On the Fundamental Theorem in Arithmetic Progression of Primes

Chun-Xuan Jiang

Institute for Basic Research, Palm Harbor, FL34682-1577, USA And: P. O. Box 3924, Beijing 100854, China jiangchunxuan@sohu.com, cxjiang@mail.bcf.net.cn, jcxuan@sina.com, Jiangchunxuan@vip.sohu.com

Abstract: Using Jiang function we prove the fundamental theorem in arithmetic progression of primes. The primes contain only $k < P_{g+1}$ long arithmetic progressions, but the primes have no $k > P_{g+1}$ long arithmetic progressions theorem. [Chun-Xuan Jiang. On the Fundamental Theorem in Arithmetic Progression of Primes. *Rep Opinion* 2016;8(1):95-100]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). <u>http://www.sciencepub.net/report</u>. 14. doi:10.7537/marsroj08011614.

Keywords: Fundamental Theorem; Arithmetic Progression; Primes

Theorem. The fundamental theorem in arithmetic progression of primes.

We define the arithmetic progression of primes [1-3].

 $P_{i+1} = P_1 + \omega_g i, i = 0, 1, 2, \dots, k-1,$ $\omega_g = \prod_{2 \le P \le P_g} P$ is called a common difference, P_g is called g-th prime. We have Jiang function [1-3] $J_2(\omega) = \prod_{3 \le P} (P - 1 - X(P)),$ (2)

X(P) denotes the number of solutions for the following congruence

$$\prod_{i=1}^{n-1} (q + \omega_g i) \equiv 0 \pmod{P},\tag{3}$$

where
$$q = 1, 2, \dots, P-1$$
.
If $P | \omega_g$, then $X(P) = 0$; $X(P) = k-1$ otherwise. From (3) we have
 $J_2(\omega) = \prod_{3 \le P \le P_g} (P-1) \prod_{P_{g+1} \le P} (P-k).$
(4)
If $k = P_{g+1}$ then $J_2(P_{g+1}) = 0$ $J_2(\omega) = 0$ there exist finite primes P_1 such that P_2, \dots, P_k are

If $k = P_{g+1}$ then $J_2(P_{g+1}) = 0$, $J_2(\omega) = 0$, there exist finite primes P_1 such that P_2, \dots, P_k are primes. If $k < P_{g+1}$ then $J_2(\omega) \neq 0$, there exist infinitely many primes P_1 such that P_2, \dots, P_k are primes. The primes contain only $k < P_{g+1}$ long arithmetic progressions, but the primes have no $k > P_{g+1}$ long arithmetic progressions. We have the best asymptotic formula [1-3]

$$\pi_k(N,2) = \left| \left\{ P_1 + \omega_g i = \text{prime}, \ 0 \le i \le k - 1, P_1 \le N \right\} \right|$$

$$= \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log^{k} N} (1+o(1)),$$
(5)
where $\omega = \prod_{2 \le P} P, \phi(\omega) = \prod_{2 \le P} (P-1), \omega$ is called primorial, $\phi(\omega)$ Euler function.
Suppose $k = P_{g+1} - 1$. From (1) we have
 $P_{i+1} = P_{1} + \omega_{g} i, i = 0, 1, 2, \cdots, P_{g+1} - 2$.
(6)

From (4) we have [1-2]

$$J_{2}(\omega) = \prod_{3 \le P \le P_{g}} (P-1) \prod_{P_{g+1} \le P} (P-P_{g+1}+1) \to \infty$$
as $\omega \to \infty$ (7)

We prove that there exist infinitely many primes P_1 such that $P_2, \dots, P_{P_{g+1}-1}$ are primes for all P_{g+1} . From (5) we have

$$\pi_{P_{g+1}-1}(N,2) =$$

$$\prod_{2 \le P \le P_g} \left(\frac{P}{P-1}\right)^{P_{g+1}-2} \qquad \prod_{P_{g+1} \le P} = \frac{P^{P_{g+1}-2}(P-P_{g+1}+1)}{(P-1)^{P_{g+1}-1}} \frac{N}{(\log N)^{P_{g+1}-1}}(1+o(1)).$$

$$\pi_{-} = \sum_{n=1}^{\infty} (N,2) \ge 1 \qquad P \qquad (8)$$

From (8) we are able to find the smallest solutions $\pi_{P_{g+1}-1}(N,2) > 1$ for large P_{g+1} .

Theorem is foundation for arithmetic progression of primes

Example 1. Suppose
$$P_1 = 2, \omega_1 = 2, P_2 = 3$$
. From (6) we have the twin primes theorem
 $P_2 = P_1 + 2.$
(9)
From (7) we have
 $J_2(\omega) = \prod_{3 \le P} (P-2) \rightarrow \infty$
as $\omega \rightarrow \infty$,
(10)

We prove that there exist infinitely many primes P_1 such that P_2 are primes. From (8) we have the best asymptotic formula

$$\pi_2(N,2) = 2 \prod_{3 \le P} \left(1 - \frac{1}{(P-1)^2} \right) \frac{N}{\log^2 N} (1 + o(1)).$$
(11)

Twin prime theorem is the first theorem in arithmetic progression of primes.

Example 2. Suppose
$$P_2 = 3$$
, $\omega_2 = 6$, $P_3 = 5$. From (6) we have $P_{i+1} = P_1 + 6i$, $i = 0,1,2,3$. (12)

From (7) we have

$$J_{2}(\omega) = 2 \prod_{5 \le P} (P - 4) \to \infty \quad \text{as} \quad \omega \to \infty, \tag{13}$$

We prove that there exist infinitely many primes P_1 such that P_2 , P_3 and P_4 are primes. From (8) we have the best asymptotic formula

$$\pi_4(N,2) = 27 \prod_{5 \le P} \frac{P^3(P-4)}{(P-1)^4} \frac{N}{\log^4 N} (1+o(1)).$$
(14)

Example 3. Suppose $P_9 = 23$, $\omega_9 = 223092870$, $P_{10} = 29$. From (6) we have

$$P_{i+1} = P_1 + 223092870^{\circ}, i = 0, 1, 2, \cdots, 27.$$
(15)

From (7) we have

$$J_2(\omega) = 36495360 \prod_{29 \le P} (P - 28) \to \infty \quad \text{as} \quad \omega \to \infty, \tag{16}$$

We prove that there exist infinitely many primes P_1 such that P_2, \dots, P_{28} are primes. From (8) we have the best asymptotic formula

(22)

$$\pi_{28}(N,2) = \prod_{2 \le P \le 23} \left(\frac{P}{P-1}\right)^{27} \prod_{29 \le P} \frac{P^{27}(P-28)}{(P-1)^{28}} \frac{N}{\log^{28} N} (1+o(1)).$$
(17)

From (17) we are able to find the smallest solutions $\pi_{28}(N_0,2) > 1$. On May 17, 2008, Wroblewski and Raanan Chermoni found the first known case of 25 primes: $6171054912832631+366384 \times \omega_{23} \times n$, for n = 0 to 24.

Theorem can help in finding for 26, 27, 28, ..., primes in arithmetic progressions of primes. **Corollary 1. Arithmetic progression with two prime variables**

Suppose
$$\omega_g = d$$
. From (1) we have
 $P_1, P_2 = P_1 + d, P_3 = P_1 + 2d, \dots, P_k = P_1 + (k-1)d, (P_1, d) = 1.$ (18)
From (18) we obtain the arithmetic progression with two prime variables: P_1 and P_2 ,
 $P_3 = 2P_2 - P_1, \quad P_j = (j-1)P_2 - (j-2)P_1, \quad 3 \le j \le k < P_{g+1}.$ (19)
We have Jiang function [3]
 $J_3(\omega) = \prod_{3 \le P} [(P-1)^2 - X(P)],$ (20)

X(P) denotes the number of solutions for the following congruence

$$\prod_{j=3}^{k} [(j-1)q_2 - (j-2)q_1] \equiv 0 \pmod{P},$$
(21)
where $q_1 = 1, 2, \dots, P-1; q_2 = 1, 2, \dots, P-1.$
From (21) we have
 $J_3(\omega) = \prod_{3 \le P \le k} (P-1) \prod_{k \le P} (P-1)(P-k+1) \to \infty$
as $\omega \to \infty$.

We prove that there exist infinitely many primes P_1 and P_2 such that P_3, \dots, P_k are primes for $3 \le k < P_{g+1}$

we have the best asymptotic formula

$$\pi_{k-1}(N,3) = \left| \{ (j-1)P_2 - (j-2)P_1 = \text{prime}, 3 \le j \le k, P_1, P_2 \le N \} \right|$$
$$= \frac{J_3(\omega)\omega^{k-2}}{\phi^k(\omega)} \frac{N^2}{\log^k N} (1 + o(1)), \tag{23}$$

From (23) we have the best asymptotic formula

$$\pi_{k-1}(N,3) = \prod_{2 \le P \le k} \frac{P^{k-2}}{(P-1)^{k-1}} \prod_{k < P} \frac{P^{k-2}(P-k+1)}{(P-1)^{k-1}} \frac{N^2}{\log^k N} (1+o(1)).$$
(24)

From (24) we are able to find the smallest solution $\pi_{k-1}(N_0,3) > 1$ for large $k < P_{g+1}$.

Example 4. Suppose
$$k = 3$$
 and $P_{g+1} > 3$. From (19) we have
 $P_3 = 2P_2 - P_1$. (25)
From (22) we have
 $J_3(\omega) = \prod_{3 \le P} (P-1)(P-2) \rightarrow \infty$ as $\omega \rightarrow \infty$, (26)

We prove that there exist infinitely many primes P_1 and P_2 such that P_3 are primes. From (24) we have

the best asymptotic formula

$$\pi_2(N,3) = 2 \prod_{3 \le P} \left(1 - \frac{1}{(P-1)^2} \right) \frac{N^2}{\log^3 N} (1 + o(1)) = 1.32032 \frac{N^2}{\log^3 N} (1 + o(1)).$$
(27)

Example 5. Suppose
$$k = 4$$
 and $P_{g+1} > 4$. From (19) we have
 $P_3 = 2P_2 - P_1$, $P_4 = 3P_2 - 2P_1$. (28)
From (22) we have
 $J_3(\omega) = 2 \prod_{5 \le P} (P-1)(P-3) \rightarrow \infty$
as $\omega \rightarrow \infty$, (29)

We prove that there exist infinitely many primes P_1 and P_2 such that P_3 and P_4 are primes. From (24) we have the best asymptotic formula

$$\pi_3(N,3) = \frac{9}{2} \prod_{5 \le P} \frac{P^2(P-3)}{(P-1)^3} \frac{N^2}{\log^4 N} (1+o(1)).$$
(30)

Example 6. Suppose k = 5 and $P_{g+1} > 5$. From (19) we have $P_3 = 2P_2 - P_1$, $P_4 = 3P_2 - 2P_1$, $P_5 = 4P_2 - 3P_1$. From (22) we have $J_2(\omega) = 2 \prod (P-1)(P-4) \rightarrow \infty$ (31)

$$J_{3}(\omega) = 2 \prod_{5 \le P} (P-1)(P-4) \to \infty \qquad \text{as } \omega \to \infty, \qquad (32)$$

We prove that there exist infinitely many primes P_1 and P_2 such that P_3 , P_4 and P_5 are primes. From (24) we have the best asymptotic formula

$$\pi_4(N,3) = \frac{27}{2} \prod_{5 \le P} \frac{P^3(P-4)}{(P-1)^4} \frac{N^2}{\log^5 N} (1+o(1)).$$
(33)

Corollary 2. Arithmetic progression with three prime variables

From (18) we obtain the arithmetic progression with three prime variables: P_1, P_2 and P_3 $P_4 = P_3 + P_2 - P_1$, $P_j = P_3 + (j-3)P_2 - (j-3)P_1$, $4 \le j \le k < P_{g+1}$ (34) We have Jiang function $J_4(\omega) = \prod_{3 \le P} ((P-1)^3 - X(P)),$ (35)

X(P) denotes the number of solutions for the following congruence

$$\prod_{j=4}^{n} (q_3 + (j-3)q_2 - (j-3)q_1) \equiv 0 \pmod{P},$$
where $q_i = 1, 2, \dots, P-1, i = 1, 2, 3$.
(36)

Example 7. Suppose
$$k = 4$$
 and $P_{g+1} > 4$. From (34) we have
 $P_4 = P_3 + P_2 - P_1$. (37)
From (35) and (36) we have

From (35) and (36) we have

$$J_4(\omega) = \prod_{3 \le P} (P-1)(P^2 - 3P + 3) \to \infty$$
as $\omega \to \infty$
(38)

We prove that there exist infinitely many primes P_1 and P_2 and P_3 such that P_4 are primes. We have the best asymptotic formula

$$\pi_2(N,4) = 2 \prod_{3 \le P} \left(1 + \frac{1}{(P-1)^3} \right) \frac{N^3}{\log^4 N} (1 + o(1)).$$
(39)

For $k \ge 5$ from (35) and (36) We have Jiang function

$$J_4(\omega) = \prod_{3 \le P < (k-1)} (P-1)^2$$
$$\times \prod_{(k-1) \le P} (P-1)[(P-1)^2 - (P-2)(k-3)] \to \infty$$
as $\omega \to \infty$. (40)

We prove that there exist infinitely many primes P_1 and P_2 and P_3 such that P_4, \dots, P_k are primes for $5 \le k < P_{g+1}$

we have the best asymptotic formula

$$\pi_{k-2}(N,4) = \left| \{ P_3 + (j-3)P_2 - (j-3)P_1 = \text{prime}, 4 \le j \le k, P_1, P_2, P_3 \le N \} \right|$$
$$= \frac{J_4(\omega)\omega^{k-3}}{\phi^k(\omega)} \frac{N^3}{\log^k N} (1+o(1)).$$
(41)

From (41) we have

$$\pi_{k-2}(N,4) = \prod_{2 \le P < (k-1)} \frac{P^{k-3}}{(P-1)^{k-2}} \prod_{(k-1) \le P} \frac{P^{k-3}[(P-1)^2 - (P-2)(k-3)]}{(P-1)^{k-1}} \frac{N^3}{\log^k N} (1+o(1)).$$

$$\pi = (N-4) \ge 1 \qquad k \le P$$
(42)

From (42) we are able to find the smallest solution $\pi_{k-2}(N_0,4) > 1$ for large $\kappa < r_{g+1}$.

Corollary 3. Arithmetic progression with four prime variables

From (18) we obtain the arithmetic progression with four prime variables: P_1, P_2, P_3 and P_4 $P_5 = P_4 + 2P_3 - 3P_2 + P_1$ $P_j = P_4 + (j-3)P_3 - (j-2)P_2 + P_1$ $5 \le j \le k < P_{g+1}$ (43)

We have Jiang function

$$J_{5}(\omega) = \prod_{3 \le P} \left[(P-1)^{4} - X(P) \right],$$
(44)

X(P) denotes the number of solutions for the following congruence

$$\prod_{j=5}^{k} [q_4 + (j-3)q_3 - (j-2)q_2 + q_1] \equiv 0 \pmod{P},$$
where
(45)

where

$$q_i = 1, \cdots, P - 1, i = 1, 2, 3, 4$$

Example 8. Suppose k = 5 and $P_{g+1} > 5$. From (43) we have

$$P_5 = P_4 + 2P_3 - 3P_2 + P_1$$
From (44) and (45) we have
(46)

From (44) and (45) we have

$$J_5(\omega) = 12 \prod_{5 \le P} (P-1)(P^3 - 4P^2 + 6P - 4) \to \infty_{as} \quad \omega \to \infty.$$

$$(47)$$

We prove there exist infinitely many primes P_1, P_2, P_3 and P_4 such that P_5 are primes. We have the best asymptotic formula

$$\pi_{2}(N,5) = \frac{J_{5}(\omega)\omega}{\phi^{5}(\omega)} \frac{N^{4}}{\log^{5} N} (1+o(1)).$$
(48)

Example 9. Suppose k = 6 and $P_{g+1} > 6$. From (43) we have $P_5 = P_4 + 2P_3 - 3P_2 + P_1$, $P_6 = P_4 + 3P_3 - 4P_2 + P_1$. (49) From (44) and (45) we have

From (44) and (45) we have

$$J_5(\omega) = 10 \prod_{5 \le P} (P-1)(P^3 - 5P^2 + 10P - 9) \rightarrow \infty$$
as $\omega \rightarrow \infty$. (50)

We prove there exist infinitely many primes P_1, P_2, P_3 and P_4 such that P_5 and P_6 are primes. We have the best asymptotic formula

$$\pi_3(N,5) = \frac{J_5(\omega)\omega^2}{\phi^6(\omega)} \frac{N^4}{\log^6 N} (1+o(1)).$$
(50)

For $k \ge 7$ from (44) and (45) we have Jiang function

$$J_{5}(\omega) = 6 \prod_{5 \le P \le (k-4)} (P-1)(P^{2} - 3P + 3)$$

$$\times \prod_{(k-4) < P} \left\{ (P-1)^{4} - (P-1)^{2} [(P-3)(k-4) + 1] - (P-1)(2k-9) \right\} \to \infty$$
as $\omega \to \infty$
(51)

We prove there exist infinitely many primes P_1, P_2, P_3 and P_4 such that P_5, \dots, P_k are primes. We have best asymptotic formula

$$\pi_{k-3}(N,5) = \left| \left\{ P_4 + (j-3)P_3 - (j-2)P_2 + P_1 = \text{prime}, 5 \le j \le k, P_1, \cdots, P_4 \le N \right\} \right|$$

= $\frac{J_5(\omega)\omega^{h-4}}{\phi^k(\omega)} \frac{N^4}{\log^k N} (1+o(1)).$ (52)

I thank professor Huang Yu-Zhen for computation of Jiang functions.

References

- 1. Chun-Xuan Jiang, On the prime number theorem in additive prime number theory, Preprint, 1995.
- 2. Chun-Xuan Jiang, The simplest proofs of both arbitrarily long arithmetic progressions of primes, preprint, 2006.
- Chun-Xuan, Jiang, Foundations of Santiili's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture, Inter. Acad. Press, 68-74, 2002, MR 2004c: 11001, http://www.i-b-r.org/docs/jiang/pdf.

1/25/2016