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Abstract: The effects of linear deformation on thermal conductivity of different elemental metals containing 
monovalent, divalent, trivalent and polyvalent metals were computed and studied based on Debye model using 
kinetic theory of gas formalism. The electron density parameters of deformed metals under the application of 
different strains were obtained for different metals. The poison ratio relating the transversal compression to 
elongation in the direction of applied deformation for different elemental metals were computed using elastic moduli 
for homogeneous isotropic material for some metal. The results obtained revealed that there is a good agreement 
between the computed and experimental value of the thermal conductivity of metals. There is high concentration of 
electron in the high density region than in the lower density region these seems to suggest that thermal conductivity 
of metals depend on electronic concentration. The thermal conductivity of metals increases as deformation (strains) 
increases for all the metals investigated. This could be due to an increase in the electron collision and inter-atomic 
distance between the interacting electrons in the metals which force the thermal conductivity of the metals to 
increase as deformation increases. The effect of deformation is more pronounced on the thermal conductivity of 
alkaline metals than the noble and polyvalent metal this tells us that the thermal conductivity of metals depend on 
electronic concentration and valence electron density. 
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1.0 Introduction 

Heat energy can be transmitted through a crystal 
via the motion of phonons, photons, free electon (or 
free holes), electron holes pairs, or excitons (bound 
electron hole pairs ). The electronic component of heat 
conductions usually make the largest contribution in a 
metal, but almost all of the thermal current in a non 
metal is carried by the phonons, except at the highest 
temperature when the phonons becomes dominant. 
Heat conduction is a transport phenomenon. It is an 
example of a general process by which a conserved 
quantity (such as energy, mass, charge or momentum) 
is transferred as a consequence of some 
nonequilibrium situation in a system. Thermal 
conductivity is the phenomenon by which heat is 
transported from high to low temperature regions of a 
substance and is the property that characterizes the 
ability of a material to transfer heat (Kakani and 
Kakani, 2004). Thermal conductivity of metals is due 
to the valence electron and the magnitude of the 
corresponding parameters such as mean free path, 
Fermi velocity and electronics heat capacity (Animalu, 
1977). The reciprocal of thermal conductivity is 
thermal resistivity. Drude assumed that the thermal 
conductivity of a metal originates principally from the 
gas of free electrons which can transfer heat with 
greater ease than the ions which are bound to their 
positions (Amit and Verbin, 1995). Thermal 
conductivity is actually a tensor, which means it is 

possible to have different values in different 
directions. The electronic thermal conductivity is 
related to the electrical conductivity through the mean 
free path (Kakani and Kakani, 2004). The mean free 
path is the average time between consecutive 
collisions in the gas and is the average time during 
which the molecule moves as a free particle. The 
clarification of the concept of a mean free path and its 
quantitative evaluation opened the way for the 
calculation of many important quantities such as 
mobility, diffusion coefficients, viscosity and thermal 
conductivity. Electronic specific heat is the 
contribution to total specific heat due to transitions of 
electrons to state of higher energy. Debye temperature 
is one important factor in the discussion of many 
physical properties such as elastic constants, electrical 
conductivity, thermal conductivity and x-ray 
diffraction. The thermal properties of solid depend on 
energy change of the atoms and free electrons (Pillai, 
2010). The specific heat at constant volume is the 
change in internal energy with temperature. (Elliot, 
1997). Specific heat is a measure of the number of 
degree of freedom to absorb potential or kinetic 
energy (Kachhava, 1992). Deformation can be 
described as change in shape or size of an object due 
to an applied stress (force) or strain. Metals could be 
deformed by a compressive, elongative and 
torsion/twisting force. The study of the elastic 
behaviour of solid is very important in the 
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fundamental and technical researches. In technology, 
it tells us about the strength of the materials. In 
fundamental research, it is of interest because of the 
insight it provides into the nature of the binding forces 
in solids. The relevant elastic constants also relate 
themselves to thermal properties like Debye 
temperature and thermal conductivity (Kaldis, 1979). 
Consequently, a lot of efforts have been made to study 
the effect of deformation on some properties of metals 
theoretically and experimentally. Kiejna and Pogosov 
(1999) performed an experimental investigation on the 
effect of deformation on some electronic properties of 
metals by taking the direct measurement of deformed 
metal using Kelvin method. They observed that the 
contact potential difference of the metals increase 
when compressed and decreases when tensed. 
Pogosov and Shtepa, (2006), calculated the surface 
stress and the contact potential difference of elastically 
deformed metals based on structureless 
pseudopotential model using self-consistent Kohn 
Sham method. The results of surface stress obtained 
were in agreement with experimental results, and also 
confirmed that the contact potential difference 
obtained for the deformed metallic surfaces by Kelvin 
method correspond to change in surface potential. 
Adeshakin and Osiele (2012) computed the surface 
energy and surface stress of deformed metals based on 
the structureless pseudopotential formalism. The 
results obtained revealed that deformation causes a 
reduction of surface energy and this reduction is more 
pronounced in simple and alkaline metals. Tensile 
stress is present in most metallic surfaces whose 
surface stress was computed, although a few metals 
possess compressive stress on their surfaces. In the 
presence of deformation, the surface stress of some 
metals decreases, while deformation causes an 
increase in the surface stress of some metals. 
Adeshakin et al. (2012), developed a model based on 
the structureless pseudopotential formalism to 
compute the correlation, binding and cohesive energy 
of deformed and undeformed metals. The computed 
binding and cohesive energy of metals were compared 
with available experimental values. The results 
obtained showed that correlation energy increases with 
increase in electron density parameter. The computed 
binding energy and cohesive energy of metals were in 
good agreement with experimental values. The results 
obtained also showed that deformation causes a 
decrease in the binding energy of metals and it does 
not cause a significant change in the cohesive energy 
of metals, although transition metals have high values 
of cohesive energy compared to alkaline and simple 
metals. Adeshakin et. al (2015) investigated the linear 
deformation and the electronic properties of metals 
based on the modified structureless pseudopotential 
model to compute and study the effects of deformation 

on the electron density parameter, Fermi energy, 
Fermi wave vector and chemical potential of different 
metals. The results obtained revealed that increase in 
deformation causes an increase in electron gas 
parameter, and decrease in Fermi wave vector, Fermi 
energy and chemical potential of metals. Adesakin, 
(2016) develop a model to compute the electrical 
conductivity of different elemental metals based on 
pseudopotential formalism. The results obtained 
revealed that there is a good agreement between the 
computed and experimental value of the electrical 
conductivity of metals. There is high concentration of 
electron in the high density region than the low density 
region. The electrical conductivity of metals decreases 
as deformation (strains) increases for all the metals 
investigated. The effect of deformation is more 
pronounced on the electrical conductivity of noble and 
transition metals than in alkaline metals. In this work, 
the thermal conductivity of undeformed and deformed 
elemental metals consisting of alkaline, earth alkaline, 
trivalent and polyvalent metals were computed based 
on Debye model formalism. The results obtained for 
the thermal conductivity of undeformed metal were 
compared with available experimental value to 
validate the model used in this work. This will provide 
an insight into how the thermal conductivity of metals 
varies with deformation. The metals were chosen 
based on the availability of experimental data, their 
industrial and technological applications, and 
availability of some physical constants of metals that 
is required for computation. 

 
2.0 Theoretical Consideration 

Considering a hypothetical crystal in the shape of 
a rectangular parallelepiped. In the undeformed state 
all of its faces are equivalent. Assume that 
deformation is a measured quantity and a metallic 
crystal to be considered as assembled from a number 
of simple crystallites. Express the average electron 
density in a metal as a function of deformation. 
Express the average electron density in a metal as a 
function of deformation for this purpose, consider a 

cubic cell of the side length oa
 and volume (Kiejna 

and Pogosov, 1999). 

3 3
0 0 0

4

3
a r  

 (1) 

where or  is the radius of the Wigner-Seitz cell 

given as 

1

3
0 sr z r

 where sr  is the electron density 
parameter of undeformed metal defined as the radius 
of sphere containing one electron on average and a 
measure of the average distance between electrons. rs 
is defined as 
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1 3
3

4
sr n

 
  
    (2) 

where n is the electronic density of undeformed 
crystal. For a cubic cell deformed by applying an 
elongative force along the x-axis, the volume of the 
deformed cell is 

2 24

3
d x ya a ab  

 (3) 
where ax, ay =az are the sides of the deformed 

cubic cell. If the uniaxial strain is uxx, then 

 
   

0

0 0

1

1 1

x xx

z zz xx

a a u

a a u a u

 

   
 (4) 

where  is the polycrystalline Poisson ratio that 
relates the transversal compression to the elongation in 
the direction of the applied deformation that is 

yy zz xxu u u  
 

The ratio of the unit volume of the deformed 
cubic cell to that of the undeformed cell is 

   0 0 0

3
0 0

1 1 1xx yy zzd
a u a u a u

a

     


 (5) 

 
0

1 1d
xx yy zz yy zzu u u u u


      

 (6) 
Neglecting higher order terms of the uniaxial 

strain, then (Kiejna and Pogosov, 1999) 

0

1d
xx yy zzu u u


   


 (7) 

From equation (4), then for the deformed cube, 

0 (1 )xxa r u 
 

0 (1 )xxb r u 
 

In the same vane, the lattice spacing in the planes 
perpendicular to the y or z direction is 

0 (1 )u xxd d u 
 

where d0 is the interplanar spacing in an 
undeformed metal given as 

0 2 2 2

a
d

h k l


   (8) 
where h, k and l are the Miller indices of the 

plane. 
The average electron density in the deformed 

metal is 
3

0 0 0 0
2

0 0(1 )( (1 ))
av

xx xx

n n a
n

a u a u


 

  
 

  2
0 1 (1 2 ) 0( )av xx xxn n u u   

 (9) 
The electron gas parameter of the deformed 

metal is obtained from its volume as 

3 24 4

3 3
sur ab 
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Neglecting higher order terms in the strain or 
deformation, we have (Kiejna and Pogosov, 1999) 

1 3
0 (1 (1 2 ))su xxr r u   

 (10) 
The electron gas parameter of deformed metals, 

rsu gives the mean inter electronic distance in a 
deformed metal (Kiejna and Pogosov, 1999). 

The number of states in the blackbody radiation 
with frequency between  and +d is 

�(�)�� =
���

��
����  (11) 

Where �(�)��  gives the number of oscillatory 
modes in the frequency range �� corresponding to the 
energy range dE, V is the volume and c is the speed of 
light. 

For the elastic transverse waves and the 
longitudinal waves we have 

��(�)�� =
���

��
� �

���  (12) 

And 

��(�)�� =
���

��
� �

���   (13) 

Where ��	��	the velocity of the transverse wave 
and �� is the velocity of the longitudinal wave. The 
total number of vibrational modes in the frequency 
range �� is 

�(�)�� = ��(�)�� + ��(�)��   (14) 
Substituting equation (12) and (13) into equation 

(14) we have 

�(�)�� = 4�� �
�

��
� +

�

��
���

���   (15) 

In a continuous medium, there is no limit to the 
total number of vibrational modes. But in solids that 
has an atomic structure and contain N atoms, any 
vibrational mode must be described in terms of 3N 
positional coordinates of the atoms. This therefore 
imposes a limit on the total number of independent 
modes of freedom which must be equal to 3N. where 
N is the number of atoms in a monoatomic 
homogeneous solid. This imposes a limit on the 
maximum vibrational frequency. Using equation (15) 

3� = ∫ �(�)��
��

�
  (16) 

Putting equation (15) into equation (16) we have 

3� = 4�� �
�

��
� +

�

��
��∫ ����

��

�
  (17) 



 Report and Opinion 2017;9(6)           http://www.sciencepub.net/report 

 

95 

3� = 4�� �
�

��
� +

�

��
��

��
�

�
  (18) 

Therefore, 
��

��
� = 4�� �

�

��
� +

�

��
��  (19) 

By substituting equation (19) into equation (15) 
we have 

�(�)�� =	
��

��
� �

��� (20) 

Photons are associated with the vibrational 
modes of solids, in thermal equilibrium photons obey 
Bose-Einstein statistics. 

�� =
��

��
�

��

���
��

��� � �
�� (21) 

Equation (21) is the number of photons of energy 
� = ℎ� in the frequency range between  and +d 
and in thermal equilibrium with the solid lattice at 
temperature T. The total vibrational energy of the solid 
in the frequency range d is 

�� = ��� = ℎ��� =
���

��
�

��

�
��

��� ��
�� (22) 

The total vibrational energy of solid is obtained 
by integrating equation (23), then we have 

� = ∫
���

��
�

��

�
��

��� ��
��

��

�
  (23) 

The heat capacity at constant volume is given by 

�� =
�

�

��

��
=

�� � ℏ
�

��
� ∫

�����	(��/�� )

(����
��

��
���)�

��

�
��  (24) 

Where, n is the number of mole, ��  is the 
Avogadro number, ℏ  is the normalized Planck’s 
constant, K is the Boltzmann constant, T is the 
temperature and h is the Planck’s constant. The Debye 
frequency ��  and Debye temperature ��  is obtained 
as 

�� = �(6��
�

�
)
�

� =�(6���)
�

�  (25) 

And 

�� =
ℏ�

��
(6��

�

�
)
�

� =
ℏ�

��
(6���)

�

�  (26) 

Where, � is the average sound velocity and the 

ratio 
�

�
= �  is the electronic concentration. In 

insulator, heat is carried entirely by phonons, but in 
metals heat may be transported by both electrons and 
phonons. The thermal conductivity K is equal to the 
sum of the two contributions 

� = �� + ��   (27) 

Where, ��  is the electronic contribution to the 
thermal conductivity when the Wiedemann-Franz law 
is satisfied, and is obtained as 

�� = �
����

�
��

��

�
�
��

�
�
�

= 2.45× 10� �
����

�
��  

 (28) 
Where, �  is the relaxation time, T is the 

temperature, e is the electronic charge, m is the 
electron mass and ��  is the phonons thermal 

conductivity which is usually neglected due to the fact 
that the contribution of the electrons greatly exceeds 

that of the phonons because of the great concentration 
of electrons. 

The mean free path of a conduction electron for 
particle between collisions is obtained as 

� =
���ℏ�

�
�

�

����
�
�
�� �

��
� (29) 

Where, ℏ is the normalize plancks constant, m is 
the mass of electron, z is the valency and ��  is the 
electron density parameter. 

From the kinetic theory of gases, the expression 
for the thermal conductivity is obtained as 

� =
�

�
���� (30) 

Where, ��  is the heat capacity per unit volume 
given by equation (24), v is the average particle 
velocity and �  is the mean free path of a particle 
between collisions given by equation (29). In this 
work, the thermal conductivity of undeformed metals 
were computed based on Debye model using kinetic 
theory of gas for monovalent, divalent, trivalent and 
polyvalent metals using equation (30) and how 
deformation affects thermal conductivity of metals is 
studied. 
 
3.0 Results and Discussion 

Figure 1 shows the variation of thermal 
conductivity with electron gas parameter for some 
elemental metals containing monovalent, divalent, 
trivalent and polyvalent metals. The experimental 
values of the thermal conductivity of metals were 
obtained from Solid State Physics by Charles Kittel 
(1976). Figure 1 revealed that the computed value of 
thermal conductivity of metals is higher than the 
experimental values of some metals while we also 
have some metals whose computed thermal 
conductivity is higher than their experimental value. 
This variation could be due to the number of impurity 
atom, deviation from equilibrium state, electronic 
concentration and the efficiency of the electron motion 
in the metals. There is a good agreement between the 
computed and experimental value of the thermal 
conductivity of the metals. This agreement is more 
pronounce in the high density region than the low 
density region. Although, both computed and 
experimental value of the metals whose thermal 
conductivity were computed and studied Figure 1 
seems not to exhibit a particular trend. Figure 1 
revealed that there is high concentration of electron in 
the high density region than low density region. This 
suggest that the higher the valence electron density in 
metals the higher the thermal conductivity of the metal 
and the lower the density of valence electron in metal 
the lower the thermal conductivity of the metal. The 
trend exhibited by metals in Figure 1 also revealed that 
in the high density region we have the alkaline and 
earth alkaline metals while in the low density region 
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we have the noble, polyvalent and the transition metals 
since alkaline metals has more free mobile electron in 
them. The trend exhibited by metals in Figure 1 also 
revealed that the thermal conductivity of metal depend 
on the electronic concentration as most of the metals 
whose thermal conductivity were computed and 
studied have most of their electron concentrated in the 
high density region than the low density region. 

Figure 2 shows the variation of thermal 
conductivity with strain for some elemental metals 
containing alkaline, earth alkaline, group three, 
transition and noble metals. Figure 2 revealed that the 
thermal conductivity of all the metal increases as 
deformation increases. This seems to suggest that as 
deformation increases there is an increase in the 
electron collision and inter-atomic distance between 
the electrons in the metals which force the thermal 
conductivity of the metals to increase as deformation 
increases. The trend exhibited by metals in Figure 2 
could also be due to the fact that as deformation 
increases the free electron concentration in metals also 
increases and there-by causes an increase in the 
efficiency of the electron motion of metals which 
forces the thermal conductivity of the metal to 
increase as deformation increases. The trend exhibited 
by metal in Figure 2 revealed that Potassium has the 
highest thermal conductivity while Molybdnum has 
the lowest thermal conductivity among all the metals 
subjected to different deformation. This could be due 
to alkaline nature of Potassium while that of 
Molybdnum could be due to its polycrystalline in 

nature. Furthermore, the trend exhibited by Potassium 
and Molybdnum in Figure 2 also revealed that the 
thermal conductivity of metal depend on the electronic 
concentration, that is the higher the electronic 
concentration in metal the higher the effect of 
deformation on the thermal conductivity of the metal 
and the lower the electronic concentration in metal the 
lower the effect of deformation on the thermal 
conductivity of the metal. We conclude that the 
thermal conductivity of metals is greatly affected by 
deformation as metals in the high density region have 
low thermal conductivity while metals in the low 
density region have high thermal conductivity. 

 
4.0 Conclusion 

The thermal conductivity of deformed metals 
were computed based on Debye model formalism 
using kinetic theory of gas. The results obtained for 
thermal conductivity of undeformed metals were in 
good agreement with the experimental values which 
shows the validity of the model used in the 
computation. The thermal conductivity of alkaline 
metal is the highest among all the metals subjected to 
different deformation. This seems to suggest that 
thermal conductivity of metal depend on electronic 
concentration. The work also revealed that the thermal 
conductivity of metals increases as deformation 
increases. The effect of deformation on thermal 
conductivity of metal depends not only on the density 
of valence electron but on free electron concentration, 
efficiency of electron motion and nature of the metal. 

 

 
Figure 1: Variation Of Thermal Conductivity With Electron Density Parameters 
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Figure 2: Variation Of Thermal Conductivity With Strain 

 
Table 1: Thermal Conductivity of Deformed Metals (Wcm-1K-1) 

  Strain 
Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
K 4.96 4.439 4.591 4.733 4.867 4.994 5.115 5.230 5.340 5.446 
Cu 2.67 2.390 2.471 2.548 2.620 2.688 2.753 2.815 2.874 2.931 
Ag 3.02 2.703 2.795 2.882 2.963 3.041 3.114 3.184 3.251 3.316 
Be 1.87 1.054 1.090 1.124 1.156 1.186 1.214 1.242 1.268 1.293 
Mg 2.65 1.494 1.545 1.593 1.638 1.680 1.721 1.760 1.797 1.832 
Cr 1.86 1.049 1.084 1.118 1.150 1.179 1.208 1.235 1.261 1.286 
Fe 2.12 1.195 1.236 1.274 1.310 1.344 1.377 1.408 1.437 1.466 
Ni 2.07 1.167 1.207 1.244 1.279 1.313 1.344 1.375 1.404 1.431 
Zn 2.31 1.302 1.347 1.388 1.428 1.465 1.500 1.534 1.566 1.597 
Cd 2.59 1.460 1.510 1.557 1.601 1.642 1.682 1.720 1.756 1.791 
Al 2.07 0.890 0.921 0.949 0.976 1.002 1.026 1.049 1.071 1.092 
Bi 2.25 2.014 2.083 2.147 2.208 2.265 2.320 2.372 2.422 2.470 
Ti 1.92 0.826 0.854 0.881 0.905 0.929 0.951 0.973 0.993 1.013 
Y 2.61 1.123 1.161 1.197 1.231 1.263 1.293 1.322 1.350 1.377 
Sn 2.22 0.788 0.815 0.840 0.864 0.887 0.908 0.928 0.948 0.967 
Pb 2.30 0.817 0.844 0.871 0.895 0.919 0.941 0.962 0.982 1.002 
Mo 1.61 0.436 0.451 0.465 0.478 0.491 0.502 0.514 0.525 0.535 
W 1.62 0.496 0.513 0.528 0.543 0.558 0.571 0.584 0.596 0.608 
Au 2.39 0.731 0.756 0.780 0.802 0.823 0.842 0.861 0.879 0.897 
Pt 2.00 0.710 0.734 0.757 0.778 0.799 0.818 0.836 0.854 0.871 
Ta 2.84 0.694 0.718 0.740 0.761 0.781 0.800 0.818 0.835 0.852 
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Table 2: Thermal Conductivity (Wcm-1K-1) of 
undeformed Metals. The experimental values were 
obtained from Introduction to solid state Physics 
by Kittel (1976). 

Metals 

Electron 
Density 
Parameter rs 

(a.u) 

Experimental 
Thermal 
conductivity at 
300K 

Calculated 
Thermal 
conductivity at 
300K 

K 4.96 1.02 4.28 
Cu 2.67 4.01 2.30 
Ag 3.02 4.29 2.60 
Be 1.87 2.00 1.02 
Mg 2.65 1.56 1.44 
Cr 1.86 0.94 1.01 
Fe 2.12 0.80 1.15 
Ni 2.07 0.91 1.12 
Zn 2.31 1.16 1.25 
Cd 2.59 0.97 1.41 
Al 2.07 2.37 0.86 
Bi 2.25 0.08 1.94 
Ti 1.92 0.22 0.80 
Y 2.61 0.17 1.08 
Sn 2.22 0.67 0.76 
Pb 2.30 0.35 0.79 
Mo 1.61 1.38 0.42 
W 1.62 1.74 0.48 
Au 2.39 3.17 0.70 
Pt 2.00 0.72 0.68 
Ta 2.84 0.58 0.67 
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