lets see the 4-step algorithm in greater detail:

Step 1: Initialization
Set w(0)=0. Then perform the following

computations for time n=1,2,….
Step 2: Activation

At time n, activate the perceptron by applying
continuous-valued input vector x(n) and desired
response d(n).
Step 3: Computation of Actual Response

Compute the actual response of the perceptron:
y(n) =sgn[�� (n)x(n)]
The linear output is written in the form:
u(n) =wT (n)x(n)
where :
sgn(u) = +1 if u>0
sgn(u) = -1 if u<0

Step 4: Adaptation of Weight Vector
w(n +1) =w(n) +�[d(n) −y(n)]x(n)
where d(n)= +1 if x(n) belongs to class ��
where d(n)= -1 if x(n) belongs to class ��

Step 5
Increment time n by one unit and go back to step

2
Perceptrons can only solve problems where the

solutions can be divided by a line (or hyperplane) - this
is called linear separation. To explain the concept of
linear separation further, let us look at the function
shown to the left. The function reads 'x1 and (not x2)'.
Let us assume that we run the function through a
perceptron, and the weights converge at 0 for the bias,
and 2, -2 for the inputs. If we calculate the net value
(the weighted sum) we get:
Table 1: 'x1 and not x2

Figure 4: Linear Separable

So the perceptron correctly draws a line that

divides the two groups of points. Note that it doesn't
only have to be a line, it can be a hyperplane dividing
points in 3-D space, or beyond. This is where the
power of perceptrons lies, but also where its limitations
lie. For example, perceptrons cannot solve the XOR
binary functions.

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

44

4-Approach
The starting point of the project was the creation

of a database with all the images that would be used for
training and testing.

The image database can have different formats.
Images can be either hand drawn, digitized
photographs or a 3D dimensional hand. Photographs
were used, as they are the most realistic approach.

Images came from two main sources. Various
ASL databases on the Internet and photographs I took
with a digital camera. This meant that they have
different sizes, different resolutions and some times
almost completely different angles of shooting. Images
belonging to the last case were very few but they were
discarded, as there was no chance of classifying them
correctly. Two operations were carried out in all of the
images. They were converted to grayscale and the
background was made uniform. The internet databases
already had uniform backgrounds but the ones I took
with the digital camera had to be processed in Adobe
Photoshop.

Drawn images can still simulate translational
variances with the help of an editing program (e.g.
Adobe Photoshop).

The database itself was constantly changing
throughout the completion of the project as it was it
that would decide the robustness of the algorithm.
Therefore, it had to be done in such way that different
situations could be tested and thresholds above which
the algorithm didn’t classify correct would be decided.

The construction of such a database is clearly
dependent on the application. If the application is a
crane controller for example operated by the same
person for long periods the algorithm doesn’t have to
be robust on different person’s images. In this case
noise and motion blur should be tolerable. The
applications can be of many forms and since I wasn’t
developing for a specific one I have tried to experiment
for many alternatives. We can see an example below.
In the first row are the training images. In the second
the testing images.

Train image 1 Train image 2 Train image 3
Test Image 1 Test Image 2 Test Image 3

Figure 5: Train – Test images

For most of the gestures the training set originates

from a single gesture. Those were enhanced in Adobe
Photoshop using various filters. The reason for this is
that I wanted the algorithm to be very robust for images
of the same database. If there was a misclassification to
happen it would be preferred to be for unknown
images.

The final form of the database is this.
Train set:

Eight training sets of images, each one containing
three images. Each set originates from a single image
for testing.
Test Set:

The number of test images varies for each gesture.
There is no reason for keeping those on a constant
number. Some images can tolerate much more variance
and images from new databases and they can be tested
extensively, while other images are restricted to fewer
testing images.

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

45

Train Set sample
The databases are shown in more detail in the

results section where all the training and testing images
are listed.

The system could be approached either in high or
low-level. The former would employ models of the
hand, finger, joints and perhaps fit such a model to the
visual data. This approach offers robustness, but at the
expense of speed.

A low-level approach would process data at a
level not much higher than that of pixel intensities.

Although this approach would not have the power
to make inferences about occluded data, it could be
simple and fast. The pattern recognition system that
will be used can be seen in Fig (9). Some
transformation T, converts an image into a feature
vector, which will be then compared with feature
vectors of a training set of gestures.

Table 2: Train Set sample

We will be seeking for the simplest possible

transformation T, which allows gesture recognition.

Histogram orientation has the advantage of being
robust in lighting change conditions. If we follow the
pixel-intensities approach certain problems can arise
for varying illumination. Taking a pixel-by-pixel
difference of the same photo under different lighting
conditions would show a large distance between these
two identical gestures. For the pixel-intensity approach
no transformation T has been applied. The image itself
is used as the feature vector. In Fig (10) we can see the
same hand gesture under different lighting conditions.

Another important aspect of gesture recognition is
translation invariance. The position of the hand within
the image should not affect the feature vector. This
could be enforced by forming a local histogram of the
local orientations. This should treat each orientation
element the same, independent of location. Therefore,
orientation analysis should give robustness in
illumination changes while histogramming will offer
translational invariance. This method will work if
examples of the same gesture map to similar
orientation histograms, and different gestures map to
substantially different histograms.

Figure 6: Pattern Recognition System

Figure 7: Illumination Variance

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

46

4-1 Orientation Histograms
We want gestures to be the same regardless of

where they occur with the images boarders. To achieve
this we will ignore position altogether, and tabulate a
histogram of how often each orientation element
occurred in the image. Clearly, this throws out
information and some distinct images will be confused
by their orientation histograms. In practice, however,
one can choose a set of training gestures with
substantially different orientation histograms from each
other.

One can calculate the local orientation using
image gradients. I used two 3 – tap x and y derivative
filters. The outputs of the x and y derivative operators
will be dx and dy. Then the gradient direction is atan
(dx, dy). I had decided to use the edge orientation as
the only feature that will be presented to the neural
network. The reason for this is that if the edge detector
was good enough it would have allowed me to test the
network with images from different databases. This
would lead though to testing the algorithm with only
similar images. Apart from this the images before
resized should be of approximately the same size. This
is the size of the hand itself in the canvas and not the
size of the canvas. Once the image has been processed
the output will be a single vector containing a number
of elements equal to the number of bins of the
orientation histogram.

Figure 8 shows the orientation histogram
calculation for a simple image. Blurring can be used to
allow neighboring orientations to sense each other.
4-2- Operation

The program can be ‘divided’ in 6 steps. Lets
examine them one by one.
Step1

The first thing for the program to do is to read the
image database. A for loop is used to read an entire
folder of images and store them in MATLAB’s
memory. The folder is selected by the user from
menus. A menu will firstly pop-up asking you whether
you want to run the algorithm on test or train sets. Then
a second menu will pop-up for the user to choose
which ASL sign he wants to use.
Step2

Resize all the images that were read in Step1 to
150x140 pixels. This size seems the optimal for
offering enough detail while keeping the processing
time low.
Step3.

Next thing to do is to find the edges. As
mentioned before 2 filters were used.
Step 4

Dividing the two resulting matrices (images) dx
and dy element by element and then taking the atan (
tan−1). This will give the gradient orientation.

Figure 8 : Orientation histogram

Step 5

Then the MATLAB function im2col is called to
rearrange the image blocks into columns. This is not a
necessary step but it has to be done if we want to
display the orientation histogram. Rose creates an angle
histogram, which is a polar plot showing the
distribution of values grouped according to their
numeric range. Each group is shown as one bin.
Step 6

Converting the column matrix with the radian
values to degrees. This way we can scan the vector for
values ranging from 0ο to 90ο . This is because for real
elements of X, atan(X) is in the range .

This can also be seen from the orientation
histograms where values come up only on the first and
last quarter.

Determining the number of the histogram bins
was another issue that was solved by experimenting
with various values. I have tried with 18 20 24 and 36
bins. What I was looking for was the differentiation (or
not) among the images. At the same time I was
thinking of the neural network itself as this vector
would be the input to the network. The smaller the
vector the faster the processing. Finally, the actual
resolution of each bin was set to 10ο , which means 19
bins.

The algorithms development was organized
having in mind MATLAB weaknesses. The major one
is speed. MATLAB is perfect for speeding up the
development process but it can be very slow on
execution when bad programming practices have been
employed.

Nested loops slow down the program
considerably. It is probably because MATLAB is built

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

47

on loops. Therefore, unnecessary back-tracking was
avoided and even some routines were written in full
instead of using for loops. The code is not much in any
case.

The same techniques were put in practice for the
following program as well.
4-3 Linear Classification

Linear networks can be trained to perform linear
classification with the function train.

This function applies each vector of a set of input
vectors and calculates the network weight and bias
increments due to each of the inputs. Then the network
is adjusted with the sum of all these corrections. We
will call each pass through the input vectors an epoch.
This contrasts with adapt, which adjusts weights for
each input vector as it is presented.
Adapt is another function in MATLAB for training a
neural network. I was using this at the first stages when
I was using a back-propagation network. Their main
difference is that with train only batch training
(updating the weights after each presenting the
complete data set) can be used, while with adapt you
have the choice of batch and incremental training

(updating the weights after the presentation of each
single training sample). Adapt supports far less
training functions. Since I didn’t have a very good
reason to go for incremental training I decided to use
train which is more flexible.

Finally, train applies the inputs to the new
network, calculates the outputs, compares them to the
associated targets, and calculates a mean square error.
4-4- Input , Target , Test and Output files

The input, test and target vectors are saved on the
hard drive in text files. All data is stored in a single
column. MATLAB can tell where one vector ends and
another starts simply by writing so in the fscanf
command as shown below.

TS1 = fscanf(fid,'%f',[19,inf]);
fid = fopen('target.txt','rt');
Formatting those text files can be time consuming

but once the training and target files are ready the test
files can be created when needed. The output is
displayed on the command line. The error is calculated
by subtracting the output A from target T. Then the
sum-squared error is calculated. Below some error
graphs of the network training are shown.

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

48

Figure 9: Train Error

Here is the error for the first 20 epochs of training
Training starts
[W2,b2,epochs,errors] = trainp (W2,b2,A1,T,TP);
TRAINP: 0/500 epochs, SSE = 86.
TRAINP: 1/500 epochs, SSE = 42.
TRAINP: 2/500 epochs, SSE = 24.
TRAINP: 3/500 epochs, SSE = 64.
TRAINP: 4/500 epochs, SSE = 42.
TRAINP: 5/500 epochs, SSE = 21.
TRAINP: 6/500 epochs, SSE = 46.
TRAINP: 7/500 epochs, SSE = 28.
TRAINP: 8/500 epochs, SSE = 21.
TRAINP: 9/500 epochs, SSE = 20.
TRAINP: 10/500 epochs, SSE = 36.
TRAINP: 11/500 epochs, SSE = 27.
TRAINP: 12/500 epochs, SSE = 20.
TRAINP: 13/500 epochs, SSE = 24.
TRAINP: 14/500 epochs, SSE = 22.
TRAINP: 15/500 epochs, SSE = 28.
TRAINP: 16/500 epochs, SSE = 23.
TRAINP: 17/500 epochs, SSE = 23.
TRAINP: 18/500 epochs, SSE = 15.
TRAINP: 19/500 epochs, SSE = 14.
TRAINP: 20/500 epochs, SSE = 19.
The error is constantly reducing until it converges

to 0. When it does it will stop and start the testing
process. In the case of reaching the 500 predetermined
epochs without coming down to 0 it will test the
network as is.

5- Results

Here are some tables displaying the results
obtained from the program. Sign images of the same
letter are grouped together on every table. The table
gives us information about the pre-processing
operations that took place (i.e. blurring, noise,
translation) and also if the image belongs to the same
database with the training images.

The amount of each filter is also recorded so we
can estimate the maximum values of noise the network
can tolerate. This of course varies from image to
image. The result also varies for every time the
algorithm is executed. The variance is very small but it
is there.

So we cannot easily draw conclusions and set a
certain threshold above which we can tell that the
network will not classify correctly. It all comes down
to the application again.

Form of results:
The results come out of the network in column

format. Each column is a classified image vector. The
position of the ‘1’ in the vector among the ‘0s’
indicates which sign it is.

Therefore there should be only one ‘1’ in every
vector, but this is not always the case. As you will see
from the tables below there are situations that the
perceptron cannot converge to a single solution but it
gives two possible solutions. In almost all of those
cases one of the classifications is correct. There are few
others though that the vector is not classified at all.

This is a table with all the target vectors that have
used to train the network and confirm correct
classification or not.

Table 3: Target Vectors

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

49

Below you can see some result vectors as they

come out of MATLAB: This is a test set for ‘L’.
a2 =
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Therefore the 1st, 4th, 5th, 7th, 8th, 10th, 11th

and12th vectors are correctly classified. The rest are
classified as either ‘L’ or ‘A’.

All the filtering operations were performed in
Adobe Photoshop 5.0. hence the amount of each one
was measured.

_ Blur – Measured in pixel radius
_ Motion Blur – Like taking photo of moving car.

Specify angle and blur radius
_ Noise - Either Uniform or Gaussian (stronger)
_ Same Image – From the same image database
_ Translated – move the signaling hand in the

canvas to test translational invariance
_ Classified
_ : correctly classified
_ : not classifed
W : classified as ‘W’ (wrongly)
L – a : classified as either an ‘L’ or ‘A’ (Upper

case correct)
I would like to clarify here that for any test set,

image that is noted as coming from other databases is
the only one. Therefore every image that is indicated so
represents a specific database on each own.

Below are the result tables. They start with digit
‘0’ and continue with the rest of the digits and letters.

Testing – 0 (Zero)
Figure 10: Zero

Image Blur(Radius) Noise Same Image Translated
Classified

Testing – 1 (One)
Figure 11: One

Image Blur Noise Same Image Translated Classified

Table 4: Zero Test Results

For ‘0’ the classification error is very small. For

the 5th image the amount of noise (28 gaussian) is very
high but it still classifies correctly. It will not tolerate
blurring above a pixel radius of 2.0 though.

On the other hand translation doesn’t seem to
cause any problems.

Table 5: One Test Results

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

50

Sharpening causes plenty of distortion on the
images, especially on the edges. That is way not much
sharpening will be tolerated. We can see from the table
above that for great amounts of noise or blurring the
perceptron classifies ‘1’ signs as ‘0s’.

On image 5 a combination of blurring and
gaussian noise is causing the network to classify the
sign completely wrongly.

Testing – L

Figure 12: L
Image Blur Noise Same Image Translated Classified

Table 6: L Test Results

‘L’ classification is pretty good apart from

confusion with ‘A’. Below you can see the two signs in
their original form. Comparing images in their raw
form with their vectors representations is not very safe.
Roughly though we may be able to see where the
problem starts from. In this case the fist and finger
arrangements are quite similar apart from the index
finger. Fingers are critical because they generate many
edges.

6- Conclusion

The idea of the project got started from a
McConnel’s idea of orientation histograms. Many
researchers found the idea interesting and tried to use it
in various applications. From hand recognition to cat
recognition and geographical statistics. My supervisor
and I had the idea of trying to use this technique in
conjunction with Neural Networks. In other approaches
of pattern recognition that orientation histograms have

been used different ways of comparing and classifying
were employed. Euclidean distance is a straight
forward approach to it. It is efficient as long as the data
sets are small and not further improvement is expected.

Another advantage of using neural networks is
that you can draw conclusions from the network
output. If a vector is not classified correct we can check
its output and work out a solution.

As far as the orientation algorithm is concerned it
can be further improved. The main problem is how
good differentiation one can achieve. This of course is
dependent upon the images but it comes down to the
algorithm as well. Edge detection techniques are keep
changing while line detection can solve some
problems. One of the ideas that I had lately is the one
of tangents but I don’t know if it is feasible and there is
not time of developing it.

To say that I have come to robust conclusions at
the end of the project is not safe. This is possible only
for the first part of the project. Regardless of how many
times you run the program the output vector will
always be the same. This is not the case with the
perceptron. Apart from not being 100% stable there are
so many parameters (e.g. number of layers, number of
nodes) that one can play with that finding the optimal
settings is not that straight forward. As mentioned
earlier it all comes down to the application. If there is a
specific noise target for example you can work to fit
this specifications.

My major goal was speed and the avoidance of
special hardware. This was achieved although it would
be faster if written in C / C++ but the complexity of the
design and implementation would have been much
higher. MATLAB is slower but allows its users to work
faster and concentrate on the results and not on the
design.

References:
1. Christopher M. Bishop, “Neural networks for

Pattern Recognition” Oxford, 1995.
2. William T. Freeman, Michael Roth, “Orientation

Histograms for Hand Gesture Recognition” IEEE
Intl. Wkshp. On Automatic Face and Gesture
Recognition, Zurich, June, 1995.

3. Maria Petrou, Panagiota Bosdogianni, “Image
Processing, The Fundamentals”, Wiley_ Vladimir
I. Pavlovic, Rajeev Sharma, Thomas S Huang, “
Visual Interpretation of Hand Gestures for
Human-Computer Interaction : A review” IEEE
Transactions of pattern analysis and machine
intelligence, Vol 19, NO 7, July 1997

4. Srinivas Gutta, Ibraham F. Imam, Harry
Wechsler, “ Hand gesture Recognition Using
Ensembles of Radial Basis Functions (RBF)
Networks and Decision Trees” International

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

51

Journal of Pattern Recognition and Artificial
Intelligence, Vol 11No.6 1997.

5. Simon Haykin, “Neural Networks, A
comprehensive Foundation”, Prentice Hall_
Duane Hanselman, Bruce Littlefield, “Mastering
MATLAB, A comprehensivetutorial and
reference”, Prentice Hall

APPENDIX
Part1 : Image Processing Program
%%%%Klimis Symeonidis - Msc signal Processing

Communications - Surrey
Univertsity%%%%%
%%%Orientation Histograms%%%%%
clc
% Select from menu Test or Train Sets
F = MENU('Choose a database set','Test Set','Train

Set');
if F==1
%% Select Test Set
K = MENU('Choose a file','Test A','Test V','Test

W','Test 0','Test
1','Test From other DBs');
if K == 1
loop=4
for i=1:loop
string = ['test\a\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif K == 2
loop=7
for i=1:loop
string = ['test\v\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif K == 3
loop=5
for i=1:loop
string = ['Test\W\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif K == 4
loop=5
for i=1:loop
string = ['test\0\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif K == 5
loop=4
for i=1:loop
string = ['test\1\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif K == 6
loop=13
for i=1:loop

string = ['test\otherdb\' num2str(i) '.tif'];
2
Rimages{i} = imread(string);
end
end
end;
%% Select Train Set
if F==2
loop=3 %Set loop to 3. All train sets have 3 images
L = MENU('Choose a file','Train A','Train V','Train

W','Train
0','Train 1');
if L == 1
for i=1:loop
string = ['train\a\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif L == 2
for i=1:loop
string = ['train\v\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif L == 3
for i=1:loop
string = ['train\W\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif L == 4
for i=1:loop
string = ['train\0\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
elseif L == 5
for i=1:loop
string = ['train\1\' num2str(i) '.tif'];
Rimages{i} = imread(string);
end
end
end
% Resize all images to 150x140
T{i}=imresize(Timages{i},[150,140]);
x = [0 -1 1]; %x-derivative filter
y = [0 1 -1]'; %y-derivative filter
% returns only those parts of the convolution that can

be computed
without assuming that the array A is zero-padded
dx{i} = convn(T{i},x,'same');
% returns only those parts of the convolution that can

be computed
3
without assuming that the array A is zero-padded
dy{i} = convn(T{i},y,'same');
% divide the two matrices element by element to find

gradient
orientation
gradient{i} = dy{i} ./dx{i};

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

52

theta{i} = atan(gradient{i}); %find the atan of
‘gradient’

% turn the matrix into a column vector
cl{i}= im2col(theta{i},[1 1],'distinct');
% convert radians to degrees
N{i} = (cl{i}*180)/3.14159265359;
% read and store the orientation magnitude every 10

degrees
c1{i}=(N{i}>0)&(N{i}<10);
s1{i}=sum(c1{i});
c2{i}=(N{i}>10.0001)&(N{i}<20);
s2{i}=sum(c2{i});
c3{i}=(N{i}>20.0001)&(N{i}<30);
sum(c3{i});
s3{i}=sum(c3{i});
c4{i}=(N{i}>30.0001)&(N{i}<40);
sum(c4{i});
s4{i}=sum(c4{i});
c5{i}=(N{i}>40.0001)&(N{i}<50);
sum(c5{i});
s5{i}=sum(c5{i});
c6{i}=(N{i}>50.0001)&(N{i}<60);
sum(c6{i});
s6{i}=sum(c6{i});
c7{i}=(N{i}>60.0001)&(N{i}<70);
sum(c7{i});
s7{i}=sum(c7{i});
c8{i}=(N{i}>70.0001)&(N{i}<80);
sum(c8{i});
s8{i}=sum(c8{i});
c9{i}=(N{i}>80.0001)&(N{i}<90);
sum(c9{i});
s9{i}=sum(c9{i});
c10{i}=(N{i}>90.0001)&(N{i}<100);
sum(c10{i});
s10{i}=sum(c10{i});
c11{i}=(N{i}>-89.9)&(N{i}<-80);
sum(c11{i});
s11{i}=sum(c11{i});
4
c12{i}=(N{i}>-80.0001)&(N{i}<-70);
sum(c12{i});
s12{i}=sum(c12{i});
c13{i}=(N{i}>-70.0001)&(N{i}<-60);
sum(c13{i});
s13{i}=sum(c13{i});
c14{i}=(N{i}>-60.0001)&(N{i}<-50);
sum(c14{i});
s14{i}=sum(c14{i});
c15{i}=(N{i}>-50.0001)&(N{i}<-40);
sum(c15{i});
s15{i}=sum(c15{i});
c16{i}=(N{i}>-40.0001)&(N{i}<-30);
sum(c16{i});
s16{i}=sum(c16{i});
c17{i}=(N{i}>-30.0001)&(N{i}<-20);

sum(c17{i});
s17{i}=sum(c17{i});
c18{i}=(N{i}>-20.0001)&(N{i}<-10);
sum(c18{i});
s18{i}=sum(c18{i});
c19{i}=(N{i}>-10.0001)&(N{i}<-0.0001);
sum(c19{i});
s19{i}=sum(c19{i});
D{i}= [s1{i} s2{i} s3{i} s4{i} s5{i} s6{i} s7{i} s8{i}

s9{i} s10{i}
s11{i} s12{i} s13{i} s14{i} s15{i} s16{i} s17{i}

s18{i} s19{i}];
end;
end;
end;
%close the waiting bar
close(w);
5
Part2 : Neural Network Program
%%%%Klimis Symeonidis - Msc signal Processing

Communications - Surrey
Univertsity%%%%%
%%%Perceptron network for hand gesture

classification%%%%%
% Turn on echoing of commands inside the script-file.
echo on
% Clear the workspace (all variables).
% clear all
% load perf24
% Clear command window.
clc
%

===================================
======================

%
===================================
======================

% CLASSIFICATION WITH A 2-LAYER
PERCEPTRON:

% The first layer acts as a non-linear preprocessor for
% the second layer. The second layer is trained as

usual.
pause % Strike any key to continue...
clc
% DEFINING THE CLASSIFICATION PROBLEM
% ===================================
% A matrix P defines 24 19-element input (column)

vectors:
% There are 3 examples of % each character, 8

characters, so 3 x 8
= 24 input
% patterns.
% A matrix T defines the categories with target

(column)
% vectors. There are 3 numerals and 5 characters so, 8

target

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

53

vectors in total.
pause % Strike any key to continue...
clc
% Open the files with the input vectors.
fid = fopen('train8.txt','rt');
P1 = fscanf(fid,'%f',[19,inf]);
P=P1;
fid = fopen('testA.txt','rt');
TS1 = fscanf(fid,'%f',[19,inf]);
fid = fopen('test0.txt','rt');
TS2 = fscanf(fid,'%f',[19,inf]);
fid = fopen('test5.txt','rt');
TS3 = fscanf(fid,'%f',[19,inf]);
fid = fopen('testL.txt','rt');
TS4 = fscanf(fid,'%f',[19,inf]);
fid = fopen('testV.txt','rt');
TS5 = fscanf(fid,'%f',[19,inf]);
fid = fopen('testW.txt','rt');
TS6 = fscanf(fid,'%f',[19,inf]);
6
fid = fopen('testH.txt','rt');
TS7 = fscanf(fid,'%f',[19,inf]);
fid = fopen('test1.txt','rt');
TS8 = fscanf(fid,'%f',[19,inf]);
fid = fopen('testGB.txt','rt');
TS9 = fscanf(fid,'%f',[19,inf]);
% Open the file with the target vectors.
fid = fopen('target8.txt','rt');
T = fscanf(fid,'%f',[8,inf]);
%clc
% DEFINE THE PERCEPTRON
% ========================
% P has 19 elements in each column,
% so each neuron in the hidden layer
% needs 19 inputs.
%R1;
% To maximize the chance that the preprocessing layer
% finds a linearly separable representation for the
% input vectors, it needs a lot of neurons.
% After trying a lot of different network architectures,
% it has been found that the optimal number of neurons

for
% the hidden layer is 85.
S1 = 85;
% T has 5 elements in each column,
% so 5 neurons are needed.
S2 = 5;
% INITP generates initial weights
% and biases for the network:
% Initialize pre-processing layer.
[W1,b1] = initp(P,S1);
% Initialize learning layer.
[W2,b2] = initp(S1,T);
pause % Strike any key to train the perceptron...
clc
% TRAINING THE PERCEPTRON

% =======================
% TRAINP trains perceptrons to classify input vectors.
% The first layer is used to preprocess the input

vectors:
7
A1 = simup(P,W1,b1);
% TRAINP is then used to train the second layer to
% classify the preprocessed input vectors A1.
% The TP parameter is needed by the TRAINP

function
% to define the number of epochs used.
% The first argument is the display frequency and
% the second is the maximum number of epochs.
TP = [1 500];
pause % Strike any key to start the training...
%Delete everything and also reset all figure properties,
%except position, to their default values.
clf reset
%Open a new Figure (graph window), and return
%the handle to the current figure.
figure(gcf)
%Set figure size.
setfsize(600,300);
% Training begins...
[W2,b2,epochs,errors] = trainp(W2,b2,A1,T,TP);
% ...and finishes.
pause % Strike any key to see a plot of errors...
clc
% PLOTTING THE ERROR CURVE
% ========================
% Here the errors are plotted with
% respect to training epochs:
ploterr(errors);
% If the hidden (first) layer preprocessed the original
% non-linearly separable input vectors into new

linearly
% separable vectors, then the perceptron will have 0

errors.
% If the error never reached 0, it means a new
% preprocessing layer should be created
% (perhaps with more neurons).
pause % Strike any key to use the classifier...
clc
% USING THE CLASSIFIER
% ====================
% IF the classifier WORKED we can now try to

classify
8
% the input vectors we like using SIMUP. Lets try the
% input vectors that we have used for training.
% Create a menu, so the user can select a test set.
K = MENU('Choose a file resolution','Test A','Test

0','Test 5','Test
L','Test V','Test W','Test H','Test 1','Test GB');
% According to the choice use the appropriate

variables.

 Report and Opinion 2015;7(9) http://www.sciencepub.net/report

54

if K == 1
TS = TS1;
elseif K == 2
TS = TS2;
elseif K == 3
TS = TS3;
elseif K == 4
TS = TS4;
elseif K == 5
TS = TS5;
elseif K == 6
TS = TS6;
elseif K == 7

TS = TS7;
elseif K == 8
TS = TS8;
elseif K == 9
TS = TS9;
else
P = 0;
R1 = 0;
end
a1 = simup(TS,W1,b1); % Preprocess the vector
a2 = simup(a1,W2,b2) % Classify the vector
echo offdisp('End of Hand Gesture Recognition')

9/17/2015

