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Abstract: Bacterial diseases of cultured fish considered the most impediments on aquaculture development causing 
high mortalities and huge economic losses. The aim of this review is to collect the dispersed literatures published 
about live attenuated, subunit and DNA vaccines against vibriosis, photobacteriosis, furunculosis, motile aeromonas 
septicaemia, pseudomonadiasis, yersiniosis, edwardsiellosis, enteric septicaemia of catfish, cold-water disease, 
columnaris disease, streptococcosis and lactococcosis. With advances in molecular biology, genetically modified 
vaccines have been increasingly employed against many of the fish pathogens. It is expected that some of them may 
be commercialized in the near future. 
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1. Introduction  

Prevention of fish diseases by inactivated 
vaccines have been documented for many bacterial 
diseasesadministered by immersion or intraperitoneal 
injection. While genetically modified vaccinesdisplay 
anadvantage of enabling more targetedsafer vaccines 
especially against intracellular pathogens [1,2]. 
TheDNA vaccine preparations stimulatestrong an 
antibody response and cellular immunity[3]. There 
are many trials to develop DNA vaccines against fish 
pathogens, while there are a limited number of DNA 
vaccine strategies that have been successful in giving 
significant protection. The safety of DNA vaccines 
has been questioned for some time. After a high level 
of protection against the rhabdovirusesviral 
hemorrhagic septicaemia virus and infectious 
hematopoieticvirus in salmonids, DNA vaccines 
seemed to be more promising[3,4]. 

This review will focus on the research efforts to 
develop effective DNA vaccines againstbacterial fish 
diseases based on virulence factors, which there is 
currently no licensed DNA vaccines available. In 
addition, it will focus on improvement of vaccine 
efficacy using specific adjuvants, vectors and 
delivery routes.  
Trials of using live attenuated and DNA-based 
vaccines against bacterial diseases 
1. Vibriosis 

Vibrio species are g-ve bacteria of the family 
Vibrionaceae, the causative agent of vibriosis. 
Vibriosis is a deadly haemorrhagic septicaemic 
disease affectingvarious marine and fresh/brackish 
water fish, bivalves and crustaceanscausingsevere 
economic losses worldwide [5,6]. Within the genus 
Vibrio, the species causing the most economically 
serious diseases in aquaculture are; V. anguillarum, 

V. harveyi, V. alginolyticus, V. vulnificus, V. 
parahaemolyticus, V. ordalii, V. Salmonicidaand 
V.mimicus. 
a- Vibrio anguillarum 

Multiple commercial vaccines have been 
developed to protectfish against outbreaks of 
vibriosisby formalin killed bacteria, heat-
inactivatedV. anguillarumcells andV. Anguillarum 
bacterin, for exampleMICROViB (Microtek 
International Inc.), ALPHAMARINE Vibrio 
(PHARMAQ AS), and AquaVac Vibrio and Norvax 
Vibriose Marine (Schering-Plough Aquaculture). All 
these vaccines consistof inactivated strains of both V. 
anguillarum serotypes O1 and O2 and show good 
protection againstV. anguillarum infections in several 
fish species[5]. 

V. anguillarumhave some virulence-
relatedfactors, including genes affecting chemotaxis 
andmotility, flagellin D[7], adhesins (pili, fimbriae, 
outer membrane proteins, LPS, extracellular 
polysaccharides), Invasion of host tissues (Protease, 
Haemolysin), iron uptake system (Siderophore-
dependent, Siderophore-independent), and quorum 
sensing which could be the basis for development of 
DNA vaccines against V. anguillarum[5]. DNA 
vaccines were constructed using the major outer 
membrane proteins OMP38, a divalent DNA vaccine 
based on Sia10 of S. iniaeand OmpU of V. 
anguillarum, zinc metalloprotease EmpAanda 
rigorous iron-regulatedpromoter PviuA to control the 
expression of phage P22 lysiscassette 13-19-15 
(Table 1). 
b- Vibrio harveyi 

V. harveyi, is the causativeagent of luminous 
vibriosis, a serious disease of shrimp responsible for 
heavy economic losses worldwide. Also, can affect 
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lobster, abalone, finfish, and oyster especiallyin 
South America and Asia. Antibiotics can treat V. 
harveyi efficiently. Trials for test candidate vaccines, 
in the forms ofbacterin and subunit vaccines, have 
been reported but until now no licensed 
vaccinesagainst V. harveyi[14]. Several virulence 
factors have shown to participate in pathogenicity of 

V. harveyi such as outer membraneprotein OmpU and 
OmpK, cytotoxic proteases, hemolysins, lipases and 
phospholipases, type III secretion system, 
siderophore production, and Quorum-sensingwhich 
could be the basis for development of DNA vaccines 
against V. Harveyi (Table 2).  

 
Table 1: DNA and live attenuated vaccines trials against V. anguillarum 

Vaccine Adjuvant Species Route RPS% Ref. 
Liveattenuated iron-regulatedpromoter PviuA - Zebrafish  ip 89.3 [8] 
A divalent DNA Sia10 and OmpU S. iniae and V. 
anguillarum 

- Japanese 
flounder 

im 78-81 [9] 

V. anguillarumemp A and GAPDH from A. hydrophila FCA Turbot ip 84 [10] 
Mutated zinc-metalloprotease geneEmpA (m-EmpA7) - Japanese 

flounder 
im 57.5-

85.7 
[11] 

OMP38 DNA vaccine - Asian Seabass im 55.6 [12] 
Recombinant Aha1 adhesin from A. hydrophila FCA Blue gourami ip 44.4 [13] 
ip: intraperitoneal   im: intramuscular 
 

Table 2: DNA and live attenuated vaccines trials against V. harveyi 
vaccine adjuvant Species Route RPS Ref. 
Dihydrolipoamide dehydrogenase (DLD) - Orange-spotted 

Grouper 
ip 86 [15] 

Recombinant LamB against different Vibrio spp. - Zebrafish ip 60 [16] 
Subunit OmpU encoded a35 kDa protein B. subtilis 

cells  
Turbot im 100 [17] 

Bivalent DNA vaccine of DegQ and Vhp1 - Japaneseflounder im 84.6 [14] 
Recombinant cytotoxic protease Vhp1 Bacillus sp. 

B187,  
Japanese flounder ip 70 [18] 

Recombinant OmpK of V. harveyi FIA Orange-spotted 
groupers 

ip 66.7-
100 

[19] 

Live attenuated P. fluorescensfur mutant and 
pJAQ plasmid of V. harveyi (TFM/pJAQ) 

- Japanese flounder ip  
 

82.2 [20] 

OmpK (28 kDa) FIA Orange-spotted 
groupers 

ip 100 [21] 

 
c- Vibrio alginolyticus 

V.alginolyticusone of the family Vibrionaceae 
with a broad host rangeof cultured marine animals 
includes shellfish, shrimp, and fish of various species 
and has brought a large damage in the economy. It is 
one of zoonotic importance isolated from clinical 
cases in humans. Althoughseveral trials have been 
made, there is no specific vaccine availableagainst V. 
alginolyticus. In addition, commercial vaccine 
products of other Vibrio spp. are not effective in 
preventing V. alginolyticusinfections[22,23]. Many 
virulence factors been identified in V. alginolyticusas 
candidates for vaccination preparations such as outer 
membrane proteins, flagellin, hemolysin, and Type 
III secretion system (T3SS) (Table 3). 
d- Vibrio parahaemolyticus 

V. parahaemolyticus is a halophilc bacterium 
inhabits marine and estuarine environments 
worldwide. V. parahaemolyticuscauses diseases 
inmarine fishes, shrimps and other crustaceans 
worldwide responsible for economic losses of the 
commercial aquaculture. In addition, V. 
parahaemolyticus considers as one offoodborne 
pathogens that causes human acute gastroenteritis 
associated with the consumption ofraw or under 
cooked seafood. V. parahaemolyticuspossess wide 
variety of virulence factors such as thermostable 
direct hemolysin, thermostable direct hemolysin 
related hemolysin, adhesins, lethaltoxin, extracellular 
proteases, urease and type III secretion systems[30] 
(Table 4). 

 
 



 Report and Opinion 2017;9(4)           http://www.sciencepub.net/report 

 

3 

Table 3: DNA and live attenuated vaccines trials against V. alginolyticus 
Vaccine  Adjuvant  Species Route  RPS% Ref. 
Dihydrolipoamide dehydrogenase (DLD) - Orange-spotted 

Grouper 
ip 90 [15] 

Subunit vaccine of LPS - Silver sea bream ip 100 [22] 
Recombinant LamB against different Vibrio spp. - Zebrafish ip 77.8 [16] 
Outermembrane protein-OmpU FIA Crimson snapper im 93.33 [23] 
Recombinant VscO Formalin  Grouper ip 80 [24] 
hfq deletion mutantstress resistance - Zebrafish im 77.3 [25] 
hfq deletion mutantstress resistance - Grouper im 

imr 
45–78.3 
66.7 

[25] 

Recombinant flaA gene - Red snapper  88 [26] 
Recombinant FlaC - Red snapper ip 84 [27] 
Recombinant thermolabile hemolysin (TLH) - Zebrafish ip - [28] 
Recombinant OmpK of V. harveyi FIA Orange-spotted 

groupers 
ip 40-65.4 [19] 

Recombinant outer membrane proteins, VA1061, 
OmpU, VPA1435 and VPA0860 

FCA Carp  ip 62.5 - 
95 

[29] 

imr: immersion  
 

Table 4: DNA and live attenuated vaccines trials against V. parahaemolyticus 
Antigen Adjuvant Species Route RPS% Ref. 
Recombinant fusion protein transduction 
domain-outer membrane protein (PTD-ompK) 

- Marbled eel ip 
imr 

* [31] 

Recombinant LamB against different Vibrio 
spp. 

- Zebrafish ip 62.5 [16] 

DNA vaccine (ompK) Chitosan particles 
encapsulated 

Black seabream oral 72.3 [32] 

Recombinant DNA vaccine of mutated serine 
protease (Ser318ePro) 

- Turbotjuveniles im 96.11 [30] 

Recombinant OmpK of V. harveyi FIA Orange-spotted 
groupers 

ip 50 [19] 

Recombinant outer membranes OmpW, 
OmpV, OmpK, OmpU 

- Large yellow 
croaker 

ip 80-90 [33] 

Dihydrolipoamide dehydrogenase (DLD) - Orange-spotted 
Grouper 

ip 80 [15] 

(*) marbled eels immunized with PTD-ompK and challenged with deadly dose of V. parahaemolyticussurvived 
significantly longer than those immunized with ompK alone did. 
 
e- Vibrio vulnificus 

V. vulnificusbiotype 2 is a primary pathogen for 
eels aquaculture. While, V. vulnificus biotype 1 is an 
opportunistic humanpathogen causing disease after 
handling or ingestion of raw shellfish. Vulnivaccine 
is a bacterin from serovar E against V. vulnificus used 
in Spain to protect eel but gave short protection 
period for approximately 1 month[34]. A bivalent 
vaccine against serotype E and A designed by [35] 
against the two pathogenic serovars in eel vaccinated 
by oral, anal intubation, intraperitoneal and prolonged 
immersion. The results indicated that the new vaccine 
delivered by oral and anal intubation is much better 
than intraperitoneal injection by 80% higher in 
protection.  

One trial to develop a novel recombinant 
bivalent outer membrane protein (OMP)of V. 
vulnificus and A. hydrophila vaccine was 
injectedintraperitoneally in American eel (Anguilla 
rostrata). The relative percent survival (RPS) of the 
fish after challenged with A.hydrophila and 
V.vulnificus were 50% and 50% respectively [36]. As 
the V.vulnificusis an important cause of fatal 
septicemia in human, a trial to develop a live 
attenuated vaccine with deletions in three major 
virulence factors: RTX cytotoxin gene, 
metalloprotease (vvpE) and hemolysin/cytolysin 
(vvhA). Intragastric immunizated mice showed 
systemic and mucosal immunity and protected from 
challenged virulent V.vulnificusthrough various 
injection routes[37].  
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f- Vibriomimicus 
V.mimicusis extracellular bacteria that inhabits 

diverse aquatic environments causing ascites disease. 
It is also isolated from human with gastroenteritis 

after ingestion of raw or undercooked fish products. 
V. mimicus is most similar to V. choleraein having 
the same virulence factors, such as enterotoxins 
andhemolysins[38] (Table 5). 

 
Table 5: DNA vaccine trials against V.mimicus 

Antigen Adjuvent Species  Route RPS% Ref. 
Recombinant tandemly arranged outermembrane protein U 
(OmpU) multi-epitope (6EPIS) 

ISA763A Grass 
carp 

ip 85.71 [38] 

Recombinant LamB against different Vibrio spp. - Zebrafish ip 54.1 [16] 
 
2. Photobacteriosis (Pasteurellosis) 

Photobacteriosis (Pasteurellosis), is caused by 
Photobacterium damselae subsp. piscicida (formerly 
Pasteurella piscicida), whichcauses Severe 
mortalities occur usually when water temperatures 
are above 18-20ºC among marine fishes worldwide. 
This bacterium is a member of the family 
Vibrionaceae, and similar to P. damselae subsp. 
damselae. To date, severaltypes of commercial 
vaccines have been reported, including bacterin, LPS 
formulations and ECP-enriched bacterin preparation; 

with poor protection. Thelicensed ECP-enriched 
bacterin (DI vaccine) has been employedin several 
European countries with mixed results rangingfrom 
good in Spainin larvae of gilthead sea bream, to poor 
in Italy[34,39,40]. Major virulence factors in P. 
damselae subsp. piscicida are themetalloprotease, 
Siderophore, outer membrane, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), andlipoprotein 
[39,41] which could be the basis for vaccine 
development (Table 6). 

 
Table 6: DNA and live attenuated vaccines trials againstPhotobacterium damselae subsp. piscicida. 

Vaccine Adjuvant Species Route RPS% Ref. 
DNA vaccineencoding codon-optimized PPA1 
(a major antigenic protein) 

- 
Japanese 
flounder 

im 90.9 [42] 

Recombinant Lipoprotein 
subunitvaccine  

FCA Sea bass ip 50 [40] 

Recombinant rHSP60, rENOLASE, and 
rGAPDH antigens,  

FCA Cobia ip  
25-52a 
48.4-65.6b 
1.6c 

[43] 

Formalin-killed bacterin withEscherichia coli 
LPS 

- Sea bream imr 
72.2d 
70.8e 

[44] 

Live attenuated aroA mutant - 
Hybrid striped 
bass 

ip 85.5 [45] 

(a) MonovalentrHSP60, or rENOLASE, or rGAPDH, (b) divalent vaccine, (c) trivalent vaccine 
(d) Sea bream larvae from immunized parents, (e) Larvae from non-immunized parents 
 
3. Furunculosis 

Typical furunculosis is caused byAeromonas 
salmonicida subsp. salmonicida, homogeneous with 
no serotypes, which causes economically devastating 
losses in cultivated salmonids and non-salmonid fish 
in fresh andmarine waters. The oil-adjuvanted 
bacterin vaccine has been developed and 

commercialized since 1980 and still the main one for 
vaccinations of salmonids against A. salmonicida in 
commercial aquaculture[34,46,47]. Few different 
approaches have been done to develop live attenuated 
or recombinant vaccines against furunculosisbut not 
approved for commercialization yet (Table 7).  

 
Table 7: DNA and live attenuated vaccines trials against Aeromonas salmonicida 

Antigen Adjuvant Species Route RPS Ref. 
Recombinant A-layer protein Alginate encapsulation Goldfish Oral 0 [48] 
Live attenuated A-layer protein - Rainbow trout imr ? [49] 
Live attenuated O-antigen - Rainbow trout imr ? [49] 
Live attenuated aroA - Atlantic salmon im 100 [50] 
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4. Motile Aeromonas septicaemia 
Motile aeromonads ofA. hydrophila, A. sobria 

and A. cavieae cause a haemorrhagic septicaemia 
innumerous species of cultured and wild marine-, 
brackish-, fresh-water fish. Outbreaks of Aeromonas 
septicaemia are usually related to change in 
environmental conditions such as handling stress, fish 
transfer, overcrowding, sudden change of 
temperature, low dissolved oxygen, poor nutritional 

status, and parasitic andfungal infections. Although 
several trials of vaccination of different fish species, 
the serological heterogeneity among the motile 
Aeromonas species render the development of a 
commercial vaccine (Table 8). Thepathogenesis of A. 
hydrophilais multi-factorial, and mediated by 
secretion of extracellular proteins such as aerolysin, 
lipase, chitinase, amylase, gelatinase, hemolysins, 
and enterotoxins[34,51].  

 
Table 8: DNA and live attenuated vaccines trials against Motile Aeromonas septicaemia 

Antigens Adjuvant Species Route RPS% Ref. 
Recombinant hemolysin co-regulated protein 
(Hcp) of the T6SS 

? Common carp ip 46.67 [52] 

Recombinant outer membrane protein R 
modified herbal-oil 
adjuvant 

Indian major 
carp 

ip 33 CM [53] 

Bivalent A. veronii ompA and A. 
hydrophilahemolysins (hly) protein 

PLGA (W/O/W) 
encapsulation. 

Mice ip  [54] 

Recombinant 
Omp38 

- 
Chinese 
breams 

ip 57.14 [55] 

Recombinant multivalent 
WEDΔasdB/pUTta4DGap.E. tarda 

- Turbot imr 94 [56] 

Lipopolysaccharide LPS - Rainbowtrout imr 34 [57] 
Recombinant outer membrane Omp48 - Rohu im 69 [58] 
Recombinant outer membrane adhesins 
(Aha1) 

- Common carp ip 52 [59] 

Recombinant outer membrane OMPW - Common carp ip 71 [59] 
Lipopolysaccharide LPS - Grass carp ip 83.3 [60] 
V. anguillarumempAand GAPDH from 
A.hydrophila 

FCA Turbot ip 84 [10] 

Subunit outer membrane proteins (OMP) PLGAencapsulation. Rohu ip ** [61] 
Recombinant protein for the S-layer protein Montanide Common Carp ip 56-87 [62] 
Recombinant Omp-G from A.hydrophila - European eel ip 50-70 [63] 
Recombinant Omp-G from A.sobria  European eel ip 75 [63] 

Live attenuated P. fluorescensfur mutant - 
Japanese 
flounder 

ip 
Oral 
imr 

92.3 
84.6 
76.9 

[20] 

Live attenuated P. fluorescensfur mutant and 
pJAQ plasmid of V. harveyi (TFM/pJAQ) 

- 
Japanese 
flounder 

ip 93 [20] 

Recombinant outer membrane ompTS (37 
kDa) 

FCA 
Indian major 
carp 

ip ? [64] 

Subunitextracellular protease EprJ1 - Mice ip 60 [65] 

Recombinant Aha1 adhesin FCA Blue gourami ip 
75-
87.5 

[13] 

Liveattenuated AroA - Rainbow trout ip 75 [66] 
(CM) Cumulative mortalities, (**) Higher than other formulations 
 
5. Pseudomonadiasis 

The most Pseudomonas species isolated from 
diseased fish are P. aeruginosa, P.anguilliseptica, P. 
fluorescens, P. putida, and P. plecoglossicida. P. 
fluorescensis a commonaquaculture pathogen isolated 

in Egypt and worldwide that can infect a variety of 
farmed fishspecies including carp, tilapia, and catfish. 
Few DNA vaccines trials have been evaluated to 
protect fish against Pseudomonadiasis (Table 9). 
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Table 9: DNA and live attenuated vaccines trials against Pseudomonadiasis 
Antigen Adjuvant Species Route RPS% Ref. 
Subunit P. fluorescens TonB-dependent outer 
membrane receptors (Tdr1, Tdr2, Tdr3) 

- Turbot   [67] 

P. putidaLPS - Large yellow croaker ip 40 [68] 
Subunit P. fluorescens TonB-dependent outer 
membrane receptors (TdrA) 

Aluminum 
hydroxide 

Japanese flounder ip 80.6 [69] 

Live attenuated P. fluorescensfur mutant - Japanese flounder 
ip  
Oral 
imr 

96.5 
85.5 
81.5 

[20] 

 
6. Yersiniosis 

Y. ruckeri is the causative agent of enteric red 
mouth (ERM) disease, producing important economic 
losses in salmonid aquaculture worldwide. Y. ruckeri 
was also isolated from wild fish, birdsand mammals, 
and can dormant survive in the environment 

(seawater and sediments). Y. ruckeri vaccine was one 
of the first commercial fish vaccinedeveloped from 
serotype O1a with generallyhigh efficacy[34]. Table 
10 showed new trials for developing vaccines in 
Rainbow trout based on Y. ruckerivirulence 
determinants. 

 
Table 10: DNA and live attenuated vaccines trials against Y. ruckeri 

Antigens Adjuvant  Species Routes RPS 
(%) 

Ref. 

Lipopolysaccharide (LPS) - Rainbowtrout ip 77.4-83.8 [70] 
Recombinant flagellin protein ofY. ruckeri biotype 1 
BA19 

- Rainbow trout ip 68–72 [71] 

Extracellular product of Y. ruckeri - Rainbow trout imr 74–81.4 [72] 
Live attenuated Y. ruckeriaroA gene - Rainbow trout ip 90 [73] 
Yrp1 protease toxoid of Y. ruckeri,strain 150RI4 - Rainbow trout ip 79 [74] 
 
7. Edwardsiella tarda 

E.tarda is an intracellular Gram-negative 
pathogen that causes edwardsiellosis, hemorrhagic 
septicemia, in fresh and marine fishclaimingsevere 
economic losses. E.tardadivided into four serotypes, 
A, B, C and D and can infect a broad range of hosts 
such as fish, birds, reptiles, amphibians, mammals, 
and humans. E.tardaharbor several virulence 
determinants; type III secretion system (T3SS), type 
VI secretionsystem (T6SS), adhesin and 
hemolysin[75]. Park et al.[76] reviewed the trails of 
vaccine development against E. tarda, whereas this 
review completed the other trails since 2012 (Table 
11). 
8. Edwardsiella ictaluri (Enteric septicaemia of 
catfish, ESC) 

E. ictaluriisGram-negative, intracellular, 
flagellated bacteria, serologically homogeneous and 
phylogeneticallyrelated to Salmonella. E. ictaluriis 
one ofthe most prevalentdiseaseaffectingcultured 
channel catfish causing enteric septicemia of catfish 
(ESC) leading to huge economical loss in USA. 
Killed and live attenuated E.ictaluri vaccines have 
been developed tocontrol ESC. Several trial have 
been done to produce attenuated mutants using 
chemical/drug mutagenesis, transposon insertion and 
by auxotrophy. Currently, Klesius and Shoemaker 

[106] produced a live attenuated E. ictaluri 
rifampicin mutant from E. ictaluri EILO strain (Table 
12). This modified live vaccine was found to be 
effective in controlling ESC in catfishand was 
registered as AquaVac-ESC in aquaculture by USDA 
to Intervet/Schering-Plough Animal Health[34].  
9. Flavobacterium psychrophilum (Cold water 
disease) 

F. psychrophilum, also called Cytophaga 
psychrophila or Flexibacter psychrophilus, is the 
cause of bacterial cold water disease or 
peduncledisease in salmonids. It has been isolated 
from rainbow trout fry syndrome, eel and ayu 
worldwide. Few vaccination attempts againstF. 
psychrophilum have beenpublished because the 
bacterium is difficult to culture and isolate. Until now 
no commercial vaccine are available [34,112]. Some 
virulence factors have been described in F. 
psychrophilumpathogenesis such as extracellular 
proteases, iron acquisition system, adhesin, 
haemolytic activities, lipopolysaccharide (LPS) O-
antigens, surface proteins and a thiol which 
considered perspective antigens for vaccine 
development (Table 13). However, the development 
of vaccine against F. psychrophilumis considered a 
difficult task[113]. 
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Table 11: DNA and live attenuated vaccines trials against E.tarda 

Antigen Adjuvant Species Route RPS Ref. 
Killed but metabolically active 
(KBMA)uvrA and uvrB genes knock-out E. 
tarda 

- Olive flounder ip 100 [77] 

Live attenuated ΔaroAΔesrB - Flounder 
im 
imr 

14.3-
66.7 
100 

[78] 

Live attenuated esrB - Turbot 
ip  
imr 

 77.8 
 64.4 

[75] 

Recombinant GAPDH from E. ictaluri  ISA 763 AVG Tilapia ip  71.4 [79] 
LiveattenuatedHfq (an RNA-binding 
protein) 

- Japanese flounder imr 65-76 [80] 

Recombinant multivalent 
WEDΔasdB/pUTta4DGap.E. tarda 

- Turbot imr 83 [56] 

Live attenuated aroA - Turbot 
ip  
imr 

NS 
 

[81] 

Bivalent porin Ⅱ of A. hydrophila and 
ompS2 of E. tarda 

- American Eels ip 37.5 [82] 

Live mutated in the T3SS genes for EseB, 
EseC, EseD and EscA, along with the aroC 
gene 

- Turbot 
ip  
imr 

73.3±3.3 
63.3±3.3 

[83] 

recombinant subunit vaccineFimA  Aluminum hydroxide Turbot  ip 71.9 [84] 
Live attenuated vaccinetwin-arginine 
translocation (Tat) 

- Turbot ip 81.81 [85] 

Recombinant GAPDH Montanide™ISA 763A Turbot ip 60 [86] 
Recombinant vaccine DnaJ Aluminum hydroxide Olive flounder ip 62 [87] 
Recombinant vaccine OMP - Common carp ip 54.3 [88] 
Natural OMVs - Olive flounder ip 70 [89] 
Mutant alanine racemase (alr) gene and 
aspartatesemialdehyde dehydrogenase (asd) 

- Olive flounder ip 100 [90] 

Recombinant vaccine rEta2 - Olive flounder ip 83 [91] 
DNA vaccine pCEta2 - Olive flounder im 67 [91] 
Recombinant vaccine pCEsa1 - Olive flounder ip 57 [92] 
Esa1-expressing recombinant strain - Olive flounder po 52 [93] 
Esa1-expressing recombinant strai - Olive flounder ip 79 [93] 
Live E22 - Olive flounder ip 45 [94] 
DNA vaccine N163 - Olive flounder im 70.2 [95] 
Recombinant vaccine scFv FIA Red drum ip 88 [96] 
Recombinant vaccine EseD FIA Turbot ip 62.3 [97] 
Recombinant vaccine DegPEt FIA Olive flounder ip 89 [98] 
Recombinant vaccine Et49 FIA Olive flounder ip 47 [98] 
Recombinant vaccine Eta21 Bacillus sp. strain B187 Olive flounder ip 69 [99] 
DH5α/pTAET21 bacillus sp. strain B187 Olive flounder ip 100 [99] 
DNA vaccine pEta6  Olive flounder im 50 [100] 
Recombinant vaccine Eta6 Bacillus sp. strain B187 Olive flounder ip 53 [100] 
Recombinant vaccine Et18 Bacillus sp. strain B187 Olive flounder ip 61 [101] 
Recombinant vaccine EseD Bacillus sp. strain B187 Olive flounder ip 51 [101] 
Live, attenuated esrB mutant  Turbot ip 93.3 [102] 
Ghost vaccine  Olive flounder po 85.7 [103] 
Ghost vaccine  Tilapia ip 88.8 [104] 
37 kDa OMP  Olive flounder ip 70 [105] 
(NS) Not significantly different from the control group 
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Table 12: DNA and live attenuated vaccines trials against E. ictaluri 

Antigen  Adjuvant  Species  Route  RPS% Ref. 
Live attenuated tricarboxylic acid cycle (TCA) deletion - Catfish imr 100 [107] 
Live attenuated Novobiocin-resistant - Catfish imrInjection 100 

92–100 
[108] 

Live attenuated LPS deletionO side-chain - Catfish imr 
Injection 

0 
94 

[109] 

Live attenuated aroA-deletion - Catfish imr 54.1–63.8 [110] 
Live attenuated rifampicin-resistant - Catfish imr  60–100 [106] 
Live attenuated purA-deletion - Catfish imr 66.3 [111] 
 
 

Table 13: DNA and live attenuated vaccines trials against F. psychrophilum 
Antigen Adjuvant  Species Route  RPS% Ref. 
Recombinant CoA dehydrogenase (HCD) - Ayu ip 36.8 [112] 
RecombinantATP synthasebeta subunit (atpD) - Ayu ip 31.5 [112] 
Recombinantglutamate dehydrogenase (gdhA) - Ayu ip 35.6 [112] 
Recombinant subunit rpoB FCA Rainbow trout ip NS [114] 
Recombinant factor-Tu, SufB and Fe-S  - Rainbow trout ip NS [115] 
Recombinant DNA heat shock proteins (Hsp) 
60, 70 

FCA Rainbow trout ip NS [116] 

Live attenuated ExbD2 - Rainbow trout im 81.8 [117] 
Low molecular mass fraction (P25-33) FCA Rainbow trout ip 10-15 

CPM 
[118] 

Recombinant ribosomal protein L10 FCA Rainbow trout ip 82 [119] 
OmpA protein FCA Rainbow trout ip - [120] 
OmpH-like protein FCA Rainbow trout ip 88.5 [121] 
Outer membrane fraction (OMF) - Ayu ip 80-85 [122] 
NS: no significance difference between control and vaccine 
CPM: mean cumulative percent mortality. 
 
 
10. Flavobacterium columnare (Columnaris disease 
or saddleback disease) 

F. columnare,(syn., Chondrococcus columnaris, 
Cytophaga columnaris, Flexibacter columnaris), is 
Gram-negative chromogenic glidingbacterial 
pathogen associated with columnaris diseasein 
several freshand brackish water fish species 
worldwide. Several vaccination experiments with 

formalin killedbacterins with and without adjuvants 
against F. columnare have been performed and 
resulted in low protection (Table 14). In 2005, an 
attenuated live vaccine against columnaris disease 
was developed by repeated passage of a virulent 
strain on rifampicin and been licensed 
byIntervet/Schering-Plough Animal Health for use in 
channel catfishandlargemouth bass fry[123,124]. 

 
 

Table 14: DNA and live attenuated vaccines trials against F. columnare 
Antigen  Adjuvent Species  Route RPS Ref. 
F. columnare ghosts by PhiX174lysis gene E - Grass carp ip 70.9 [124] 
Live attenuated rifampicin LPS mutated - Channel 

catfish 
imr 57-96.4 [123] 

Live attenuated rifampicin LPS mutated - Largemouth 
bass 

imr 57-96.4 [123] 

Recombinant heat shock protein (HSP) gene dna J FCA Channel 
catfish 

ip 23* [125] 

(*) Lower than control group 
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11. Streptococcus iniae 

S. iniae is Gram-positive bacterial organism has 
emerged as an important aquaticpathogen responsible 
for invasivedisease outbreaks incultured fish around 
the world. Streptococcosis can lead to severe 
symptoms withhigh mortality rates and 
substantialeconomic losses in tilapia, hybrids striped 
bassand rainbow trout. S. iniae is also been identified 
as a potentialzoonotic pathogencause softtissue 

infections after handling raw fish. Most of vaccines 
attempts against streptococcosis showed good levels 
of protection especially with intraperitoneal injection. 
S. iniae has potential virulence determinants such as 
capsule, M-like protein, phosphoglucomutase, 
streptolysin S, sivS/R, CpsY, GAPDHand Sortase A 
which used in vaccination trials and gave different 
protection rates [34,126,127] as shown in Table 15. 

 
 

Table 15: DNA and live attenuated vaccines trials against S. iniae 
Antigen  Adjuvent Species  Route RPS Ref. 
Recombinant Enolase (ENO) - Zebrafish ip 100 [128] 
Live attenuated Sortase A(srtA) - Nile tilapia ip 95.5 [126] 
DNA monovalent streptolysin S cluster 
sagF, SagG, or SagI 

- Japanese flounder im 65-78 [129] 

DNA divalent streptolysin S cluster 4-17 
DNA multivalent streptolysin S cluster 13-26 
Live attenuated novobiocin-resistant - Nile tilapia ip 75-100 [130] 
Recombinant iron-binding protein (Sip11) Bacillus sp. 

B187 
Japanese flounder ip 69.7 [131] 

DNA secretory antigen, Sia10 ? Turbot ? 73.9-92.3 [132] 
Recombinant GAPDH Ghost  - Olive flounder oral 57 CM [133] 
Liveattenuated M-likeprotein (Delta simA) - Hybrid striped bass ip 100 [134] 
Phosphoglucomutase (pgm) gene - Hybrid striped bass ip 90-100 [127] 
CM: cumulative mortalities 
 
 
12. Lactococcus garvieae 

L. garvieae is a septicemic gram-positive 
bacterium infecting several species of marine and 
fresh water fish and mammals. The injectable vaccine 
amberjack/yellowtailhas been licensed since 2000 in 
Japan. Also, the commercial vaccines are available 
for rainbow trout in France, Italy, and UK. The L. 
garvieae bacterins displayed excellent effectiveness 
and high levels of long-termprotection[47].  

Also, inactivated autovaccines have also been 
developed from outbreaks with the causative strains 
of L. garvieae[135]. live attenuated L. garvieae as an 
experimental vaccine has alsobeen reported. An 
attenuated L. garvieae strain lacking a virulence-
associated capsule on itscell surface as a live vaccine 
has been reported to confer long-lasting protection to 
yellowtail, Seriola quinqueradiata [136]. A trial for 
using recombinant subunit vaccine of 40 kDa 
GAPDH of L. garvieaeadjuvant with ISA to protect 
tilapia. The relative survival rate of the immunized 
fish with GAPDH+ISA after challenged was 50% 
[137]. 
 
Conclusion 

• DNA vaccine has several advantages over 
conventional vaccines and have been 
increasingly employed against many of the fish 
pathogens depending on bacterial virulence 
determinants. It is expected that some more 
genetically modified vaccines may be 
commercialized in the near future.  

• The development of effective vaccines should 
be accompanied with the application of specific 
adjuvants that maximise the immunogenicity of 
the vaccine. Adjuvants such as the TLR ligands 
or cytokines showed promising results. In 
addition, nanoparticles found their way in 
vaccine delivery and encapsulation. 

• Development of polyvalent vaccines is crucial 
due to a wide variety of bacterial infections in 
aquaculture. Moreover, polyvalent vaccine 
could play a role in development of effective 
vaccine(s) to overcome the heterogeneity of 
motile aeromon as septicemia and intracellular 
parasitism of E. tarda.  
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