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Abstract: Chaos theory has been applied in manufacturing systems in the recent years. An investigation has been 
done on chaotic behavior of assembling system. The assembly line is flexible which can accommodate variety of 
product types. An algorithm is proposed and a model developed is implemented on real life data in which analysis is 
performed to obtain time persistent data. The behavior of the system is observed for work in process as this is 
sensitive in the process. It has been found that the flexible assembly line exhibits chaotic behavior by showing that 
the computed average Lyapunov exponent is positive.  
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1. Introduction: 

Due to rapid development in assembling 
technologies and advancement in methods, there is a 
need to understand an assembly system’s environment. 
There has been an interest to describe the system’s 
dynamic behavior. The identification and prediction of 
a system is also a fundamental task, not limited to the 
field of engineering but in all kinds of other tasks as 
well. During the last few decades, researchers have 
been carried out to analyze chaotic behavior in 
manufacturing. The significant research work in this 
direction has been done by [1-6]. In the work of Alfaro 
and Sepulveda[6], the dynamic behavior of a reactive 
system has been studied; a system where there is no 
determined schedule and the tasks of operations to 
machines are assigned according to the state of the 
system. This research work was performed using 
discrete event simulation to represent the system and 
its analysis was done by using nonlinear dynamic 
systems theory. 

Nonlinearity of a system is a necessary condition 
for chaos. Chaos is the phenomena of occurrence of 
bounded non-periodic evolution in completely 
deterministic nonlinear dynamical systems with high 
sensitive dependence on initial conditions. Sometimes, 
chaos is called deterministic randomness and is 
associated with the impediments of forecasting the 
future. The chaotic behavior generates a kind of 
randomness and a loss of information about initial 
conditions, which might explain somewhat complex 
behavior in real systems. Moreover, a system that is 
chaotic has long-term behavior that can be hard to 
describe, hard to predict, and hard even to simulate. 
The theoretical tool used for quantifying chaotic 
behavior is the notion of a time-series of data for the 
real system. The Lyapunov exponent is one of very 

important tool to measure chaos. It is known [7-9]that 
a system’s behavior is chaotic if average Lyapunov 
exponent is a positive number. The Lyapunov 
exponent, for a one-dimensional time-series data, is 
computed by: 
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close values on the two different time series. In order 
to detect chaotic behavior in flexible assembly system, 
there is a need to describe the assembling process. In 
this research work, Work In Process (WIP) of 
assembling system has been chosen to describe system 
behavior, as it imposes dynamism if not properly 
controlled [10]. A real flexible assembly line (with 
various performance variables) has been analyzed by 
means of process modeling software and the 
Lyapunov exponent (also called Lyapunov’s fractal 
dimension)is computed. 
 
2. Research Methodology: 

As mentioned in the previous section, several 
researchers have done research on chaos in 
manufacturing, but the fundamental work is credited 
to Taken [11] who proposed a theorem. The 
methodology adopted in our case is analyzing of 
system, obtaining a time series of assembly lines, and 
computing chaotic value. The proposed algorithm is 
presented after reviewing the selection of the 
tool/technique for analysis. 

In flexible assembling systems, parts are 
assembled in a respective station and there exists an 
interaction of parts with the machines. Apart from 
interaction, dominating relationship also exists in 
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which change in any parameter in the respective 
station affects the work in process in the subsequent 
stations. The system chosen for analysis consists of 
stations where different parts arrive and are assembled 
in a series of steps. 

Many approaches can be applied, e. g., analytic 
modeling, queuing theory and simulation. The 
analytical models demand too many assumptions 
while in queuing theory the estimates of expected 

value of the inter-arrival time distribution A  and 

service-time distribution S  (average waiting time in 

queue is 
2 /S A S  

) are not exact. The queuing 
theory formula does not provide any information on 
the natural variability (dynamism) in the system [12]. 
On the other hand, simulation involves modeling of a 
process or system in such a way that the model mimics 
the response of the actual system to events that take 
place over time[13]. In this way, simulation provides a 
concrete way of directly dealing with the model and it 
is the most suitable methodology to model system 
characteristics. A simulation run gives a number of 
variables in the output, including total production, 
average waiting time in queue, maximum waiting time 
in the queue, flow times, work in process, etc. Time 
persistent data of work in process is selected for the 
system. The mathematical form of work in process is 
given by [10] and calculated as: 
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Where MTBF = Mean Time Between Failure; 

MTTR = Mean Time To Repair; Q = Quantity actually 
produced; no = Number of operations in the routing; 
Tsu= Setup time; Tc= Cycle time per part; Tno = Non 
Operation time; Qb= Batch Quantity; n= number of 
machines; Sw = shifts per week; Hs= Hours in a shift; 
Rp = production rate. 

The following algorithm is proposed for 
identification whether system is chaotic or not: 
Algorithm: 

(i) Finding a time series of the variable to be 
analyzed and the response obtained from the 
simulation model. 

(ii) Taking the absolute difference of the series in 
question and obtain logarithm of the difference values. 

(iii) Reconstructing the variables for describing 
behavior using separation distance plots and 
measuring the difference for each data values. 

(iv) Estimating the sensitivity by the Lyapunov 
exponent; if it is greater than zero then the system has 
a chaotic behavior. 

The algorithm is implemented on an assembly 
system that consists of a series of steps where parts are 
passed through decision process as described in 
subsequent section. 
 
3. Case of Flexible Line (Process 
description): 

The arriving parts are cast metal bodies that have 
already been machined to accept electronic parts. 
There are two parts; A and B which are produced in 
adjacent departments (out of bound for this model). 
Part A arrives in the system with mean time of 5 
minutes. Part A is prepared where mating faces of the 
cases are machined, deburred and cleaned with 
combined process time of 6.5 minutes. After 
preparation, work part is transferred to the sealer. The 
work part B arrives in batches of four units and time 
between arrivals of successive batches with a mean of 
30 minutes. The batch is separated into four individual 
units (processed individually) arrived at work part B 
preparation area. The combined processing time for 
work unit B preparation is 8.5 minutes after which it is 
sent to the sealer. At sealer (decision) electronic 
components are inserted, case is assembled, sealed and 
then tested. The process time at sealer depends on part 
type i.e. 3.5 minutes for part A and 5.3 minutes for 
part B respectively. Approximately 90% parts passed 
the quality test and leave system as ‘Yield Good’, 
while 10% parts are sent for further reworking station. 
At the rework stage 80% parts passed the quality 
(decision) and leave system as ‘Yield after reworking’ 
while remaining parts are ‘scrapped’. This is shown in 
Figure 1. 

 

 

 

 
Figure 1: The Process flow of assembly line 

 
 
 



 Report and Opinion 2016;8(9)           http://www.sciencepub.net/report 

 

64 

Analysis and Graphical Display: 
The averaged value data has been used for the 

analysis. The simulation is run for 480 hours (for 
warm up) and replicated with different scenarios for 
ensuring the adequacy of the data. The experimental 
data is validated and verified and production runs(in 
simulation) are set for 12000 hours with replications. 
It can be argued that with finite amounts of data, it is 
difficult to find specified line segment in the 
reconstructed phase space, therefore long range data 
for the research problem is selected. The parameters of 
interest which are affecting performance of assembly 
system are Work In Process (WIP), Number in Queue 
(NQ), Average Time in Queue (ATQ), and Utilization 
(U). It is pertinent to note that WIP is the most 
sensitive in assembling process as it directly affects 
the system and is calculated using Equation (1). The 
time persistent plots for the parts A are shown in 
Figure 2. The most prominent characteristic of chaos 
is the unpredictability of the future regardless of 
deterministic time evolution. There may be an average 
error when forecasting the response of a future 
measurement which increases very rapidly with time. 

 

 
Figure 2: Work in Process for Part A 
 
This unpredictability is an outcome of the inbuilt 

instability of the solutions, reflected by what is called 
sensitive dependence on initial conditions. 

The time series plot for the situation as given in 
Figure 2 is redrawn from 250 to 350 for part A and 
shown in Figure 3. It is evident that two trajectories 
are separated which shows the divergence of nearby 
trajectories and it is apparent that Lyapunov exponents 
measure the rate of divergence of initially close 
trajectories. 

 

 
Figure 3: Trajectories of time series data part A 
 
Two data series may be considered to define the 

separation distance plots. The separation distance 
(magnitude of difference) plots of two trajectories are 
given in Figure 4 for time series data obtained in 
Figure 2. It is observed that the separation distance 
between these two trajectories varies irregularly; it 
indicates the sensitive dependence on initial 
conditions. The nature of divergence of the nearby 
trajectories and sensitive dependence on initial 
condition is quantified and characterized using the 
Lyapunov exponent which is computed by using the 
algorithm described above. 

 

 
Figure 4: Separation Distance Plot for WIP Part A 

 
Lyapunov exponents measure the rate of 

divergence of initially close trajectories and the sign of 
the Lyapunov exponent provides a qualitative picture 
of a system's dynamics. For a deterministic process the 
Lyapunov exponent have to be a positive finite 
number, for a linear process it should be zero and for a 
stochastic process it should be infinite. The average 
Lyapunov exponents for data is computed from slopes 
of trend line fit and these are found to be 0.00066 as 
given in Figure 5. 
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Figure 5: Local Lyapunov Exponents for WIP Part A 

 
The result obtained from the two time series 

using Lyapunov exponent is affirmative but the slope 
value is not very sensitive but showing beginning of 
the chaos. From the above analysis of the time series 
data, it has been proved that flexible assembly system 
exhibit chaotic behavior. 
 
4. Conclusion: 

In this research work chaos in assembling system 
has been investigated. It is concluded that flexible 
assembly line may have chaotic behavior as very small 
changes may lead to deviations in the performance 
indicators such as work in process. The main interest 
is focused on the Lyapunov exponents since it can be 
calculated relatively easily and it yields confirmation 
of the presence of chaos in the observed data. This has 
been computed with an aid of process-based 
simulation software and responses of time series 
obtained. The average Lyapunov exponent computed 
is positive and shows that chaotic behavior occurs in 
the system. It is recommended that the shop floor 
management must be careful when carrying out 
assembling with different scenarios as a chaotic 
behavior may result from system. More research work 
is required to investigate other similar processes, 
issues related to control and scheduling. 
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