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Abstract: Using orientation histograms a simple and fast algorithm will be developed to work on a workstation. It 
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1- Introduction 

Since the introduction of the most common input 
computer devices not a lot have changed. This is 
probably because the existing devices are adequate. It 
is also now that computers have been so tightly 
integrated with everyday life, that new applications and 
hardware are constantly introduced. The means of 
communicating with computers at the moment are 
limited to keyboards, mice, light pen, trackball, 
keypads etc 

These devices have grown to be familiar but 
inherently limit the speed and naturalness with which 
we interact with the computer. As the computer 
industry follows Moore’s Law since middle 1960s, 
powerful machines are built equipped with more 
peripherals. Vision based interfaces are feasible and at 
the present moment the computer is able to “see”. 
Hence users are allowed for richer and user-friendlier 
man-machine interaction. This can lead to new 
interfaces that will allow the deployment of new 
commands that are not possible with the current input 
devices. 

Recently, there has been a surge in interest in 
recognizing human hand gestures. Handgesture 
recognition has various applications like computer 
games, machinery control (e.g. crane), and thorough 
mouse replacement. One of the most structured sets of 
gestures belongs to sign language. In sign language, 
each gesture has an assigned meaning (or meanings). 

Computer recognition of hand gestures may 
provide a more natural-computer interface, allowing 
people to point, or rotate a CAD model by rotating 
their hands. Hand gestures can be classified in two 
categories: static and dynamic. A static gesture is a 
particular hand configuration and pose, represented by 
a single image. A dynamic gesture is a moving gesture, 
represented by a sequence of images. We will focus on 
the recognition of static images. 

Interactive applications pose particular 
challenges. The response time should be very fast. The 
user should sense no appreciable delay between when 
he or she makes a gesture or motion and when the 
computer responds. The computer vision algorithms 
should be reliable and work for different people. 

There are also economic constraints: the vision-
based interfaces will be replacing existing ones, which 
are often very low cost. A hand-held video game 
controller and a television remote control each cost 
about $40. Even for added functionality, consumers 
may not want to spend more. When additional 
hardware is needed the cost is considerable higher. 

Academic and industrial researchers have recently 
been focusing on analyzing images of people. While 
researchers are making progress, the problem is hard 
and many present day algorithms are complex, slow or 
unreliable. The algorithms that do run near real-time do 
so on computers that are very expensive relative to the 
existing hand-held interface devices. 
2- Literature review 

Excellent work has been done in support of 
machine sign language recognition by Sperling and 
Parish, who have done careful studies on the 
bandwidth necessary for a sign conversation using 
spatially and temporally sub-sampled images. Point 
light experiments (where “lights” are attached to 
significant locations on the body and just these points 
are used for recognition), have been carried out by 
Poizner. Most systems to date study isolate/static 
gestures. In most of the cases those are finger spelling 
signs. 
2-1- Object Recognition 

In some interactive applications, the computer 
needs to track the position or orientation of a hand that 
is prominent in the image. Relevant applications might 
be computer games, or interactive machine control. In 
such cases, a description of the overall properties of the 
image, may be adequate. Image moments, which are 
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fast to compute, provide a very coarse summary of 
global averages of orientation and position. If the hand 
is on a uniform background, this method can 
distinguish hand positions and simple pointing 
gestures. 

The large-object-tracking method makes use of a 
low-cost detector/processor to quickly calculate 
moments. This is called the artificial retina chip. This 
chip combines image detection with some low-level 
image processing (named artificial retina by analogy 
with those combined abilities of the human retina). The 
chip can compute various functions useful in the fast 
algorithms for interactive graphics applications. 
2-2- Shape recognition 

Most applications, such as recognizing particular 
static hand signal, require a richer description of the 
shape of the input object than image moments provide. 
If the hand signals fell in a predetermined set, and the 
camera views a close-up of the hand, we may use an 
example-based approach, combined with a simple 
method top analyze hand signals called orientation 
histograms. 

These example-based applications involve two 
phases; training and running. In the training phase, the 
user shows the system one or more examples of a 
specific hand shape. The computer forms and stores the 
corresponding orientation histograms. In the run phase, 
the computer compares the orientation histogram of the 
current image with each of the stored templates and 
selects the category of the closest match, or interpolates 
between templates, as appropriate. This method should 
be robust against small differences in the size of the 
hand but probably would be sensitive to changes in 
hand orientation. 
3- Proposed method 

Neural networks are composed of simple 
elements operating in parallel. These elements are 
inspired by biological nervous systems. As in nature, 
the network function is determined largely by the 
connections between elements. We can train a neural 
network to perform a particular function by adjusting 
the values of the connections (weights) between 
elements. 

Commonly neural networks are adjusted, or 
trained, so that a particular input leads to a specific 
target output. Such a situation is shown in fig(2). 
There, the network is adjusted, based on a comparison 
of the output and the target, until the network output 
matches the target. Typically many such input/target 
pairs are used, in this supervised learning (training 
method studied in more detail on following chapter), to 
train a network.  

Neural networks have been trained to perform 
complex functions in various fields of application 
including pattern recognition, identification, 
classification, speech, vision and control systems. 

Today neural networks can be trained to solve 
problems that are difficult for conventional computers 
or human beings. The supervised training methods are 
commonly used, but other networks can be obtained 
from unsupervised training techniques or from direct 
design methods. Unsupervised networks can be used, 
for instance, to identify groups of data. Certain kinds of 
linear networks and Hopfield networks are designed 
directly. In summary, there are a variety of kinds of 
design and learning techniques that enrich the choices 
that a user can make. 

 

 
Figure 1: Neural Net block diagram 

 
The field of neural networks has a history of some 

five decades but has found solid application only in the 
past fifteen years, and the field is still developing 
rapidly. Thus, it is distinctly different from the fields of 
control systems or optimization where the terminology, 
basic mathematics, and design procedures have been 
firmly established and applied for many years. 
3-1- Neuron Model 

A neuron with a single scalar input and no bias is 
shown on the left below. 

The scalar input p is transmitted through a 
connection that multiplies its strength by the scalar 
weight w, to form the product wp, again a scalar. Here 
the weighted input wp is the only argument of the 
transfer function f, which produces the scalar output a. 
The neuron on the right has a scalar bias, b. You may 
view the bias as simply being added to the product wp 
as shown by the summing junction or as shifting the 
function f to the left by an amount b. The bias is much 
like a weight, except that it has a constant input of 1. 
The transfer function net input n, again a scalar, is the 
sum of the weighted input wp and the bias b. This sum 
is the argument of the transfer function f. Here f is a 
transfer function, 15 typically a step function or a 
sigmoid function, that takes the argument n and 
produces the output a. Examples of various transfer 
functions are given in the next section. Note that w and 
b are both adjustable scalar parameters of the neuron. 
The central idea of neural networks is that such 
parameters can be adjusted so that the network exhibits 
some desired or interesting behavior. 

Thus, we can train the network to do a particular 
job by adjusting the weight or bias parameters, or 
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perhaps the network itself will adjust these parameters 
to achieve some desired end. All of the neurons in the 
program written in MATLAB have a bias. 

However, you may omit a bias in a neuron if you 
wish. A 
3-2- Supervised Learning 

Supervised learning is based on the system trying 
to predict outcomes for known examples and is a 
commonly used training method. It compares its 
predictions to the target answer and "learns" from its 
mistakes. The data start as inputs to the input layer 
neurons. The neurons pass the inputs along to the next 
nodes. As inputs are passed along, the weighting, or 
connection, is applied and when the inputs reach the 
next node, the weightings are summed and either 
intensified or weakened. This continues until the data 
reach the output layer where the model predicts an 
outcome. In a supervised learning system, the predicted 
output is compared to the actual output for that case. If 
the predicted output is equal to the actual output, no 
change is made to the weights in the system. But, if the 
predicted output is higher or lower than the actual 
outcome in the data, the error is propagated back 
through the system and the weights are adjusted 
accordingly. This feeding errors backwards through the 
network is called "back-propagation." Both the Multi-
Layer Perceptron and the Radial Basis Function are 
supervised learning techniques. The Multi-Layer 
Perceptron uses the back-propagation while the Radial 
Basis Function is a feed-forward approach which trains 
on a single pass of the data. 
3-3-Advantages of Neural Computing 

There are a variety of benefits that an analyst 
realizes from using neural networks in their work. 
Pattern recognition is a powerful technique for 
harnessing the information in the data and generalizing 
about it. Neural nets learn to recognize the patterns 
which exist in the data set. 

The system is developed through learning rather 
than programming. Programming is much more time 

consuming for the analyst and requires the analyst to 
specify the exact behavior of the model. Neural nets 
teach themselves the patterns in the data freeing the 
analyst for more interesting work. 

Neural networks are flexible in a changing 
environment. Rule based systems or programmed 
systems are limited to the situation for which they were 
designed--when conditions change, they are no longer 
valid. Although neural networks may take some time to 
learn a sudden drastic change, they are excellent at 
adapting to constantly changing information. 

Neural networks can build informative models 
where more conventional approaches fail. Because 
neural networks can handle very complex interactions 
they can easily model data which is too difficult to 
model with traditional approaches such as inferential 
statistics or programming logic. 

Performance of neural networks is at least as good 
as classical statistical modeling, and better on most 
problems. The neural networks build models that are 
more reflective of the structure of the data in 
significantly less time. 

Neural networks now operate well with modest 
computer hardware. Although neural networks are 
computationally intensive, the routines have been 
optimized to the point that they can now run in 
reasonable time on personal computers. They do not 
require supercomputers as they did in the early days of 
neural network research. 
3-4- Single Perceptron 

The perceptron is a program that learns concepts, 
i.e. it can learn to respond with True (1) or False (0) for 
inputs we present to it, by repeatedly "studying" 
examples presented to it. 

The structure of a single perceptron is very 
simple. There are two inputs, a bias, and an output. A 
simple schematic diagram is shown in fig(5). 

Note that both the inputs and outputs of a 
perceptron are binary - that is they can only be 0 or 1. 

 

 
Figure 2: Perceptron Schematic Diagram 
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Each of the inputs and the bias is connected to the 
main perceptron by a weight. A weight is generally a 
real number between 0 and 1. When the input number 
is fed into the perceptron, it is multiplied by the 
corresponding weight. After this, the weights are all 
summed up and fed through a hard-limiter. Basically, a 
hard-limiter is a function that defines the threshold 
values for 'firing' the perceptron. For example, the 
limiter could be: 

For example, if the sum of the input multiplied by 
the weights is -2, the limiting function would return 0. 
Or if the sum was 3, the function would return 1. 

Now, the way a perceptron learns to distinguish 
patterns is through modifying its weights 

- the concept of a learning rule must be 
introduced. In the perceptron, the most common form 
of learning is by adjusting the weights by the difference 
between the desired output and the actual output. 
Mathematically, this can be written: 

Learning on a perceptron is guaranteed, as stated 
by the Perceptron Convergence Theorem which states 
that if a solution can be implemented on a perceptron, 
the learning rule will find the solution in a finite 
number of steps. 

Proof of this theorem can be found in Minsky and 
Papert's 1989 book, Perceptrons. 
3-5- The Perceptron Convergence Algorithm 

For the development of the error-correction 
learning algorithm for a single-layer perceptron, we 
will work with the signal-flow graph shown in fig(6). 
In this case the threshold θ(n) is treated as a synaptic 
weight connected to a fixed input equal to –1. 

 

 
Figure 3: Perceptron Signal Flow Graph 

 
We may then define the (p+1)-by-1 input vector: 

�(�) = [ −1, �� (�), �� (�), . . . . , �� (�)] � 
Correspondingly we define the (p+1)-by-1 weight 

vector: 
�(�) = [ � (�), �� (�), �� (�), . . . . , �� (�)] � 
Below are some variable and parameters used in 

the convergence algorithm 
� (�)=threshold 

y(n) = actual response 
d(n) = desired response 
η = learning rate parameter, 0< η <1 
So lets see the 4-step algorithm in greater detail: 

Step 1: Initialization 
Set w(0)=0. Then perform the following 

computations for time n=1,2,…. 
Step 2: Activation 

At time n, activate the perceptron by applying 
continuous-valued input vector x(n) and desired 
response d(n). 
Step 3: Computation of Actual Response 

Compute the actual response of the perceptron: 
y(n) =sgn[��  (n)x(n)] 
The linear output is written in the form: 
u(n) =wT (n)x(n) 
where : 
sgn(u) = +1 if u>0 
sgn(u) = -1 if u<0 

Step 4: Adaptation of Weight Vector 
w(n +1) =w(n) +�[d(n) −y(n)]x(n) 
where d(n)= +1 if x(n) belongs to class �� 
where d(n)= -1 if x(n) belongs to class �� 

Step 5 
Increment time n by one unit and go back to step 

2 
Perceptrons can only solve problems where the 

solutions can be divided by a line (or hyperplane) - this 
is called linear separation. To explain the concept of 
linear separation further, let us look at the function 
shown to the left. The function reads 'x1 and (not x2)'. 
Let us assume that we run the function through a 
perceptron, and the weights converge at 0 for the bias, 
and 2, -2 for the inputs. If we calculate the net value 
(the weighted sum) we get: 
Table 1: 'x1 and not x2 

 
Figure 4: Linear Separable 

 
So the perceptron correctly draws a line that 

divides the two groups of points. Note that it doesn't 
only have to be a line, it can be a hyperplane dividing 
points in 3-D space, or beyond. This is where the 
power of perceptrons lies, but also where its limitations 
lie. For example, perceptrons cannot solve the XOR 
binary functions. 
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4-Approach 
The starting point of the project was the creation 

of a database with all the images that would be used for 
training and testing. 

The image database can have different formats. 
Images can be either hand drawn, digitized 
photographs or a 3D dimensional hand. Photographs 
were used, as they are the most realistic approach. 

Images came from two main sources. Various 
ASL databases on the Internet and photographs I took 
with a digital camera. This meant that they have 
different sizes, different resolutions and some times 
almost completely different angles of shooting. Images 
belonging to the last case were very few but they were 
discarded, as there was no chance of classifying them 
correctly. Two operations were carried out in all of the 
images. They were converted to grayscale and the 
background was made uniform. The internet databases 
already had uniform backgrounds but the ones I took 
with the digital camera had to be processed in Adobe 
Photoshop. 

Drawn images can still simulate translational 
variances with the help of an editing program (e.g. 
Adobe Photoshop). 

The database itself was constantly changing 
throughout the completion of the project as it was it 
that would decide the robustness of the algorithm. 
Therefore, it had to be done in such way that different 
situations could be tested and thresholds above which 
the algorithm didn’t classify correct would be decided. 

The construction of such a database is clearly 
dependent on the application. If the application is a 
crane controller for example operated by the same 
person for long periods the algorithm doesn’t have to 
be robust on different person’s images. In this case 
noise and motion blur should be tolerable. The 
applications can be of many forms and since I wasn’t 
developing for a specific one I have tried to experiment 
for many alternatives. We can see an example below. 
In the first row are the training images. In the second 
the testing images. 

Train image 1 Train image 2 Train image 3 
Test Image 1 Test Image 2 Test Image 3 

 
Figure 5: Train – Test images 

 
For most of the gestures the training set originates 

from a single gesture. Those were enhanced in Adobe 
Photoshop using various filters. The reason for this is 
that I wanted the algorithm to be very robust for images 
of the same database. If there was a misclassification to 
happen it would be preferred to be for unknown 
images. 

The final form of the database is this. 
Train set: 

Eight training sets of images, each one containing 
three images. Each set originates from a single image 
for testing. 
Test Set: 

The number of test images varies for each gesture. 
There is no reason for keeping those on a constant 
number. Some images can tolerate much more variance 
and images from new databases and they can be tested 
extensively, while other images are restricted to fewer 
testing images. 
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Train Set sample 
The databases are shown in more detail in the 

results section where all the training and testing images 
are listed. 

The system could be approached either in high or 
low-level. The former would employ models of the 
hand, finger, joints and perhaps fit such a model to the 
visual data. This approach offers robustness, but at the 
expense of speed. 

A low-level approach would process data at a 
level not much higher than that of pixel intensities. 

Although this approach would not have the power 
to make inferences about occluded data, it could be 
simple and fast. The pattern recognition system that 
will be used can be seen in Fig (9). Some 
transformation T, converts an image into a feature 
vector, which will be then compared with feature 
vectors of a training set of gestures. 

 
Table 2: Train Set sample 

 
 
We will be seeking for the simplest possible 

transformation T, which allows gesture recognition. 

Histogram orientation has the advantage of being 
robust in lighting change conditions. If we follow the 
pixel-intensities approach certain problems can arise 
for varying illumination. Taking a pixel-by-pixel 
difference of the same photo under different lighting 
conditions would show a large distance between these 
two identical gestures. For the pixel-intensity approach 
no transformation T has been applied. The image itself 
is used as the feature vector. In Fig (10) we can see the 
same hand gesture under different lighting conditions. 

Another important aspect of gesture recognition is 
translation invariance. The position of the hand within 
the image should not affect the feature vector. This 
could be enforced by forming a local histogram of the 
local orientations. This should treat each orientation 
element the same, independent of location. Therefore, 
orientation analysis should give robustness in 
illumination changes while histogramming will offer 
translational invariance. This method will work if 
examples of the same gesture map to similar 
orientation histograms, and different gestures map to 
substantially different histograms. 

 

 
Figure 6: Pattern Recognition System 

 

 
Figure 7: Illumination Variance 
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4-1 Orientation Histograms 
We want gestures to be the same regardless of 

where they occur with the images boarders. To achieve 
this we will ignore position altogether, and tabulate a 
histogram of how often each orientation element 
occurred in the image. Clearly, this throws out 
information and some distinct images will be confused 
by their orientation histograms. In practice, however, 
one can choose a set of training gestures with 
substantially different orientation histograms from each 
other. 

One can calculate the local orientation using 
image gradients. I used two 3 – tap x and y derivative 
filters. The outputs of the x and y derivative operators 
will be dx and dy. Then the gradient direction is atan 
(dx, dy). I had decided to use the edge orientation as 
the only feature that will be presented to the neural 
network. The reason for this is that if the edge detector 
was good enough it would have allowed me to test the 
network with images from different databases. This 
would lead though to testing the algorithm with only 
similar images. Apart from this the images before 
resized should be of approximately the same size. This 
is the size of the hand itself in the canvas and not the 
size of the canvas. Once the image has been processed 
the output will be a single vector containing a number 
of elements equal to the number of bins of the 
orientation histogram. 

Figure 8 shows the orientation histogram 
calculation for a simple image. Blurring can be used to 
allow neighboring orientations to sense each other. 
4-2- Operation 

The program can be ‘divided’ in 6 steps. Lets 
examine them one by one. 
Step1 

The first thing for the program to do is to read the 
image database. A for loop is used to read an entire 
folder of images and store them in MATLAB’s 
memory. The folder is selected by the user from 
menus. A menu will firstly pop-up asking you whether 
you want to run the algorithm on test or train sets. Then 
a second menu will pop-up for the user to choose 
which ASL sign he wants to use. 
Step2 

Resize all the images that were read in Step1 to 
150x140 pixels. This size seems the optimal for 
offering enough detail while keeping the processing 
time low. 
Step3. 

Next thing to do is to find the edges. As 
mentioned before 2 filters were used. 
Step 4 

Dividing the two resulting matrices (images) dx 
and dy element by element and then taking the atan ( 
tan−1 ). This will give the gradient orientation. 

 

 
Figure 8 : Orientation histogram 

 
Step 5 

Then the MATLAB function im2col is called to 
rearrange the image blocks into columns. This is not a 
necessary step but it has to be done if we want to 
display the orientation histogram. Rose creates an angle 
histogram, which is a polar plot showing the 
distribution of values grouped according to their 
numeric range. Each group is shown as one bin. 
Step 6 

Converting the column matrix with the radian 
values to degrees. This way we can scan the vector for 
values ranging from 0ο to 90ο . This is because for real 
elements of X, atan(X) is in the range . 

This can also be seen from the orientation 
histograms where values come up only on the first and 
last quarter. 

Determining the number of the histogram bins 
was another issue that was solved by experimenting 
with various values. I have tried with 18 20 24 and 36 
bins. What I was looking for was the differentiation (or 
not) among the images. At the same time I was 
thinking of the neural network itself as this vector 
would be the input to the network. The smaller the 
vector the faster the processing. Finally, the actual 
resolution of each bin was set to 10ο , which means 19 
bins. 

The algorithms development was organized 
having in mind MATLAB weaknesses. The major one 
is speed. MATLAB is perfect for speeding up the 
development process but it can be very slow on 
execution when bad programming practices have been 
employed. 

Nested loops slow down the program 
considerably. It is probably because MATLAB is built 
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on loops. Therefore, unnecessary back-tracking was 
avoided and even some routines were written in full 
instead of using for loops. The code is not much in any 
case. 

The same techniques were put in practice for the 
following program as well. 
4-3 Linear Classification 

Linear networks can be trained to perform linear 
classification with the function train. 

This function applies each vector of a set of input 
vectors and calculates the network weight and bias 
increments due to each of the inputs. Then the network 
is adjusted with the sum of all these corrections. We 
will call each pass through the input vectors an epoch. 
This contrasts with adapt, which adjusts weights for 
each input vector as it is presented. 
Adapt is another function in MATLAB for training a 
neural network. I was using this at the first stages when 
I was using a back-propagation network. Their main 
difference is that with train only batch training 
(updating the weights after each presenting the 
complete data set) can be used, while with adapt you 
have the choice of batch and incremental training 

(updating the weights after the presentation of each 
single training sample). Adapt supports far less 
training functions. Since I didn’t have a very good 
reason to go for incremental training I decided to use 
train which is more flexible. 

Finally, train applies the inputs to the new 
network, calculates the outputs, compares them to the 
associated targets, and calculates a mean square error. 
4-4- Input , Target , Test and Output files 

The input, test and target vectors are saved on the 
hard drive in text files. All data is stored in a single 
column. MATLAB can tell where one vector ends and 
another starts simply by writing so in the fscanf 
command as shown below. 

TS1 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('target.txt','rt'); 
Formatting those text files can be time consuming 

but once the training and target files are ready the test 
files can be created when needed. The output is 
displayed on the command line. The error is calculated 
by subtracting the output A from target T. Then the 
sum-squared error is calculated. Below some error 
graphs of the network training are shown. 
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Figure 9: Train Error 

 
Here is the error for the first 20 epochs of training 
Training starts 
[W2,b2,epochs,errors] = trainp (W2,b2,A1,T,TP); 
TRAINP: 0/500 epochs, SSE = 86. 
TRAINP: 1/500 epochs, SSE = 42. 
TRAINP: 2/500 epochs, SSE = 24. 
TRAINP: 3/500 epochs, SSE = 64. 
TRAINP: 4/500 epochs, SSE = 42. 
TRAINP: 5/500 epochs, SSE = 21. 
TRAINP: 6/500 epochs, SSE = 46. 
TRAINP: 7/500 epochs, SSE = 28. 
TRAINP: 8/500 epochs, SSE = 21. 
TRAINP: 9/500 epochs, SSE = 20. 
TRAINP: 10/500 epochs, SSE = 36. 
TRAINP: 11/500 epochs, SSE = 27. 
TRAINP: 12/500 epochs, SSE = 20. 
TRAINP: 13/500 epochs, SSE = 24. 
TRAINP: 14/500 epochs, SSE = 22. 
TRAINP: 15/500 epochs, SSE = 28. 
TRAINP: 16/500 epochs, SSE = 23. 
TRAINP: 17/500 epochs, SSE = 23. 
TRAINP: 18/500 epochs, SSE = 15. 
TRAINP: 19/500 epochs, SSE = 14. 
TRAINP: 20/500 epochs, SSE = 19. 
The error is constantly reducing until it converges 

to 0. When it does it will stop and start the testing 
process. In the case of reaching the 500 predetermined 
epochs without coming down to 0 it will test the 
network as is. 

 
5- Results 

Here are some tables displaying the results 
obtained from the program. Sign images of the same 
letter are grouped together on every table. The table 
gives us information about the pre-processing 
operations that took place (i.e. blurring, noise, 
translation) and also if the image belongs to the same 
database with the training images. 

The amount of each filter is also recorded so we 
can estimate the maximum values of noise the network 
can tolerate. This of course varies from image to 
image. The result also varies for every time the 
algorithm is executed. The variance is very small but it 
is there. 

So we cannot easily draw conclusions and set a 
certain threshold above which we can tell that the 
network will not classify correctly. It all comes down 
to the application again. 

Form of results: 
The results come out of the network in column 

format. Each column is a classified image vector. The 
position of the ‘1’ in the vector among the ‘0s’ 
indicates which sign it is. 

Therefore there should be only one ‘1’ in every 
vector, but this is not always the case. As you will see 
from the tables below there are situations that the 
perceptron cannot converge to a single solution but it 
gives two possible solutions. In almost all of those 
cases one of the classifications is correct. There are few 
others though that the vector is not classified at all. 

This is a table with all the target vectors that have 
used to train the network and confirm correct 
classification or not. 

 
Table 3: Target Vectors 
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Below you can see some result vectors as they 

come out of MATLAB: This is a test set for ‘L’. 
a2 = 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 0 1 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
Therefore the 1st, 4th, 5th, 7th, 8th, 10th, 11th 

and12th vectors are correctly classified. The rest are 
classified as either ‘L’ or ‘A’. 

All the filtering operations were performed in 
Adobe Photoshop 5.0. hence the amount of each one 
was measured. 

_ Blur – Measured in pixel radius 
_ Motion Blur – Like taking photo of moving car. 

Specify angle and blur radius 
_ Noise - Either Uniform or Gaussian (stronger) 
_ Same Image – From the same image database 
_ Translated – move the signaling hand in the 

canvas to test translational invariance 
_ Classified 
_ : correctly classified 
_ : not classifed 
W : classified as ‘W’ (wrongly) 
L – a : classified as either an ‘L’ or ‘A’ (Upper 

case correct) 
I would like to clarify here that for any test set, 

image that is noted as coming from other databases is 
the only one. Therefore every image that is indicated so 
represents a specific database on each own. 

Below are the result tables. They start with digit 
‘0’ and continue with the rest of the digits and letters. 

 

 
Testing – 0 (Zero) 
Figure 10: Zero 

Image Blur(Radius) Noise Same Image Translated 
Classified 
 

 

 
Testing – 1 (One) 
Figure 11: One 

Image Blur Noise Same Image Translated Classified 
 

Table 4: Zero Test Results 

 
 
For ‘0’ the classification error is very small. For 

the 5th image the amount of noise (28 gaussian) is very 
high but it still classifies correctly. It will not tolerate 
blurring above a pixel radius of 2.0 though. 

On the other hand translation doesn’t seem to 
cause any problems. 
 

Table 5: One Test Results 
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Sharpening causes plenty of distortion on the 
images, especially on the edges. That is way not much 
sharpening will be tolerated. We can see from the table 
above that for great amounts of noise or blurring the 
perceptron classifies ‘1’ signs as ‘0s’. 

On image 5 a combination of blurring and 
gaussian noise is causing the network to classify the 
sign completely wrongly. 

 

 
Testing – L 

Figure 12: L 
Image Blur Noise Same Image Translated Classified 

 
Table 6: L Test Results 

 
 
‘L’ classification is pretty good apart from 

confusion with ‘A’. Below you can see the two signs in 
their original form. Comparing images in their raw 
form with their vectors representations is not very safe. 
Roughly though we may be able to see where the 
problem starts from. In this case the fist and finger 
arrangements are quite similar apart from the index 
finger. Fingers are critical because they generate many 
edges. 

 
6- Conclusion 

The idea of the project got started from a 
McConnel’s idea of orientation histograms. Many 
researchers found the idea interesting and tried to use it 
in various applications. From hand recognition to cat 
recognition and geographical statistics. My supervisor 
and I had the idea of trying to use this technique in 
conjunction with Neural Networks. In other approaches 
of pattern recognition that orientation histograms have 

been used different ways of comparing and classifying 
were employed. Euclidean distance is a straight 
forward approach to it. It is efficient as long as the data 
sets are small and not further improvement is expected. 

Another advantage of using neural networks is 
that you can draw conclusions from the network 
output. If a vector is not classified correct we can check 
its output and work out a solution. 

As far as the orientation algorithm is concerned it 
can be further improved. The main problem is how 
good differentiation one can achieve. This of course is 
dependent upon the images but it comes down to the 
algorithm as well. Edge detection techniques are keep 
changing while line detection can solve some 
problems. One of the ideas that I had lately is the one 
of tangents but I don’t know if it is feasible and there is 
not time of developing it. 

To say that I have come to robust conclusions at 
the end of the project is not safe. This is possible only 
for the first part of the project. Regardless of how many 
times you run the program the output vector will 
always be the same. This is not the case with the 
perceptron. Apart from not being 100% stable there are 
so many parameters (e.g. number of layers, number of 
nodes) that one can play with that finding the optimal 
settings is not that straight forward. As mentioned 
earlier it all comes down to the application. If there is a 
specific noise target for example you can work to fit 
this specifications. 

My major goal was speed and the avoidance of 
special hardware. This was achieved although it would 
be faster if written in C / C++ but the complexity of the 
design and implementation would have been much 
higher. MATLAB is slower but allows its users to work 
faster and concentrate on the results and not on the 
design. 
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APPENDIX 
Part1 : Image Processing Program 
%%%%Klimis Symeonidis - Msc signal Processing 

Communications - Surrey 
Univertsity%%%%% 
%%%Orientation Histograms%%%%% 
clc 
% Select from menu Test or Train Sets 
F = MENU('Choose a database set','Test Set','Train 

Set'); 
if F==1 
%% Select Test Set 
K = MENU('Choose a file','Test A','Test V','Test 

W','Test 0','Test 
1','Test From other DBs'); 
if K == 1 
loop=4 
for i=1:loop 
string = ['test\a\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif K == 2 
loop=7 
for i=1:loop 
string = ['test\v\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif K == 3 
loop=5 
for i=1:loop 
string = ['Test\W\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif K == 4 
loop=5 
for i=1:loop 
string = ['test\0\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif K == 5 
loop=4 
for i=1:loop 
string = ['test\1\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif K == 6 
loop=13 
for i=1:loop 

string = ['test\otherdb\' num2str(i) '.tif']; 
2 
Rimages{i} = imread(string); 
end 
end 
end; 
%% Select Train Set 
if F==2 
loop=3 %Set loop to 3. All train sets have 3 images 
L = MENU('Choose a file','Train A','Train V','Train 

W','Train 
0','Train 1'); 
if L == 1 
for i=1:loop 
string = ['train\a\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif L == 2 
for i=1:loop 
string = ['train\v\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif L == 3 
for i=1:loop 
string = ['train\W\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif L == 4 
for i=1:loop 
string = ['train\0\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
elseif L == 5 
for i=1:loop 
string = ['train\1\' num2str(i) '.tif']; 
Rimages{i} = imread(string); 
end 
end 
end 
% Resize all images to 150x140 
T{i}=imresize(Timages{i},[150,140]); 
x = [0 -1 1]; %x-derivative filter 
y = [0 1 -1]'; %y-derivative filter 
% returns only those parts of the convolution that can 

be computed 
without assuming that the array A is zero-padded 
dx{i} = convn(T{i},x,'same'); 
% returns only those parts of the convolution that can 

be computed 
3 
without assuming that the array A is zero-padded 
dy{i} = convn(T{i},y,'same'); 
% divide the two matrices element by element to find 

gradient 
orientation 
gradient{i} = dy{i} ./dx{i}; 
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theta{i} = atan(gradient{i}); %find the atan of 
‘gradient’ 

% turn the matrix into a column vector 
cl{i}= im2col(theta{i},[1 1],'distinct'); 
% convert radians to degrees 
N{i} = (cl{i}*180)/3.14159265359; 
% read and store the orientation magnitude every 10 

degrees 
c1{i}=(N{i}>0)&(N{i}<10); 
s1{i}=sum(c1{i}); 
c2{i}=(N{i}>10.0001)&(N{i}<20); 
s2{i}=sum(c2{i}); 
c3{i}=(N{i}>20.0001)&(N{i}<30); 
sum(c3{i}); 
s3{i}=sum(c3{i}); 
c4{i}=(N{i}>30.0001)&(N{i}<40); 
sum(c4{i}); 
s4{i}=sum(c4{i}); 
c5{i}=(N{i}>40.0001)&(N{i}<50); 
sum(c5{i}); 
s5{i}=sum(c5{i}); 
c6{i}=(N{i}>50.0001)&(N{i}<60); 
sum(c6{i}); 
s6{i}=sum(c6{i}); 
c7{i}=(N{i}>60.0001)&(N{i}<70); 
sum(c7{i}); 
s7{i}=sum(c7{i}); 
c8{i}=(N{i}>70.0001)&(N{i}<80); 
sum(c8{i}); 
s8{i}=sum(c8{i}); 
c9{i}=(N{i}>80.0001)&(N{i}<90); 
sum(c9{i}); 
s9{i}=sum(c9{i}); 
c10{i}=(N{i}>90.0001)&(N{i}<100); 
sum(c10{i}); 
s10{i}=sum(c10{i}); 
c11{i}=(N{i}>-89.9)&(N{i}<-80); 
sum(c11{i}); 
s11{i}=sum(c11{i}); 
4 
c12{i}=(N{i}>-80.0001)&(N{i}<-70); 
sum(c12{i}); 
s12{i}=sum(c12{i}); 
c13{i}=(N{i}>-70.0001)&(N{i}<-60); 
sum(c13{i}); 
s13{i}=sum(c13{i}); 
c14{i}=(N{i}>-60.0001)&(N{i}<-50); 
sum(c14{i}); 
s14{i}=sum(c14{i}); 
c15{i}=(N{i}>-50.0001)&(N{i}<-40); 
sum(c15{i}); 
s15{i}=sum(c15{i}); 
c16{i}=(N{i}>-40.0001)&(N{i}<-30); 
sum(c16{i}); 
s16{i}=sum(c16{i}); 
c17{i}=(N{i}>-30.0001)&(N{i}<-20); 

sum(c17{i}); 
s17{i}=sum(c17{i}); 
c18{i}=(N{i}>-20.0001)&(N{i}<-10); 
sum(c18{i}); 
s18{i}=sum(c18{i}); 
c19{i}=(N{i}>-10.0001)&(N{i}<-0.0001); 
sum(c19{i}); 
s19{i}=sum(c19{i}); 
D{i}= [s1{i} s2{i} s3{i} s4{i} s5{i} s6{i} s7{i} s8{i} 

s9{i} s10{i} 
s11{i} s12{i} s13{i} s14{i} s15{i} s16{i} s17{i} 

s18{i} s19{i}]; 
end; 
end; 
end; 
%close the waiting bar 
close(w); 
5 
Part2 : Neural Network Program 
%%%%Klimis Symeonidis - Msc signal Processing 

Communications - Surrey 
Univertsity%%%%% 
%%%Perceptron network for hand gesture 

classification%%%%% 
% Turn on echoing of commands inside the script-file. 
echo on 
% Clear the workspace (all variables). 
% clear all 
% load perf24 
% Clear command window. 
clc 
% 

===================================
====================== 

% 
===================================
====================== 

% CLASSIFICATION WITH A 2-LAYER 
PERCEPTRON: 

% The first layer acts as a non-linear preprocessor for 
% the second layer. The second layer is trained as 

usual. 
pause % Strike any key to continue... 
clc 
% DEFINING THE CLASSIFICATION PROBLEM 
% =================================== 
% A matrix P defines 24 19-element input (column) 

vectors: 
% There are 3 examples of % each character, 8 

characters, so 3 x 8 
= 24 input 
% patterns. 
% A matrix T defines the categories with target 

(column) 
% vectors. There are 3 numerals and 5 characters so, 8 

target 
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vectors in total. 
pause % Strike any key to continue... 
clc 
% Open the files with the input vectors. 
fid = fopen('train8.txt','rt'); 
P1 = fscanf(fid,'%f',[19,inf]); 
P=P1; 
fid = fopen('testA.txt','rt'); 
TS1 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('test0.txt','rt'); 
TS2 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('test5.txt','rt'); 
TS3 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('testL.txt','rt'); 
TS4 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('testV.txt','rt'); 
TS5 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('testW.txt','rt'); 
TS6 = fscanf(fid,'%f',[19,inf]); 
6 
fid = fopen('testH.txt','rt'); 
TS7 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('test1.txt','rt'); 
TS8 = fscanf(fid,'%f',[19,inf]); 
fid = fopen('testGB.txt','rt'); 
TS9 = fscanf(fid,'%f',[19,inf]); 
% Open the file with the target vectors. 
fid = fopen('target8.txt','rt'); 
T = fscanf(fid,'%f',[8,inf]); 
%clc 
% DEFINE THE PERCEPTRON 
% ======================== 
% P has 19 elements in each column, 
% so each neuron in the hidden layer 
% needs 19 inputs. 
%R1; 
% To maximize the chance that the preprocessing layer 
% finds a linearly separable representation for the 
% input vectors, it needs a lot of neurons. 
% After trying a lot of different network architectures, 
% it has been found that the optimal number of neurons 

for 
% the hidden layer is 85. 
S1 = 85; 
% T has 5 elements in each column, 
% so 5 neurons are needed. 
S2 = 5; 
% INITP generates initial weights 
% and biases for the network: 
% Initialize pre-processing layer. 
[W1,b1] = initp(P,S1); 
% Initialize learning layer. 
[W2,b2] = initp(S1,T); 
pause % Strike any key to train the perceptron... 
clc 
% TRAINING THE PERCEPTRON 

% ======================= 
% TRAINP trains perceptrons to classify input vectors. 
% The first layer is used to preprocess the input 

vectors: 
7 
A1 = simup(P,W1,b1); 
% TRAINP is then used to train the second layer to 
% classify the preprocessed input vectors A1. 
% The TP parameter is needed by the TRAINP 

function 
% to define the number of epochs used. 
% The first argument is the display frequency and 
% the second is the maximum number of epochs. 
TP = [1 500]; 
pause % Strike any key to start the training... 
%Delete everything and also reset all figure properties, 
%except position, to their default values. 
clf reset 
%Open a new Figure (graph window), and return 
%the handle to the current figure. 
figure(gcf) 
%Set figure size. 
setfsize(600,300); 
% Training begins... 
[W2,b2,epochs,errors] = trainp(W2,b2,A1,T,TP); 
% ...and finishes. 
pause % Strike any key to see a plot of errors... 
clc 
% PLOTTING THE ERROR CURVE 
% ======================== 
% Here the errors are plotted with 
% respect to training epochs: 
ploterr(errors); 
% If the hidden (first) layer preprocessed the original 
% non-linearly separable input vectors into new 

linearly 
% separable vectors, then the perceptron will have 0 

errors. 
% If the error never reached 0, it means a new 
% preprocessing layer should be created 
% (perhaps with more neurons). 
pause % Strike any key to use the classifier... 
clc 
% USING THE CLASSIFIER 
% ==================== 
% IF the classifier WORKED we can now try to 

classify 
8 
% the input vectors we like using SIMUP. Lets try the 
% input vectors that we have used for training. 
% Create a menu, so the user can select a test set. 
K = MENU('Choose a file resolution','Test A','Test 

0','Test 5','Test 
L','Test V','Test W','Test H','Test 1','Test GB'); 
% According to the choice use the appropriate 

variables. 
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if K == 1 
TS = TS1; 
elseif K == 2 
TS = TS2; 
elseif K == 3 
TS = TS3; 
elseif K == 4 
TS = TS4; 
elseif K == 5 
TS = TS5; 
elseif K == 6 
TS = TS6; 
elseif K == 7 

TS = TS7; 
elseif K == 8 
TS = TS8; 
elseif K == 9 
TS = TS9; 
else 
P = 0; 
R1 = 0; 
end 
a1 = simup(TS,W1,b1); % Preprocess the vector 
a2 = simup(a1,W2,b2) % Classify the vector 
echo offdisp('End of Hand Gesture Recognition') 
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