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At present, primary school mathematics consists of simple addition, subtraction, multiplication and division; 
middle school mathematics takes these four operations to a higher level; while university mathematics extends them 
to an even higher level. These four arithmetic operations form the foundation of modern mathematics. 

Isomathematics is a generalisation of these four fundamental operations and heralds a great revolution in 
mathematics. Here, the four arithmetic operations of isoaddition, isosubtraction, isomultiplication and isodivision 
are established but only at the primary level of isomathematics. The material introduced here should be readily 
understandable by middle school pupils and university students. 
 Santilli’s isomathematics is based on a generalisation of modern mathematics. Isomultiplication is defined by 

ˆˆa a abT  , isodivision by 

ˆˆ
a

a b I
b

 
, where 

ˆ 1I  is called an isounit; 
ˆˆ 1TI  , where T̂ is the inverse of the 

isounit. If addition and subtraction remain unchanged, 
ˆ ˆ( , , , )    are the four arithmetic operations in Santilli’s 

isomathematics[1-5]. Isoaddition 
ˆˆ 0a b a b     and isosubtraction 0̂ˆa b a b    , where 0̂ 0 is called 

the isozero, together with the operations of isomultiplication and isodivision introduced above, form the four 

arithmetic operations
ˆ ˆ ˆ( , , , )ˆ     in Santilli-Jiang isomathematics[6].  

 
Santilli [1] suggests isomathematics based on a generalisation of multiplication ×, division ÷, and the 

multiplicative unit 1 of modern mathematics. It is an epoch making suggestion. From modern mathematics, the 
foundations of Santilli’s isomathematics will be established. 
 
(1) Division and multiplication in modern mathematics. 

 
Suppose that  

                                                     
0 1a a a                                                             (1) 

where 1 is the multiplicative unit and 0 is exponent zero. 
From (1), division ÷ and multiplication × are defined by 
 

                                         
, 0,

a
a b b a b ab

b
    

                                                 (2) 

                                         
0( )a a a a a a a                                                        (3) 

Now consider the multiplicative unit 1, 

                                       
1 , 1 ,1 1/a a a a a a     

                                               (4) 
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/ / /( 1) 1, ( 1) 1, ( 1) ( 1) , ( 1) ( 1)n a b n n a b a b                                   (5) 

Addition +, subtraction  -, multiplication ×, and division ÷ are the four operations forming the foundation of modern 
mathematics. The modern mathematics is generalised to establish the foundations of Santilli-Jiang isomathematics. 
 
(2) Isodivision and isomultiplication in Santilli’s isomathematics. 

 

Isodivision ̂ and isomultiplication ̂  [1 – 5], which are generalisations of the division ÷ and multiplication × of 
modern mathematics, are now defined. 

                                         
0 ˆˆ 1, 0 0a a a I    

                                                   (6) 

where Î  is called the isounit and is a generalisation of the multiplicative unit 1 and 0  is the isoexponent zero 
which is a generalisation of the exponent zero 0. Then, 

                                       

ˆ ˆˆ ˆ, 0,
a

a b I b a b aTb
b

    
                                               (7) 

It is seen that 

                                    
0 ˆˆˆ ˆ ˆ( )a a a a a a aTI a      

                                             (8) 
from which it follows that 

                                                      
ˆˆ 1TI                                                                       (9) 

where T̂  is the inverse of the isounit Î . 

The isounit Î  has the following properties[5,p93-95,isoexponents]: 

                                
ˆ 2ˆ ˆ ˆ ˆˆ ˆ ˆ, , /Ia I a a I a I a a I a      

                                      (10) 

                       

ˆ ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , ( ) , ( ) ( 1) , ( ) ( 1)

a a a
n n nb b bI I I I I I I I                                     (11) 

With addition and subtraction unchanged, 
ˆ ˆ( , , , )     are the four arithmetic operations in Santilli’s 

isomathematics and these form the foundations of Santilli isomathematics. When 
ˆ 1I  , the operations revert to 

being those of the modern mathematics. 
 
(3) Addition and subtraction in modern mathematics. 

 
These are defined by 
                                    x = a + b  and  y = a – b                                                         (12) 
                                         a + a – a = a                                                                      (13) 
                                           a – a = 0                                                                           (14) 
Isoaddition and isosubtraction may be established using these results. 
 
(4)  Isoaddition and isosubtraction in Santilli-Jiang isomathematics.  

 

Isoaddition ̂  and isosubtraction ̂  are defined by 

                             1 2
ˆ , ˆa b a b c a b a b c       

                                                (15) 

                              1 2
ˆ ˆa a a a a c c a      

                                                    (16) 
Then, from (16), it follows that 

                                             1 2c c
                                                                            (17) 

Suppose that 1 2 0̂c c 
, where 0̂  is called the isozero which is a generalisation of the  zero 0 of addition and 

subtraction[6]. Hence, 
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ˆ ˆˆ 0, 0ˆa b a b a b a b       

                                                 (18) 

When 0̂ 0 , these equations are the usual laws of addition and subtraction of modern mathematics. 
From the above results, the foundations of Santilli-Jiang isomathematics are readily established: 

ˆ ˆ ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ, 0 ; , 0 ; , 0;ˆT I a b abT a b a b                     
 

                      

ˆˆ ˆˆ ˆ ˆ, 0; , ;ˆ ˆ
a

a b I a b a b a a a a a a a a a a
b

             
         

2 ˆ ˆˆ ˆˆˆˆ ˆ, 2 0; 1, 0 0; 1.ˆa a a T a a a a a I a a TI            
            (19) 

Here 
ˆ ˆ ˆ( , , , )ˆ     are the four arithmetic operations in Santilli-Jiang isomathematics. 

 
Remark: 

ˆˆˆ ˆ( ) ( 0)a b c a b c     
 

From the left-hand side, it follows  

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ) ( )a b c a b a a c a b c             ˆˆ ( 0 )a b c   
, 

where 
ˆˆ 0   is a number also. 

Again, 

ˆˆ ˆ( ) ( 0)ˆa b c a b c     
 

From the left-hand side of this relation, it is seen that 

ˆ ˆ ˆ ˆ( ) )ˆ ˆa b c a b a a c        ˆˆ ˆ( ) ( 0 )ˆa b c a b c       
, 

where 0̂̂   is a number also. 

The distributive laws are satisfied and 
ˆ ˆ, ,ˆ  

,
̂

are numbers. 
This Santilli-Jiang isomathematics therefore, provides a new mathematical tool for studying the mathematical 
problems of the 21st century and helping in the understanding the mysteries of our universe. 
 
(5) An illustrative example. 
Consider the algebraic equation 

                                       1 1 1 2 2 2( ) ( )y a b c a b c     
                                           (20) 

(20) may represent a mathematical system,  physical system, biological system,cryptogram system, IT system, or 
some other system. It may be written as the isomathematical equation 

           1 1 1 2 2 2 1 1 1 2 2 2
ˆ ˆ ˆˆ ˆˆ ˆˆ ˆˆ ( ) ( ) ( 0) 0 / ( 0)ˆy a b c a b c a T b c a T b c            

        (21) 

If 
ˆ 1T   and 0̂ 0  then 

ˆy y . 

Let 
ˆ 2T   and 0̂ 3 . From (21) we have the isomathematical subequation 

                          1 1 1 1 2 2 2
ˆ 2 ( 3) 3 / 2( 3)y a b c a b c      

.                                       (22) 

Let 
ˆ 5T   and 0̂ 6 . From (21) we have the isomathematical subequation 

                          2 1 1 1 2 2 2
ˆ 5 ( 6) 6 / 5( 6)y a b c a b c      

 .                                     (23) 

Let 
ˆ 8T   and 0̂ 10 . From (21) we have the isomathematical subequation 

                         3 1 1 1 2 2 2
ˆ 8 ( 10) 10 / 8( 10)y a b c a b c      

    .                              (24) 

Therefore, (21) has infinitely many isomathematical subequations. Using (21) – (24), T̂  and 0̂ , the stability and 
optimum structure of the algebraic equation (20) may be studied. 
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