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Abstract: In this work, a generalized model developed by Kumar and Singh (2010) for calculating the refractive 
index and energy band gap of different semiconducting material is extended to the study of the effect of linear 
deformation on the refractive index of metals by using the free electron theory to obtain the energy gap of metals 
and used in this work. The electron density parameters of deformed metals under the application of different strains 
were obtained for different metals. The poison ratio relating the transversal compression to elongation in the 
direction of applied deformation for different elemental metals were computed using elastic moduli for 
homogeneous isotropic material and used in this work. The result obtained revealed that the refractive index of 
metals increases as the electron density parameter increases with the metals in the high density region having low 
refractive index while metals in the low density region has high refractive index. This could be due to the fact that 
refractive index of metals depend on the electronic concentration. There is agreement between the experimental and 
computed value of refractive index. The experimental value used in this work is theoretically obtained from solid 
state physics by Charles Kittel. The refractive index of all the metals investigated in this work increases as 
deformation increases. This increase in refractive index of all the metals could be due to an increase in the inter-
atomic spacing between the electrons in the metals which forces the refractive index of all the metals to increase as 
deformation increases. 
[Adesakin G. E. Theoretical Study Of The Refractive Index Of A Deformed Metal. Rep Opinion 2017;9(11):1-
7]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. 
doi:10.7537/marsroj091117.01. 
 
Keywords: deformation, energy gap, semiconductor, poison ratio, refractive index, valence electron, frequency, 
electronic concentration.  
 
 
 
1.0 Introduction 

Metals achieve structural stability by letting their 
valence electrons roam freely through the crystal 
lattice. These valence electrons are the equivalents of 
the molecules of an ordinary gas. It is assumed that the 
electrons are moving about at random and colliding 
frequently with the residual ions (Pillai, 2010). 
Refractive is like a density to an electromagnetic 
wave. It quantifies the speed of an electromagnetic 
wave through a material (Kakani and Kakani, 2004 ). 
Waves travel slower through materials with higher 
refractive index (Pillai, 2010 ). In optics, the refractive 
index or index of refraction n of a material is a 
dimensionless number that describes how light 
propagates through that medium. The refractive index 
determines how much light is bent, or refracted, when 
entering a material. This is the first documented use of 
refractive indices and is described by Snell's law of 
refraction. The refractive indices determine the 
amount of light that is reflected when reaching the 
interface, as well as the critical angle for total internal 
reflection and Brewster's angle (Rudden and Wilson, 
1995). The refractive index can be seen as the factor 
by which the speed and the wavelength of the 

radiation are reduced with respect to their vacuum 
values. The refractive index varies with the 
wavelength of light. This is called dispersion and 
causes the splitting of white light into its constituent 
colors in prisms, rainbows and chromatic aberration in 
lenses (Vijaya and Rangerajan, 2003). The concept of 
refractive index is widely used within the full 
electromagnetic spectrum, from X-rays to radio 
waves. For a metallic medium the dielectric function 
and the index of refraction are complex valued 
functions. This is also the case for semiconductors and 
insulators in certain frequency ranges near and at 
absorption bands (Kachava, 1992). Many materials 
have a well-characterized refractive index, but these 
indices depend strongly upon the frequency of light. In 
insulators the electrons in the valence band are 
separated by a large gap from the conduction band, in 
conductors like metals the valence band overlaps the 
conduction band, and in semiconductors there is a 
small enough gap between the valence and conduction 
bands that thermal or other excitations can bridge the 
gap (Animalu, 1977). In solid-state physics, the 
electronic band structure of a solid describes the range 
of energies that an electron within the solid may have 
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and ranges of energy that it may not have (Kachava, 
1992). Most solid substances are insulators, and in 
terms of the band theory of solids, there is a large 
forbidden gap between the energies of the valence 
electrons and the energy at which the electrons can 
move freely through the material (Pillai, 2010 ). 
Deformation can be described as change in shape or 
size of an object due to an applied stress (force) or 
strain. Metals could be deformed by a compressive, 
elongative and torsion/twisting force. The study of the 
elastic behaviour of solid is very important in the 
fundamental and technical researches. In technology, 
it tells us about the strength of the materials. In 
fundamental research, it is of interest because of the 
insight it provides into the nature of the binding forces 
in solids. The relevant elastic constants also relate 
themselves to thermal properties like Debye 
temperature and thermal conductivity (Kaldis, 1979). 
Consequently, a lot of efforts have been made to study 
the effect of deformation on some properties of metals 
theoretically and experimentally. Kumar and Singh 
(2010) develop a model for calculating the refractive 
index of different semiconductors, insulators, oxide 
and halides materials based on energy gap data. The 
calculated values of the refractive index are compared 
with the experimental values and the values obtained 
by other researchers. A fairly good agreement is 
obtained between them. Salah Daoud et al (2014) 
calculated the near neighbor distance (bond length) 
and the average energy gap using the pseudopotential 
plane wave method, in the frame work of the density 
functional theory (DFT) within the local density 
approximation (LDA) and the Hartungen- Goedecker-
Hutter (HGH) scheme for pseudopotential of Boron-
Bismuth compound in its structure zincblende phase 
and predicted the refractive index and some 
optoelectronic and thermal properties of boron-
bismuth compound by means of some empirical 
formulas. The results obtained are analyzed and 
compared with the available theoretical data of the 
literature. Ahmad and Mohib-ul Hag (2014) develop a 
simple relation between the optical electro negativity, 
energy gap, refractive index and electronic 
polarizability for ternary chalcopyrite semiconductors. 
He obtained the energy gap from electro negativity 
while the refractive index and the electronic 
polarizability were obtained from the energy gap by 
proposing a linear relation between them. The 
calculated values are in agreement with the 
experimental values and their earlier researchers. 
Kiejna and Pogosov (1999) performed an 
experimental investigation on the effect of 
deformation on some electronic properties of metals 
by taking the direct measurement of deformed metal 
using Kelvin method. They observed that the contact 
potential difference of the metals increase when 

compressed and decreases when tensed. Pogosov and 
Shtepa, (2006), calculated the surface stress and the 
contact potential difference of elastically deformed 
metals based on structureless pseudopotential model 
using self-consistent Kohn Sham method. The results 
of surface stress obtained were in agreement with 
experimental results, and also confirmed that the 
contact potential difference obtained for the deformed 
metallic surfaces by Kelvin method correspond to 
change in surface potential. Adeshakin et. al (2015) 
investigated the linear deformation and the electronic 
properties of metals based on the modified 
structureless pseudopotential model to compute and 
study the effects of deformation on the electron 
density parameter, Fermi energy, Fermi wave vector 
and chemical potential of different metals. The results 
obtained revealed that increase in deformation causes 
an increase in electron gas parameter, and decrease in 
Fermi wave vector, Fermi energy and chemical 
potential of metals. Adesakin, (2016) develop a model 
to compute the electrical conductivity of different 
elemental metals based on pseudopotential formalism. 
The results obtained revealed that there is a good 
agreement between the computed and experimental 
value of the electrical conductivity of metals. There is 
high concentration of electron in the high density 
region than the low density region. The electrical 
conductivity of metals decreases as deformation 
(strains) increases for all the metals investigated. The 
effect of deformation is more pronounced on the 
electrical conductivity of noble and transition metals 
than in alkaline metals. In this work, the refractive 
index of undeformed and deformed elemental metals 
of different group and period were computed and 
studied based on Reddy et al formalism. The results 
obtained for the refractive index of undeformed metal 
were compared with theoretical obtained experimental 
value to validate the model used in this work. This will 
provide an insight into how the refractive index of 
metals varies with deformation. The metals were 
chosen based on the availability of experimental data, 
their industrial and technological applications, and 
availability of some physical constants of metals that 
is required for computation. 
 
2.0 Theoretical Consideration 

For a metal under the action of a deforming 
force, the average electron density in such a metal as a 
function of deformation is expressed as (Pogosov and 
Shtepa, 2006). 

  2
0 1 (1 2 ) 0 (1)x x x xn n u u   

 
where � is the Poisson ratio relating compression 

to elongation in the direction of applied deformation, 
uxx is the applied deformation or strain and ��  is the 
average electron density in the bulk of undeformed 
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metal and is given as 
3

0 3 4 sn r
 and rs  is the 

electron density parameter of undeformed metal. For a 
metal under the action of a strain or deforming force, 
the electron density parameter of the metal is  

 ��[1 + (1 − 2�)���]
�/�  (2) 

The behaviour of electrons in the deformed metal 
is governed by the Schrodinger time independent 
equation 
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The normalized solution of equation (3) has the 

form (Raimes,1963) 
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or by  
22 2 2
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where kx, ky, kz are the components of the wave 
vector k. In computing the quantities that requires 
summation over the wave vector, k the summation 
over k is replaced by integration according to the 
transformation (Raimes,1963) 
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The factor of two appearing in the denominator 

comes from the spin, According to Pauli exclusion 
principle, two one-electron state with opposite spins 
can be assigned to every k-point. In the ground state, 
each of the states up to the maximum, kmax is occupied 
by two electrons filling a sphere in k-space of radius 
kmax called Fermi sphere. For the system of N free 
electrons in the volume, , the average electronic 
density nave in terms of kf is  
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The energy of the highest occupied state at 
absolute zero temperature is called the Fermi energy 
expressed as  

 
2 2

2 3
3

2 2

f

f ave

k
E n

m m
 

 

 (7) 
The electron gas parameter, rsu of the deformed 

metal is defined as  
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The Fermi wave vector kf and the Fermi energy 
Ef of deformed metals in terms of the electron gas 
parameter, rsu is obtained as (Raimes, 1963). 

 
1 3

9 1

4
f

su

k
r

 
  
   (8) 

and  
2 34

2 2

9 1

2 4
f

su

me
E

r

   
   

   
 

  (9) 
 
The energy band gap of deformed metals in 

terms of electron density parameter is obtained as 

�� = �
�.����

��[��(����)���]
�/�
�
�

  (10) 

where, ���  is the electron density parameter for 
deformed metals as given by equation (2) and �� is the 

energy band gap.  
The expression obtained for the refractive index 

of deformed metals in terms of electron density 
parameter for a deformed metal is  

� = �
��.���

�
�.����

��[��(����)���]
�/��

�
��.���

  (11) 

where, ��  is the electron density parameter of 
undeformed metal, �  is the Poisson ratio relating 
compression to elongation in the direction of applied 
deformation and uxx is the applied deformation or 
strain. 

In this work, a generalized model develop by 
Reddy et al for calculating the refractive index of 
different semiconducting materials and complex 
binary alloy is extended to the calculation of refractive 
index of different elemental metals belonging to 
monovalent, divalent, trivalent and polyvalent group 
using equation (11). The energy gap used in this work 
is obtained using envelop function approach and how 
deformation affects the refractive index of metals is 
also studied. 

 
 

3.0 Results and Discussion  
Figure 1 shows the variation of refractive index 

with electron density parameter for some elemental 
metals belonging to different groups and period. 
Figure 1 revealed that the refractive index of metals 
increases as the electron density parameter increases 
this revealed that metals with low frequency has large 
refractive index while metals with large frequency has 
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low refractive index. Figure 1 also revealed that there 
is agreement between the experimental and computed 
value of refractive index. The experimental value used 
in this work is theoretically obtained from solid state 
physics by Charles Kittel (1976). Although, the results 
obtained for the refractive index of some metals gave a 
complex value result at some points for the electron 
density parameter especially during deformation. The 
trend exhibited by metals in figure 1 revealed that 
metals in the region of high density limit have low 
refractive index which increases towards the region of 
the low density limit these shows that the higher the 
electronic concentration of metals the lower the 
refractive index of the metals and the lower the 
electronic concentration of metals the higher the 
refractive of the metals. In the high density region we 
have the alkaline metals and the earth alkaline metals 
while in the low density region we have the transition 
and the noble metals. Figure 1 also revealed that 
refractive index of metals has an inverse effect on the 
energy gap of metals because the energy gap of metals 
in the high density region is high and decreases toward 
the low density region. Figure 2 shows the variation of 
refractive index with deformation for some alkaline, 
earth alkaline, trivalent, transition and inner transition 
metals. Figure 2 revealed that the refractive index of 
all the metals investigated increases as deformation 
increases. This increase in refractive index of all the 
metals could be due to an increase in the inter-atomic 
spacing between the electrons in the metals which 
forces the refractive index of all the metals to increase 
as deformation increases. The increase in the 
refractive index of some metals in figure 2 seems to be 
linear increase while some seems to exhibit a 
parabolic increase as these could be due to the nature 
of the metals. Figure 2 also revealed that metals in the 
high density region has low refractive index while 
metals in the low density region has high refractive 
index for all the metals subjected to different 
deformation. These seems to suggest that as 
deformation increases the lattice ion vibration about 
their equilibrium positions increases which results in 
the increase in the temperature between the interacting 
electron in the metals which forces the refractive index 
of the metals to increase as deformation increases. 

Figure 2 also revealed that the higher the electronic 
concentration in metals the lower the effect of 
deformation on the refractive index of the metals and 
the lower the electronic concentration in metals the 
higher the effect of deformation on the refractive 
index of the metals. Furthermore, the trend exhibited 
by metals in figure 2 revealed that as deformation 
increases, there is an increase in the collision between 
the electron due to delocalization of the electron from 
their equilibrium position and thereby causes an 
increase in the refractive index of the metals. The 
trend exhibited by metals in these work revealed that 
the refractive index of metals is greatly affected by 
deformation. 
 
 
4.0  Conclusion 

In this work, a generalized model developed 
by Kumar and Singh (2010) for calculating the 
refractive index and energy band gap of different 
semiconducting materials of simple and complex 
binary families is extended to the study of the effect of 
linear deformation on the refractive index of metals by 
using the free electron theory approach to obtain the 
energy gap of metals and used in this work. The result 
obtained shows that the refractive index of 
undeformed metals were in agreement with the 
experimental values which show the validity of the 
formalism used in the work. The result obtained 
revealed that metals in the region of high density limit 
have low refractive index while metals in the low 
density limit has high refractive index. This seems to 
suggest that refractive index of metals depend on the 
electronic concentration. The refractive index of all 
the metals subjected to different deformation increases 
as deformation increases as this could be due to an 
increase in the inter-atomic spacing between the 
electrons in the metals which forces the refractive 
index of all the metals to increase as deformation 
increases. Although. The refractive index for some 
metals gave a complex value results. The trend 
exhibited by metals in this work revealed that the 
refractive index of metals is highly affected by 
deformation. 
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Table 1: Refractive index of Deformed Metals  
   Strain 
Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
K 4.96 - - - - - - - - - 
Cu 2.67 10.416 12.210 14.789 19.144 29.912 - - - - 
Ag 3.02 - - - - - - - - - 
Be 1.87 4.503 4.756 5.009 5.264 5.521 5.782 6.049 6.323 6.606 
Mg 2.65 10.101 11.741 14.021 17.635 25.159 85.695 - - - 
Cr 1.86 4.465 4.714 4.963 5.213 5.465 5.721 5.983 6.250 6.526 
Fe 2.12 5.603 5.990 6.391 6.811 7.254 7.727 8.237 8.792 9.404 
Ni 2.07 5.357 5.710 6.073 6.448 6.841 7.254 7.693 8.163 8.672 
Zn 2.31 6.713 7.286 7.909 8.599 9.379 10.277 11.339 12.640 14.303 
Cd 2.59 9.269 10.557 12.214 14.519 18.162 25.647 75.721 - - 
Al 2.07 5.357 5.710 6.072 6.448 6.840 7.254 7.693 8.163 8.672 
Bi 2.25 0.675 0.631 0.594 0.561 0.533 0.508 0.486 0.466 0.448 
Ti 1.92 4.699 4.973 5.249 5.527 5.811 6.101 6.400 6.709 7.030 
Y 2.61 9.529 10.919 12.749 15.388 19.855 30.886 - - - 
Sn 2.22 6.148 6.619 7.118 7.654 8.236 8.879 9.599 10.421 11.378 
Pb 2.30 6.646 7.206 7.813 8.483 9.235 10.098 11.110 12.338 13.885 
Mo 1.61 3.609 3.782 3.952 4.119 4.283 4.445 4.606 4.767 4.928 
W 1.62 3.640 3.816 3.988 4.157 4.324 4.489 4.653 4.817 4.981 
Au 2.39 7.295 7.990 8.771 9.669 10.730 12.029 13.697 15.988 19.496 
Pt 2.00 5.037 5.349 5.667 5.991 6.326 6.674 7.037 7.419 7.823 
Ta 2.84 - - - - - - - - - 
 
 

Table 2: Calculated Refractive Index of Undeformed Metals and their Experimental values  
Metals Electron Density Parameter rs (a.u) Experimental Refractive Index  Computed Refractive Index 

Potassium 4.96 - - 
Copper 2.67 9.11362 9.04796 
Silver 3.02 18.1296 17.8764 
Beryllium 1.87 4.29128 4.24733 
Magnesium 2.65 8.83563 8.82313 
Chromium 1.86 - 4.21271 
Iron 2.12 5.24800 5.22665 
Nickel 2.07 - 5.01047 
Zinc 2.31 5.29131 6.17858 
Cadmium 2.59 8.23034 8.21291 
Aluminium 2.07 5.03499 5.01047 
Bismuth 2.25 5.85149 5.85210 
Titanium 1.92 - 4.42493 
Yttrium 2.61 - 8.40655 
Tin 2.22 5.77589 5.69859 
Lead 2.30 6.19359 6.12223 
Molybdnum 1.61 - 3.42910 
Tunasten 1.62 - 3.45785 
Gold 2.39 17.6226 6.66135 
Platinum 2.00 - 4.72647 
Tantalum 2.84 - 11.6384 
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Figure 1: Variation of Refractive Index with Electron Density Parameter of Metals 
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Figure 2: Variation of Refractive Index of Some Metal with Strain  
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