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The Oberbeck pendulum is a universal physical 

setup that allows studying and testing the general law 
of dynamics for rotary motion. The didactic 
possibilities of this pendulum were described in [1]. It 
was shown that with this pendulum it is possible to 
test the general law of dynamics for rotary motion, 
define the moment of inertia and the moment of 
friction and resistance forces and study the regularities 
of pendulum oscillations. 

Consider how to define the inertia moment of the 
Oberbeck pendulum using the laws of rotary motion. 
In this case at one of the pendulum rods we set the 

weight 0
m

 at a distance d  from the pendulum axis 
and let him move. The equation of its motion will 
have the form 
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Here 
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 is the angular acceleration,  is 
the angle of deviation from the equilibrium position. 

For small angles (


< 100),  sin  and the 
equation will have the form of the homogeneous 
differential equation of the second order 
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It follows from that equation that 
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Defining T  from experiment, we can find 0
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Calculated in such a way, the values of 0
I

 will 
differ from those found with other ways by several 

percents since the friction force moment M was 
neglected. 

The effect of the friction forces on the Oberbeck 
pendulum motion can be studied by considering how 
the pendulum oscillations damp. 

At one of the rods we set the weight 0
m

 at a 

distance d  from the pendulum center. With a 
goniometric protractor fixed near the pendulum axis 
we will study the damped oscillations of pendulum. 
The initial angle of deviation is usually 
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, the number of oscillations is 

designated as . From the equation of damped 

oscillations we define the damping coefficient  . 
The damping factor is defined by the following 

expression 
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It should be noted that, knowing , we can find 
the inertia moment of the Oberbeck pendulum. 

Defined with the help of the above-stated 
method, the values of the inertia moment of the 
Oberbeck pendulum have the equal order. The values 
found by the methods where the friction forces are 
neglected and those where the friction forces are taken 
into account differ from each other by 10-12%. 

A method of defining the rolling friction 
coefficient from damped rotary motion of the 
Oberbeck pendulum is also stated in this work. The 
main point of the theory and methods of defining the 
rolling friction coefficient is as follows. While 
rotation the pendulum does the work against the 
rolling friction forces therefore the amplitude value of 
the angle of deviation from the equilibrium position 
decreases. The friction mainly takes place between the 
body – spindle and rotation axis. This friction is the 
rolling one. In this case, the motion equation is 
complicated; therefore, it is convenient to use the 
equation of energy conservation. We assume that the 

coefficient of rolling friction is independent of the 
velocity of pendulum motion. 

The initial potential energy of the pendulum can 
be as follows 

 
000

cos1  MglMghW
 

Here 0


 is the initial angle of pendulum 

deviation, h  is the displacement of the gravity centre 

of pendulum, M is the pendulum mass, 0
l

is the 
distance between the gravity centre of pendulum and 
its axis (see Fig. 1). 

After one period of pendulum oscillations the 
potential energy has the form 

 
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, 

where 1


 is the angle of pendulum deviation 
after one full period of oscillations. 

A decrease in the potential energy of pendulum 
for one full period is as follows 
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If we take into account that the angle   is small 

(  ≤ 0.1 radn) then the decrease in the potential 
energy of pendulum can be written as follows 
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. 
If the force of air resistance is not taken into 

account then the decrease in the potential energy is 
equal to the work against the rolling friction forces. 
For one full period of pendulum oscillations the work 
is equal to 
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Here   is the rolling friction coefficient, 2

1


is the 
angle of pendulum deviation after one semi-period, 

MgP  
is the moment of the rolling friction 

force. 
If the decrease in the deviation angle for one 

semi-period is  then 
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. In this case, the work expression 

has the form 
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. 
Equating this formula with that for potential 

energy decrease, we obtain 
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If the pendulum makes N  oscillations then that 
expression has the form 
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where N


 is the deviation angle after 

N oscillations. Finding the distance between the 

gravity center and the rotation axis 0
l

, the initial and 
final angles of deviation for damped oscillations from 
experiments, we can obtain the rolling friction 

coefficient 
 . 

Thus, with the above-stated methods used for the 
Oberbeck pendulum it is possible to test the main law 
of dynamics for rotary motion and the Steiner 
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theorem, define the inertia moment of the Oberbeck 
pendulum, study the regularities of rotary motion and 
damped rotary one and define the rolling friction 
coefficient. 

 
Reference 
1. Tursunmetov K.A., Makhsudov V.G., Giyasova 

F.A. Didactic possibilities of Oberbeck 
pendulum. Actual problems of humanitarian and 
natural sciences. Moscow, 2012, v.1, p.20-24. 

2. Kortnev A.V., RublevYu.V., Kutcenko A.N. 
Practical work in physics. Moscow, Higher 
school, 1963, p.88-89. 

3. Matveev A.M. Mechanics and theory of 
relativity. Moscow, Higher school, 1981, §34,36. 

4. Kortnev A.V., RublevYu.V., Kutcenko A.N. 
Practical work in physics. Moscow, Higher 
school, 1963. 

5. Nazirov E.N. et all. Mechanics and Molecular 
Physpracticum. Teacher, 1979, 224p. 

6. Physical practice. Mechanics and molecular 
physics. Ed. Iveronova V.I., Moscow, Nauka, 
1967, 352p. 

7. Textbook for laboratory work in physics. Ed. 
Goldina L.L., Moscow, Nauka 1973, 688p. 

8. Tursunmetov K.A., Makhsudov V.G. Once again 
about the problems in physics. European Journal 
of Education and Applied Psychology. Austria, 
Vienna, 2016, v.2, p.27-33. 

9. Jearl Walker. Fundamentals of physics.-Wiley: 
Extended, 2007.-413-443 p. 

10. Tursunmetov K.A., Makhsudov V.G. 
Determination of rolling friction coefficient 
using a pendulum Oberbeck // Actual problems 
of humanitarian and natural sciences. Moscow, 
2014. v. 11, p.-20-22 с.  

 
 
 
7/3/2016 


