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Theorem. The fundamental theorem in arithmetic progression of primes. 

We define the arithmetic progression of primes [1-3]. 
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  is called a common difference, gP
 is called 

g
-th prime. 

We have Jiang function [1-3] 
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)(PX
 denotes the number of solutions for the following congruence 
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where 1,,2,1  Pq  . 

If gP
, then 0)( PX ; 1)(  kPX  otherwise. From (3) we have 
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If 1 gPk
 then 

0)( 12 gPJ
, 0)(2 J , there exist finite primes 1P  such that kPP ,,2 

 are 

primes. If 1 gPk
 then 

0)(2 J
, there exist infinitely many primes 1P

 such that kPP ,,2 
 are primes. 

The primes contain only 1 gPk
 long arithmetic progressions, but the primes have no 1 gPk

 long 
arithmetic progressions. We have the best asymptotic formula [1-3] 
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where 
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,   is called primorial, )(  Euler function. 

Suppose 
11  gPk

. From (1) we have 

2,,2,1,0, 111   ggi PiiPP 
.         （6） 
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From (4) we have [1-2] 
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We prove that there exist infinitely many primes 1P
 such that 

12 1
,, gPPP 

 are primes for all 1gP
. 

From (5) we have 
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From (8) we are able to find the smallest solutions 
1)2,(11


N

gP  for large 1gP
. 

 
Theorem is foundation for arithmetic progression of primes 
 

Example 1. Suppose 
3,2,2 211  PP 

. From (6) we have the twin primes theorem 

.212  PP
                          （9） 

From (7) we have 
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We prove that there exist infinitely many primes 1P
 such that 2P

 are primes. From (8) we have the best 
asymptotic formula 
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Twin prime theorem is the first theorem in arithmetic progression of primes. 

 

Example 2. Suppose
5,6,3 322  PP 

. From (6) we have 

.3,2,1,0,611  iiPPi              （12） 
From (7) we have 
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We prove that there exist infinitely many primes 1P
 such that 2P

, 3P
 and 4P

are primes. From (8) we 
have the best asymptotic formula 
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Example 3. Suppose
29,223092870,23 1099  PP 

. From (6) we have 

.27,,2,1,0,22309287011  iiPPi            （15） 
From (7) we have 




)28(36495360)(
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 as  ,   （16） 

We prove that there exist infinitely many primes 1P
 such that 282 ,, PP 

 are primes. From (8) we have the 
best asymptotic formula 



 Report and Opinion 2016;8(1)           http://www.sciencepub.net/report 

 

97 

)).1(1(
log)1(

)28(

1
)2,(

2828

27

29

27

232
28 o

N

N

P

PP

P

P
N

PP





















 （17） 

From (17) we are able to find the smallest solutions 
1)2,( 028 N

. 
On May 17, 2008, Wroblewski and Raanan Chermoni found the first known case of 25 primes: 

n 233663848326316171054912 
, for 0n  to 24. 

 
Theorem can help in finding for 26, 27, 28, …, primes in arithmetic progressions of primes. 
Corollary 1. Arithmetic progression with two prime variables 

Suppose 
dg 

. From (1) we have 

.1),(,)1(,,2,, 1113121  dPdkPPdPPdPPP k
 （18） 

From (18) we obtain the arithmetic progression with two prime variables: 1P
 and 2P

, 

112123 3,)2()1(,2  gj PkjPjPjPPPP
.  （19） 

We have Jiang function [3] 
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)(PX  denotes the number of solutions for the following congruence 
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where 
.1,,2,1;1,,2,1 21  PqPq 
 

From (21) we have 
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We prove that there exist infinitely many primes 1P
 and 2P

 such that kPP ,,3 
 are primes for 

13  gPk
 

we have the best asymptotic formula 

 NPPkjPjPjNk  21121 ,,3prime,)2()1()3,(
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From (23) we have the best asymptotic formula 
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From (24) we are able to find the smallest solution 
1)3,( 01  Nk  for large 1 gPk

. 
 

Example 4. Suppose 3k  and 
31 gP

. From (19) we have 

123 2 PPP 
.                    （25） 

From (22) we have 
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 as  ,       （26） 

We prove that there exist infinitely many primes 1P
 and 2P

 such that 3P
 are primes. From (24) we have 
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the best asymptotic formula 
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Example 5. Suppose 4k  and 
41 gP

. From (19) we have 

123 2 PPP 
,        124 23 PPP 

.           （28） 
From (22) we have 
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We prove that there exist infinitely many primes 1P
 and 2P

 such that 3P
 and 4P

 are primes. From (24) 
we have the best asymptotic formula 
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Example 6. Suppose 5k  and 
51 gP

. From (19) we have 

123 2 PPP 
,    124 23 PPP 

,     125 34 PPP 
 .   （31） 

From (22) we have 
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We prove that there exist infinitely many primes 1P
 and 2P

 such that 3P
, 4P

 and 5P
 are primes. From 

(24) we have the best asymptotic formula 
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Corollary 2. Arithmetic progression with three prime variables 

From (18) we obtain the arithmetic progression with three prime variables: 21, PP
 and 3P

 

1234 PPPP 
,  123 )3()3( PjPjPPj 

, 14  gPkj
 （34） 

We have Jiang function 
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)(PX
 denotes the number of solutions for the following congruence 
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where 
3,2,1,1,,2,1  iPqi 

. 
 

Example 7. Suppose 4k  and 
41 gP

. From (34) we have 

1234 PPPP 
.                         （37） 

From (35) and (36) we have 
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We prove that there exist infinitely many primes 1P
 and 2P

 and 3P
 such that 4P

are primes. We have the 
best asymptotic formula 
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For 5k  from (35) and (36) We have Jiang function 
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We prove that there exist infinitely many primes 1P
 and 2P

 and 3P
 such that kPP ,,4 

are primes for 

15  gPk
. 

we have the best asymptotic formula 
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From (41) we have 
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From (42) we are able to find the smallest solution 
1)4,( 02  Nk  for large 1 gPk

. 
 
Corollary 3. Arithmetic progression with four prime variables 

From (18) we obtain the arithmetic progression with four prime variables: 321 ,, PPP
 and 4P

 

12345 32 PPPPP 
,     1234 )2()3( PPjPjPPj 

, 

15  gPkj
                                           （43） 

We have Jiang function 
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)(PX
 denotes the number of solutions for the following congruence 
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      （45） 
where 

4,3,2,1,1,,1  iPqi 
 

 

Example 8. Suppose 5k  and 
51 gP

. From (43) we have 

12345 32 PPPPP 
.                 （46） 

From (44) and (45) we have 
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We prove there exist infinitely many primes 321 ,, PPP
 and 4P

 such that 5P
 are primes. 

We have the best asymptotic formula 
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Example 9. Suppose 6k  and 
61 gP

. From (43) we have 

12345 32 PPPPP 
，     12346 43 PPPPP 

.      （49） 
From (44) and (45) we have 
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We prove there exist infinitely many primes 321 ,, PPP
 and 4P

 such that 5P
 and 6P

 are primes. 
We have the best asymptotic formula 
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For 7k  from (44) and (45) we have Jiang function 
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We prove there exist infinitely many primes 321 ,, PPP
 and 4P

such that kPP ,,5 
 are primes. 

We have best asymptotic formula 
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