
 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

43

C Programming

Manjunath R, Dennis Ritchie

manjunath5496@gmail.com

Abstract: A High Level Programming Language (which uses alphabets, digits, punctuations and some special
symbols and cannot be executed directly without being converted into machine level language (the language which
uses only 0 and 1))
[Manjunath R, Dennis Ritchie. C Programming. Rep Opinion 2018;10(1):43-196]. ISSN 1553-9873 (print); ISSN
2375-7205 (online). http://www.sciencepub.net/report. 9. doi:10.7537/marsroj100118.09.

Keywords: C Programming; Language; alphabet; digits; punctuation; symbol

C Programming
A High Level Programming Language (which

uses alphabets, digits, punctuations and some special
symbols and cannot be executed directly without being
converted into machine level language (the language
which uses only 0 and 1)) developed by a man named
Dennis Ritchie in 1970s at Bell Telephone laboratories
(now named AT & T Bell laboratories), Murray
Hill, New Jersey to develop the UNIX operating
system.

Using the two early programming languages --
Basic Combined Programming Language (BCPL) and
BASIC (Beginner's All-purpose Symbolic Instruction
Code) language Uses: used in the development of a)
operating systems like LINUX, UNIX b) embedded
systems like ATMs, printers. Most of the
state-of-the-art software has been developed using C.

Advantages: relatively simple language, reliable
(able to be trusted), easy to understand, easy to use,
write, modify and debug and quick to learn.

MYSQL Database, LINUX Drivers, Text Editors
are written in C.

C is called a structured programming language
because it divides the problem into smaller modules
called functions or procedures each of which handles a
particular responsibility. Hence it is simple and easy to

understand and well suited for small size
implementation. However this is not restricted. A large
size implementation is possible but complex design
and full object oriented design cannot be implemented
(because complex design concepts like Polymorphism
and inheritance are not available in C).

A Simple C program basically comprises of the
following parts:

Preprocessor Commands
Functions
Variables
Statements & Expressions
Comments
//

--

/* My First C Program */ Comment
#include<stdio.h> // preprocessor command
int main () // Function where the program

execution begins.
{
printf ("Hello,world!"); // statement
return 0;
}

-------------------------- //
Process of C Program Execution: A C program:
#include<stdio.h>
int main ()
{
printf ("Hello,world!");
return 0;
}
is written using Text Editor, such as [Notepad

(in case of Windows Operating System), vim or vi (in
case of Linux Operating System)] and saved with [.C]
Extension.

File Saved with [.C] extension is called Source
Program or Source Code.

C Source code with [.C] Extension is sent to
preprocessor first.

The preprocessor generates an expanded source

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

44

code:
//

--
--

The contents of <stdio.h> would be pasted at the
location of #include<stdio.h>

int main ()
{
printf ("Hello,world!");
return 0;
}

--- //
Expanded source code is given as input to

compiler where the expanded source program is
compiled (i.e., the program is entirely read and
translated to instructions the computer can understand
i.e., machine understandable / readable language i.e.,
to machine code sequence of 0s and 1s). If the C
compiler finds any error during compilation, it
provides information about the error to the
programmer.

The programmer has to review code and re-edit
the program. After re-editing program, Compiler again
check for any error.

If program is error-free then it is sent to
assembler (where the code is assembled and converted
into object code. Now a simple.obj file is generated).

The object code is sent to linker (where the
object code is linked with appropriate libraries). Then
it is converted into a single executable code. A
simple.exe file is generated.

The executable code is sent to loader (where the
executable code is loaded into memory and then it is
executed).

After execution, output:
Hello,world!
is displayed on the console screen.
C is case sensitive language: only lower case

letters (or small letters) must be used.
Capital letters (or upper case letters) must be

avoided to prevent the display of error on the screen
(For example: If the statement PRINTF

("Hello,world!"); is written instead of printf
("Hello,world!"); or INT MAIN () is written instead of
int main (), compilation Error will be displayed on the
console screen).

Parentheses () indicate a function and the word
main indicate the name of the function. main () implies:
main function

And if we forget to end each statement within the
body of the main function with a semicolon (;), then
the compilation Error will be displayed on the screen.

There should be no space between main and the
parentheses ()

i.e., int main ()

and there should be no space inside the
parentheses ()

i.e., int main ()
to prevent the display of compilation error on the

screen.
As we know C is Platform dependent language.

So the Operating system needs to know when the
program execution ends.

So when there is value returns from the main
function the Operating System get to know that the
program execution is over.

int main () implies: main () should return integer
value.

If the main function returns 0 to the operating
system, then the program has completed execution
successfully.

If the main function returns 1 to the operating
system, then the program has not completed execution
successfully.

The statement
#include<stdio.h>
tells the compiler to include the text from the file

stdio.h (which is already present in the operating
system) before it translates or compiles the program
into a sequence of 0s and 1s. stdio means standard
input output and stdio.h means standard input output
header file (printf () & scanf () are not part of
the C language, because there is no input or output
defined in C language itself-- stdio.h comprises
standard input output functions like scanf, printf etc.

and allows standard input /output operations --
note: scanf is an input function and printf is an output
function (note: Letter f denote formatted) and it is
included into the C program by writing the statement
#include <stdio.h>).

If a program is written without the statement:
#include<stdio.h>, then the C compiler can't

compile and a compilation error is displayed on the
screen (because C compiler fails to recognize the
functions such as printf () and scanf ()).

Note: We can also write #include "stdio.h"
instead of #include <stdio.h> but some online
compilers will flag error message. So the statement
#include <stdio.h> is generally preferred and the
statement #include "stdio.h" is generally ignored.

main () The program begins its execution with
the function main () -- which is called the user defined
function (because this function is defined by the user) -
the main function -- the entry point of the program
execution i.e., the point from where the execution of C
program begins and the point at which the operating
system passes control of the computer over to that
program.

int main () {
} implies body of the main function within which

the sequence of instructions in the form of statements

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

45

i.e., the program is written and executed. The left
curly brace

{
implies: the beginning of the main function
and the right curly brace
}
implies: the end of the main function.
return 0; implies the exit status of execution of

the program i.e., at this point,
main function returns back the control of the

computer to the operating system since
the execution is terminated at this point and once

a return statement
i.e., return 0; is executed, no further instructions

within the main function are executed
For example:
#include<stdio.h>
int main ()
{
printf ("Hello,world!");
return 0;
printf ("Hello,world!");
}
Output on the screen:
Hello,world!
; implies semicolon or statement terminator A

program is a well-defined set of instructions and each
well-defined instruction (in the form of a statement) is
ended by a semicolon (which is C language
punctuation -- like a period in English i.e., in an
English paragraph each sentence is ended by a full
stop which tells that one sentence ends and another
begins, semicolon implies the end of one logical entity
-- that one instruction (or statement) ends and another
begins).

printf () output function of the C language which
makes provision to print the output:

Hello,world!

on the screen. Parentheses () indicate a function

and the word printf indicate the name of the function.
The text
Hello,world!
should be enclosed by the double quotation

marks ("") and should be written within the printf
function and this

printf function should be ended with the
semicolon i.e.,

printf ("Hello,world!");
otherwise the compilation error will be displayed

on the screen.
Program 1.1
C program to print the word "hello Bill Gates" on

screen
#include<stdio.h>
int main ()

{
printf ("hello Bill Gates");
return 0;
}
The output on the screen:
hello Bill Gates
Program 1.2
C program to print
*

on screen
#include<stdio.h>
int main ()
{
printf ("\n * ");
printf ("\n ***** ");
printf ("\n ***** ");
printf ("\n ***** ");
printf ("\n ***** ");
return 0;
}
The output on the screen:
*

If new line sequence (\n) is not included in the

above program then the output on the screen is:

In the above code, the new line character has the

ASCII value of 10 which means it is a new line. The
author has put the ASCII values table for different
characters that can be used in the programs to solve
real time problems.

Write a program to print the following outputs:
(a)
*

*
(b)

* *
* Hello World! *
* *

(c)
Braces come in pairs!
Comments come in pairs!
All statements end with a semicolon!
Spaces are optional!

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

46

Must have a main function!
C is done mostly in lowercase. It's a

case-sensitive language
Answers:
(a)
#include<stdio.h>
int main ()
{
printf ("\n * ");
printf ("\n **** ");
printf ("\n ******* ");
printf ("\n **** ");
printf ("\n * ");
return 0;

}
(b)
#include<stdio.h>
int main ()
{
printf ("\n **************** ");
printf ("\n * * ");
printf ("\n * Hello World! * ");
printf ("\n * * ");
printf ("\n **************** ");
return 0;
}

(c)
#include<stdio.h>
int main ()
{
printf ("\n Braces come in pairs!");
printf ("\n Comments come in pairs!");
printf ("\n All statements end with a

semicolon!");
printf ("\n Spaces are optional!");
printf ("\n Must have a main function!");
printf ("\n C is done mostly in lowercase. It's a

case-sensitive language");

return 0;
}
Program 1.3
C program to find the area of a circle
#include<stdio.h>
int main ()
{
int r, area;
r = 2;
area = 4 * 3.14 * r * r;
printf ("The area of the circle = %d", area);
return 0;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

47

}
The output on the screen:
The area of the circle = 50
int means the data type (an attribute that tells

what kind of data that value can own) is integer and
the storage size of int data type is 2 or 4 or 8 byte.

Note:
A string, for example, is a data type that is used

to categorize text and an integer is a data type used to
categorize whole numbers / non fractional values.

We can't store decimal values using int data type.
If we use int data type to store decimal values,

decimal values will be shortened and we will get only
whole number. In this case, float data type can be used
to store decimal values in a variable.

The statement
int r, area;
imply that we are creating the integer variables r,

area.
Equal sign (" = ") implies storage operator.
The statements
r = 2;
area = 4 * 3.14 * r * r;
imply that we are storing the values to the created

variables (i.e., we are storing the value 2 for r
and 4 * 3.14 * r * r = 4 * 3.14 * 2 * 2 = 50 for

area).
Comma in the statement
int r, area;
imply variable separator.
The statement
printf ("The area of the circle = %d", area);
make provision to print the output:
The area of the circle = 50
on the screen.
In the statement
printf ("The area of the circle = %d", area);
format string or format specifier %d indicates

that the integer value to be displayed after the
statement

The area of the circle =
enclosed by double quotes needs to be taken from

a variable area.
The area of the circle is 50. 24 (for r = 2) but The

area of the circle = 50 is displayed on the screen
because data type int is used instead of float and

format specifier %d is used instead of %f.
If float r, area; is used instead of int r, area;
and
If the statement
printf ("The area of the circle = %f", area);
is written instead of
printf ("The area of the circle = %d", area);
i.e.,
#include<stdio.h>
int main ()

{
float r, area;
r = 2;
area = 4 * 3.14 * r * r;
printf ("The area of the circle = %f", area);
return 0;
}
Then the output on the screen:
The area of the circle = 50.24
float means the data type is float.
The statement
float r, area;
imply that we are creating the floating variables r,

area.
(floating point variable means fractional variable

or decimal number (for example: 1.5, 2.5, 3.5, 4.7 etc.)
whereas integer means non-fractional variable or
whole number (for example: 1, 2, 3, 4 etc.))

data type float is used instead of int (and format
string %f is used instead of %d) because if the data
type int is used instead of float then the result will not
be clearly outputted i.e., instead of 50.24 the computer
displays only 50.

If the statement
printf ("The area of the circle = %2f", area);
is written instead of the statement
printf ("The area of the circle = %f", area);
Then the output on the screen is:
The area of the circle = 50.24
i.e., the statement
printf ("The area of the circle = %f", area); yields

the output:
The area of the circle = 50.24
whereas the statement
printf ("The area of the circle = %2f", area);

yields the output:
The area of the circle = 50.24
If you want to supply the value for r through the

key board, then the statement
r =2;
should be replaced by the statements
printf ("Enter any number:");
scanf ("%d", & r);
i.e., the program should be rewritten as:
#include<stdio.h>
int main ()
{
float r, area;
printf ("Enter any number:");
scanf ("%d", & r);
area = 4 * 3.14 * r * r;
printf ("The area of the circle = %f", area);
return 0;
}
The output on the screen:
Enter any number:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

48

If you enter the number 2
The area of the circle = 50.24 will be outputted

on the screen.
The statement
float r, area;
imply that we are creating the float variables r

and area and these variables are stored in the computer
memory and they are assigned an address to locate
their position in the computer memory (like houses in
a street are assigned an address to locate their position
in the street).

The statement
printf ("Enter any number:");
make provision to print the text
Enter any number:
on the screen.
The statement
scanf ("%d", & r);
make provision to enter a number for r through

the keyboard and store the number entered for r
through the keyboard in the address of r in the
computer memory. & symbol imply the address
and & r imply the address of r in the computer
memory.

Format string %d in the statement scanf ("%d",
 & r); tells the input function scanf to read the
number entered through the keyboard (which is a
integer) and since "%d" is followed by, & r --- %d
tells the scanf function to read the integer entered
through the keyboard for r and store it in the address of
r in the computer memory (i.e., store the number in
& r).

Note:
As told earlier: when you enter an integer for r

through the keyboard, this integer will be stored in the
computer memory. If you want to know the storage
size of the integer in computer memory (i.e., space
occupied by the entered integer in the computer
memory), you need to appeal to the following
program:

#include <stdio.h>
int main ()
{
int r;
r=10;
printf ("size of r = %d", sizeof (r));
return 0;
}
The output on the screen:
size of r = 4

i.e., integer entered for r i.e., 10 has occupied a

space of 4 bytes in the computer memory.
Write a program to print the circumference of the

circle (given r = 2.5)
Answer:

#include<stdio.h>
int main ()
{
float r, area;
r = 2.5;
circumference = 3.14 * r * r;
printf ("The circumference of the circle = %f",

circumference);
return 0;
}
Write a program to print the area of the rectangle

(given l = 2.5 and b = 3)
Answer:
#include<stdio.h>
int main ()
{
float l, b, area;
l = 2.5;
b = 3;
area = 1*b;
printf ("The area of the rectangle = %f", area);
return 0;
}
Format Specifiers in C

Data Type Format Specifier
int %d
float %f or %e
char %c
double %lf or %le
long int %ld

Program 1.3
C program to find the sum of two numbers
#include<stdio.h>
int main ()
{
int a, b, sum;
a=1;
b=2;
sum = a + b;
printf ("the sum of a and b = %d", sum);
return 0;
}
The output on the screen:
the sum of a and b = 3
If you want to assign the floating point values i.e.,

fractional numbers for a & b (i.e., 1.5 for a
& 2.6 for b) through the keyboard,

then the statement
int a, b, sum;
should be replaced by the statement
float a, b, sum;
and the statement
printf ("the sum of a and b = %d", sum); should

be replaced by the statement

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

49

printf ("the sum of a and b = %f", sum);
i.e.,
#include<stdio.h>
int main ()
{
float a, b, sum;
a=1.5;
b=2.6;
sum = a + b;
printf ("the sum of a and b = %f", sum);
return 0;
}
The output on the screen:
the sum of a and b = 4.1
The statement
printf ("the sum of a and b = %f", sum);
make provision to print the output:
the sum of a and b = 4.1
In the statement
printf ("the sum of a and b = %f", sum);

format string %f tells the printf function to print a

floating point value which is sum.
Since a = 1.5 and b = 2.6 therefore:
the sum of a and b = 1.5 + 2.6 = 4.1 which is

outputted on the screen.
If the statement
printf ("the sum of a and b = %f", sum);
is replaced by the statement
printf ("the sum of a and b = %f, sum");
Then output on the screen is:
the sum of a and b = %f, sum
And if the statement printf ("the sum of a and b

= %f", sum); is omitted from the C program,
then the program will be successfully executed

but there will be no display of the output on the screen.
If you want to supply the values for a and b

through the key board, then the statements
a=1.5;
b=2.6;
should be replaced by the statements
printf ("Enter any two numbers:");
scanf ("%f %f", & a, & b);
i.e., the program should be rewritten as:
#include<stdio.h>
int main ()
{
float a, b, sum;
printf ("Enter any two numbers:");
scanf ("%f %f", & a, & b);
sum = a+ b;
printf ("the sum of a and b = %f", sum);
return 0;
}
The output on the screen:
Enter any two numbers:

If you enter two numbers 2.9 & 3.6
the sum of a and b = 6.5 will be outputted on the

screen with trailing zeros to fill up memory.
As Said Earlier:
ampersand (" & ") imply the address and

& a and & b imply the addresses of the
created float variables a and b stored in the computer
memory i.e., when we enter a number for a and b
through the keyboard, these numbers are read by scanf
() function and they are stored in the computer
memory (i.e., the number entered for a is stored in the
address of a (i.e., stored in & a) and the number
entered for b is stored in the address of b (i.e., stored in
 & b)).

There are 2 format strings in the statement
scanf ("%f %f", & a, & b);
one format string %f corresponds to & a

i.e., %f tells the scanf () function to read the number
entered through the keyboard for a and store it in the
address of a in the computer memory.

and the other format string %f corresponds to
& b i.e., %f tells the scanf () function to read the
number entered through the keyboard for b and store it
in the address of b in the computer memory.

If the two format strings are separated by a
comma i.e.,

scanf ("%f, %f", & a, & b);
Then the compilation error will be displayed on

the screen.
Note:
The statement printf ("Enter any two numbers:");

make provision to print
Enter any two numbers:
on the screen and the statement scanf ("%f %f",

 & a, & b); read the two numbers 2.9 and
3.6 entered through the keyboard and store them in the
computer memory.

If the statements
printf ("Enter any two numbers:");
scanf ("%f %f", & a, & b);
are replaced by the statements:
printf ("Enter any number:");
scanf ("%f", & a);
printf ("Enter any number:");
scanf ("%f", & b);
i.e.,
#include<stdio.h>
int main ()
{
float a, b, sum;
printf ("Enter any number:");
scanf ("%f", & a);
printf ("Enter any number:");
scanf ("%f", & b);
sum = a+ b;
printf ("the sum of a and b = %f", sum);

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

50

return 0;
}
Then the output on the screen:
Enter any number:
If you enter a number 2.9
Enter any number:
If you enter a number 3.6
the sum of a and b = 6.5 will be outputted on the

screen.
If the statement
printf ("the sum of a and b = %f", sum);
is replaced by the statement
printf ("the sum of %f and %f = %f", a, b, sum);
Then the output on the screen is:
the sum of 2.9 and 3.6 = 6.5
In the statement
printf ("the sum of %f and %f = %f", a, b, sum);
there are three format strings:
The format string %f after the statement (the sum

of) indicates that the value to be displayed needs to be
taken from a variable a.

The format string %f after the statement (the sum
of %f and) indicates that the value to be displayed
needs to be taken from a variable b.

The format string %f after the statement (the sum
of %f and %f =) indicates that the value to be
displayed needs to be taken from a variable sum.

Program 1.4
C program to convert the temperature in Celsius

to Fahrenheit
#include<stdio.h>
int main ()
{
float C, F;
C=38.5;
F = 9*C/5 +32;
printf ("temperature in Fahrenheit= %f", F);
return 0;
}
The output on the screen:
temperature in Fahrenheit= 101.3
Note: If x is used instead of * and F = 9C/5 +32

is used of F = 9*C/5 +32, then the compilation error
will be displayed on the screen.

If you want to supply a number 16 digits after
decimal point i.e., 36.5555555555555555 for C, then
the statement

double C, F; should be used instead of the
statement float C, F;

and %lf should be used instead of %f
i.e.,
#include<stdio.h>
int main ()
{
double C, F;
C=38.5555555555555555;

F = 9*C/5 +32;
printf ("temperature in Fahrenheit= %lf", F);
return 0;
}
And if you want to supply the number 16 digits

after decimal point for C through the key board, then
the statement

C = 38.5;
should be replaced by the statements:
printf ("Enter any number:");
scanf ("%lf", & C);
i.e.,
#include<stdio.h>
int main ()
{
double C, F;
printf ("Enter any number:");
scanf ("%lf", & C);
F = 9*C/5 +32;
printf ("temperature in Fahrenheit= %lf", F);
return 0;
}
Note:
#include <stdio.h>
int main ()
{
double C, F;
C = 25.3333333333333333;
F = 9*C/5 +32;
printf ("temperature in Fahrenheit= %lf", F);
}
The output on the screen:
temperature in Fahrenheit = 77.600000
If the statement double C, F; is replaced by the

statements
double C;
float F;
i.e., if the above program is rewritten as:
#include <stdio.h>
int main ()
{
double C;
float F;
C = 25.3333333333333333;
F = 9*C/5 +32;
printf ("temperature in Fahrenheit= %f", F); // %f

is used because the data type for F is float
return 0;
}
Then there is slight change in the output on the

screen:
temperature in Fahrenheit = 77.599998

Write a program to print the sum of three

numbers
Answer:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

51

#include<stdio.h>
int main ()
{
int a, b, c, sum;
printf ("Enter any three numbers:");
scanf ("%d %d%d", & a, & b,

& c);
sum = a + b + c;
printf ("the sum of a, b and c = %d", sum);
return 0;
}
Write a program to print the Equivalent

hexadecimal value of an integer
Answer:
#include<stdio.h>
int main ()
{
int a = 45;
printf ("%x", a);
return 0;
}
Output on the screen:
2d
Write a program to print the area of a triangle,

given
area = (s (s-a) (s-b) (s-c))1/2 where s = (a + b + c)

/ 2
Answer:
#include<stdio.h>
#include<math.h>
int main ()
{
int a, b, c, s, area;
a = 3;
b= 4;
c=5;
s = (a + b + c) / 2;
area = sqrt ((s * (s-a) * (s-b) * (s-c));
printf ("the area of the triangle = %d", area);
return 0;
}
Note: since sqrt () is not part of C language or of

standard input output file i.e., (stdio.h file), it is part of
math file i.e., (math.h file which defines various
mathematical functions) the statement
#include<math.h> should be included in the C
program otherwise the compilation error will be
flagged on the screen stating that sqrt () is not declared
or defined.

Note: If the statement area = (s (s-a) (s-b) (s-c))
1/2 is written instead of

area = sqrt ((s * (s-a) * (s-b) * (s-c));
Then the compilation error will be displayed on

the screen because C does not support
area = (s (s-a) (s-b) (s-c)) 1/2.
Stuff you need to know about:

1 kilobyte = 1024 bytes
1 megabyte = 1024 1024 bytes
1 gigabyte = 1024 1024 1024 bytes
Program 1.5
C program to find the product of two numbers
#include<stdio.h>
int main ()
{
int a, b, product;
a=1;
b=2;
product = a * b;
printf ("the product of a and b = %d", product);
return 0;
}
The output on the screen:
the product of a and b = 2
If you want to insert a 10 digit number for a and

b i.e.,
a=1000000000
b=3000000000, then the statement:
int a, b, product; should be replaced by the

statement long int a, b, product;
and %ld should be used instead of %d
i.e., the program should be rewritten as:
#include<stdio.h>
int main ()
{
long int a, b, product;
a=1000000000;
b=2000000000;
product = a * b;
printf ("the product of a and b = %ld", product);
return 0;
}
The output on the screen:
the product of a and b = 3000000000000000000
If you want to supply the values for a and b

through the key board, then the statements
a=1;
b=2; should be replaced by the statements
printf ("Enter any two numbers:");
scanf ("%d %d", & a, & b);
i.e.,
#include<stdio.h>
int main ()
{
int a, b, product;
printf ("Enter any two numbers:");
scanf ("%d%d", & a, & b);
product = a* b;
printf ("the product of a and b = %d", product);
return 0;
}
The output on the screen:
Enter any two numbers:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

52

If you enter two numbers 1 and 3
the product of a and b = 3 will be outputted on

the screen.
If you replace the statements
printf ("Enter any two numbers:");
scanf ("%d%d", & a, & b);
by the statements
printf ("Enter any number:");
scanf ("%d", & a);
printf ("Enter any number:");
scanf ("%d", & b);
Then the output on the screen will be:
Enter any number:
If you enter the number 3
Enter any number:
If you enter the number 3
the product of a and b = 9
will be outputted on the screen.
If the statement
printf ("the product of a and b = %d"; product);
is written instead of the statement
printf ("the product of a and b = %d", product);
i.e., instead of variable separator (i.e., comma)

semicolon is used -- Then the compilation error will be
displayed on the screen.

Note:
#include <stdio.h>
int main ()
{
printf ("Hello, World!");
printf ("Hello, World!\b");
printf ("Hello, World!\b");
printf ("Hello, World!\b");
return 0;
}
i.e., if back space \b is used then
Hello, World!Hello, World!Hello, World!Hello,

World!
will be outputted on the screen.
If carriage return \r is used instead of \b
i.e.,
#include <stdio.h>
int main ()
{
printf ("Hello, World!");
printf ("Hello, World!\r");
printf ("Hello, World!\r");
printf ("Hello, World!\r");
return 0;
}
The output on the screen is:
Hello, World!Hello, World!
Hello, World!
Hello, World!
If Horizontal tab \t is used instead of \r
i.e.,

#include <stdio.h>
int main ()
{
printf ("Hello, World!\t");
printf ("Hello, World!\t");
printf ("Hello, World!\t");
printf ("Hello, World!\t");
return 0;
}
The output on the screen is:
Hello, World! Hello, World! Hello, World!

 Hello, World!
If vertical tab \v is used instead of \t
i.e.,
#include <stdio.h>
int main ()
{
printf ("Hello, World!\v");
printf ("Hello, World!\v");
printf ("Hello, World!\v");
printf ("Hello, World!\v");
return 0;
}
The output on the screen is:
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Program 1.5
C program to find the square of a number
#include<stdio.h>
int main ()
{
int a, b;
a=2;
b = a * a;
printf ("the square of a = %d", b);
}
The output on the screen:
the square of a = 4
If the statement b = a * a; is replaced by b = pow

((a), 2);
i.e., if the above program is rewritten as:
#include<stdio.h>
#include<math.h>
int main ()
{
int a, b;
a=2;
b = pow ((a), 2);
printf ("the square of a = %d", b);
return 0;
}
Then there will be no display of compilation

error on the screen or there will be no change in the
output on the screen i.e.,

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

53

the square of a = 4 will be outputted on the
screen.

which means:
b = pow ((a), 2); is the same as b = a*a;
Since b = pow ((a), 2); is used instead of b = a*a;
#include<math.h> should be included in the C

program as b = pow ((a), 2); is supported by
#include<math.h>

Otherwise compilation Error will be displayed on
the screen.

If you want to supply the integer value for a
through the key board, then the statement

a=2; is replaced by the statements
printf ("Enter any number:");
scanf ("%d", & a);
i.e.,
#include<stdio.h>
int main ()
{
int a, b;
printf ("Enter any number:");
scanf ("%d", & a);
b = a * a;
printf ("the square of a = %d", b);
return 0;
}
The output on the screen:
Enter any number:
If you enter a number 4
the square of a = 16 will be outputted on the

screen.
Note:
If scanf (%d, & a); is written instead of scanf

("%d", & a);
If printf (the square of a = %d, b); is written

instead of printf ("the square of a = %d", b);
If the main function is followed by a semicolon

i.e.,
int main (); is written instead of int main ()
Then the compilation error will be displayed on

the screen.
But if the body of the main function is followed

by a semicolon i.e.,
int main ()
{
}; is written instead of
int main ()
{
}
There will be no display of the compilation error

on the screen.
int main (); ERROR
int main ()
{
}; NO ERROR
Write a program to print the cube of a number

Answer:
#include<stdio.h>
#include<math.h>
int main ()
{
int a, b;
a=2;
b = pow ((a), 3);
printf ("the cube of a = %d", b);
return 0;
}
Write a program to print the energy of the

substance using energy = mc2
Answer:
#include<stdio.h>
#include<math.h>
int main ()
{
int m;
long int c, energy;
m=2;
c = 300000000;
energy = m * pow ((c), 2);
printf ("the energy of the substance = %ld joules",

energy);
return 0;
}
Program 1.6
C program to find the greatest of two numbers

using if - else statement
The syntax of if else statement (Conditional

Statements):
if (this condition is true)
{
print this statement;
}
else
{
print this statement;
}
#include<stdio.h>
int main ()
{
int a, b;
a = 2;
b = 3;
if (a>b)
{
printf ("a is greater than b");
}
else
{
printf ("b is greater than a");
}
return 0;
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

54

The output on the screen:
b is greater than a

Since the condition a>b within the parentheses is

not true, the statement a is greater than b is not
executed;

instead the execution skips and pass to print the
statement b is greater than a.

In simpler words,
(a>b) is the condition (i.e., logical expression that

results in true or false) and
if the condition (a>b) is true, then the statement:
{
printf ("a is greater than b");
}
is executed to print the output:
a is greater than b
else the statement
{
printf ("b is greater than a");
}
is executed to print the output:
b is greater than a
If you want to supply the integer values for a and

b through the key board, then the statements
a=2;
b=3; should be replaced by the statements
printf ("Enter any number:");
scanf ("%d", & a);
printf ("Enter any number:");
scanf ("%d", & b);
i.e., the program should be rewritten as:
#include<stdio.h>
int main ()
{
int a, b;
printf ("Enter any number:");
scanf ("%d", & a);
printf ("Enter any number:");
scanf ("%d", & b);
if (a>b)
{
printf ("a is greater than b");
}
else
{
printf ("b is greater than a");
}
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 6
Enter any number:
If you enter the number 3
a is greater than b

will be outputted on the screen.
Program 1.7
C program to find the greatest of three numbers

using if - else if - else statement
The syntax of if - else if - else statement:
if (this condition is true)
{
print this statement;
}
else if (this condition is true)
{
print this statement;
}
else
{
print this statement;
}
#include<stdio.h>
int main ()
{
int a, b, c;
printf ("Enter any number:");
scanf ("%d", & a);
printf ("Enter any number:");
scanf ("%d", & b);
printf ("Enter any number:");
scanf ("%d", & c);
if (a>b & & a>c)
{
printf ("%d is greater than %d and %d", a, b, c);
}
else if (b>a & & b>c)
{
printf ("%d is greater than %d and %d", b, a, c);
}
else
{
printf ("%d is greater than %d and %d", c, b, a);
}
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2
Enter any number:
If you enter the number 3
Enter any number:
If you enter the number 4
4 is greater than 3 and 2
will be outputted on the screen.
double ampersand " & & " imply and.
(a>b & & a>c)
(b>a & & b>c)
denote conditions.
i.e., the condition
(a>b & & a>c) imply:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

55

a is greater than b and a is greater than c
and if this condition is true, then the statement
{
printf ("a is greater than b and c");
}
is executed to print the output:
a is greater than b and c
and if the condition (a>b & & a>c) is not

true
the statement
{
printf ("a is greater than b and c");
}
is not executed; instead the execution skips and

pass to the condition (b>a & & b>c)
and if this condition is true, then the statement
{
printf ("b is greater than a and c");
}
is executed to print the output:
b is greater than a and c
and if the condition (b>a & & b>c) is not

true, then the statement
{
printf ("b is greater than a and c");
}
is not executed; instead the execution skips and

the statement
{
printf ("c is greater than b and a");
}
is executed to print the output:
c is greater than b and a
If the statements:
if (a>b & & a>c)
{
printf ("%d is greater than %d and %d", a, b, c);
}
else if (b>a & & b>c)
{
printf ("%d is greater than %d and %d", b, a, c);
}
else
{
printf ("%d is greater than %d and %d", c, b, a);
}
are replaced by the statements:
if (a>b & & a>c)
printf ("%d is greater than %d and %d", a, b, c);
else if (b>a & & b>c)
printf ("%d is greater than %d and %d", b, a, c);
else
printf ("%d is greater than %d and %d", c, b, a);
i.e., if the program is rewritten as:
#include<stdio.h>
int main ()

{
int a, b, c;
printf ("Enter any number:");
scanf ("%d", & a);
printf ("Enter any number:");
scanf ("%d", & b);
printf ("Enter any number:");
scanf ("%d", & c);
if (a>b & & a>c)
printf ("%d is greater than %d and %d", a, b, c);
else if (b>a & & b>c)
printf ("%d is greater than %d and %d", b, a, c);
else
printf ("%d is greater than %d and %d", c, b, a);
return 0;
}
There will be no display of error on the screen
c is greater than b and a
will be successfully outputted on the screen
What will be the output of the following

program?
#include <stdio.h>
int main ()
{
int a, b;
a=2;
b=2;
if (a>b || a= = b)
printf ("a is greater than or equal to b");
else
printf ("b is greater than a");
return 0;
}
Answer:
a is greater than or equal to b
Note: symbol || denote OR i.e., a>b || a= = b

denote a is greater than or a is equal to b.
Program 1.8
C program to find the average of 10 numbers
#include<stdio.h>
int main ()
{
int N1, N2, N3, N4, N5, N6, N7, N8, N9, N10,

X;
printf ("Enter any 10 numbers:");
scanf ("%d%d%d%d%d%d%d%d%d%d",

& N1, & N2, & N3, & N4, & N5,
& N6, & N7, & N8, & N9, & N10);

X = (N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8
+ N9 + N10) /10;

printf ("the average of 10 numbers = %d", X);
return 0;
}
The output on the screen:
Enter any 10 numbers:
If you enter ten numbers 1, 2, 3, 4, 5, 6, 7, 8, 9

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

56

and 10
the average of 10 numbers = 5
will be outputted on the screen.
Note: The average of 10 numbers is 5.5, the

output on the screen is 5 because the data type int is
used instead of float.

Any mathematical expression should be written
in C equivalent expression to prevent the display of
compilation error on the screen because C language
does not accept the general mathematical expressions.

Mathematical
expression

C equivalent expression

x y / z x * y / z
(ax + 1) (by + 2) (a * x + 1) * (b * y + 2)

(a+b)2/ (a-b)2
(a+b) * (a+b) / (a-b) * (a-b) or
pow ((a+b), 2) / pow ((a - b),
2)

log10(x/y + c) log 10 (x/y + c)
ax2+bx+c a*x*x+b*x+c
lnx log (x)
ex + b exp (x) + b
sin + cos sin (theta) + cos (theta)
 = + alpha = beta + gamma
x1/2 sqrt (x)
x1/3 cbrt (x)
(p2+ q2)1/2 sqrt (p*p + q*q)
2a2+ 3b 2a *a + 3b + 2

a = e x / (1+ sin)1/2
a = exp (x / sqrt (1 + sin
(theta)))

What will be the output of the following

programs:
(a)
#include <stdio.h>
#include<math.h>
int main ()
{
int a, b, x;
x=2;
b=2;
a = exp (x) + b;
printf ("the value of a = %d", a);
return 0;
}
Answer:
the value of a = 9
(b)
#include <stdio.h>
#include<math.h>
int main ()
{
int alpha, beta, gamma;
alpha =2;
beta=2;

gamma= 2 * alpha + beta;
printf ("the value of alpha = %d", alpha);
return 0;
}
Answer:
the value of alpha = 2
(c)
#include <stdio.h>
#include<math.h>
int main ()
{
double theta, result;
theta = 90;
result = sin (theta);
printf ("The sine 90 degrees is = %lf ", result);
return 0;
}
Answer:
The sine 90 degrees is = 0.893997
What is C equivalent expression of (x/y) n-1?
Answer: pow ((x/y), n-1)
Program 1.9
C program to find the square root of a number
#include<stdio.h>
#include<math.h>
int main ()
{
int a, b;
printf ("Enter any number:");
scanf ("%d", & a);
b = sqrt (a);
printf ("the square root of a number = %d", b);
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 4
the square root of a number = 2
is outputted on the screen.
Suppose if you enter the number 2, the square

root of a number = 1 is outputted on the screen
because int is used instead of float.

Note:
Since b = sqrt (a) is written
#include<math.h>
must be included in the above program otherwise

compilation error will flag on the screen.
i.e., the program:
#include<stdio.h>
int main ()
{
int a, b;
printf ("Enter any number:");
scanf ("%d", & a);
b = sqrt (a);
printf ("the square root of a number = %d", b);

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

57

return 0;
}
will flag compilation error on the screen.
If float is used instead of int then the above

program take the form:
#include<stdio.h>
#include<math.h>
int main ()
{
float a, b;
printf ("Enter any number:");
scanf ("%d", & a);
b = sqrt (a);
printf ("the square root of a number = %f", b);
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 5
the square root of a number = 2.23
is outputted on the screen.
This program can also be written as:
#include<stdio.h>
#include<math.h>
int main ()
{
printf ("the square root of a number = %f", sqrt

(4));
return 0;
}
//--

--

|| imply or
> imply greater than
<imply less than
= = imply equal to
! imply not
!= imply not equal to
 & & imply and
 & imply address

--
--------//

Program 2.0
C program to find the simple interest
#include<stdio.h>
int main ()
{
int P,T, R, SI;
P = 1000;
T = 2;
R = 3;
SI = P*T*R/100;
printf ("the simple interest = %d", SI);
return 0;

}
The output on the screen:
the simple interest = 60
Note:
If you write SI = PTR/100; instead of SI =

P*T*R/100;
Then compilation error is displayed on the screen

because C language does not accept the general
expressions.

If you want to supply the values for P, T and R
through the key board, then the statements:

P = 1000;
T = 2;
R = 3;
should be replaced by the statements:
printf ("Enter any number:");
scanf ("%d", & P);
printf ("Enter any number:");
scanf ("%d", & T);
printf ("Enter any number:");
scanf ("%d", & R);
i.e., the above program should take the form:
#include<stdio.h>
int main ()
{
int P,T, R, SI;
printf ("Enter principal amount:");
scanf ("%d", & P);
printf ("Enter time:");
scanf ("%d", & T);
printf ("Enter rate of interest:");
scanf ("%d", & R);
SI = P*T*R/100;
printf ("the simple interest = %d", SI);
return 0;
}
The output on the screen:
Enter principal amount:
If you enter the principal amount 1000
Enter time:
If you enter the time 2
Enter rate of interest:
If you enter the rate of interest 3
the simple interest = 60
will be outputted on the screen.
Note: If write the statement scanf ("%d," & P);

instead of scanf ("%d", & P);
or
if write the statement scanf (%d, & P);

instead of scanf ("%d", & P); i.e., format string
for data type int i.e., %d is not enclosed by double
quotes ("")

Then compilation error will be displayed on the
console screen.

Program 2.1
C program to find whether the person is senior

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

58

citizen or not
#include<stdio.h>
int main ()
{
int age;
age=20;
if (age> = 60)
{
printf ("senior citizen");
}
if (age<60)
{
printf ("not a senior citizen");
}
return 0;
}
The output on the screen:
not a senior citizen
(age> = 60) means age greater than or equal to 60
If you want to supply the value for age through

the key board, then the statement
age=20;
should be replaced by the statements:
printf ("Enter age:");
scanf ("%d", & age);
i.e., the above program should take the form:
#include<stdio.h>
int main ()
{
int age;
printf ("Enter age:");
scanf ("%d", & age);
if (age>60)
{
printf ("senior citizen");
}
if (age<60)
{
printf ("not a senior citizen");
}
return 0;
}
The output on the screen:
Enter age:
If you enter the value 60
senior citizen will be outputted on the screen.
Suppose if you enter the value 27
not a senior citizen will be outputted on the

screen.
Program 2.2
C program to get marks for 3 subjects and

declare the result.
If the marks >= 35 in all the subjects the student

passes else fails.
#include<stdio.h>
int main ()

{
int M1, M2,M3;
M1 = 38;
M2= 45;
M3 = 67;
if (M1>= 35 & & M2>= 35 &

& M3>= 35)
{
printf ("candidate is passed");
}
else
{
printf ("candidate is failed");
}
return 0;
}
The output on the screen:
candidate is passed

>= imply greater than or equal to and double

ampersand imply and
(M1>= 35 & & M2>= 35 &

& M3>= 35) denote the condition and this condition
imply M1 is greater than or equal to 35

and M2 is greater than or equal to 35 and M3 is
greater than or equal to 35. And if this condition is
TRUE, then the statement

{
printf ("candidate is passed");
}
is executed to print the output:
candidate is passed
else the statement
{
printf ("candidate is failed");
}
is executed to print the output:
candidate is failed
If you want to supply the integer values for

marks M1, M2 and M3 through the key board, then the
statements:

M1 = 38;
M2= 45;
M3 = 67;
should be replaced by the statements:
printf ("Enter any three numbers:");
scanf ("%d%d%d", & M1, & M2,

 & M3);
i.e.,
#include<stdio.h>
int main ()
{
int M1, M2,M3;
printf ("Enter any three numbers:");
scanf ("%d%d%d", & M1, & M2,

 & M3);

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

59

if (M1>= 35 & & M2>= 35 &
& M3>= 35)

{
printf ("candidate is passed");
}
else
{
printf ("candidate is failed");
}
return 0;
}
The output on the screen:
Enter any three numbers:
If you enter three numbers 26, 28, 39
candidate is failed will be outputted on the

screen.

Header file
in C

the functions it defines

stdio.h
(standard input output header file)
 standard input output functions (like
scanf and printf functions)

math.h
mathematical functions (like log (), sqrt
(), sin (), cos (), log10() etc.)

stdlib.h
standard library functions (like void abort
(void) - a function which causes an
abnormal/ unusual program termination)

ctype.h
character manipulation functions (like
isalpha () which checks whether a
character is an alphabet or not)

graphics.h graphical functions

conio.h
(console input output header file)
console input output functions like clrscr
() - a function which clears the screen.

Note: The term console usually refers to monitor

or display screen.
Write a program to check whether a character is

an alphabet or not using the function isalpha ()
#include <stdio.h>
#include <ctype.h>
int main ()
{
int a =2;
if (isalpha (a))
{
printf (" the character a is an alphabet");
}
else
{
printf ("the character a is not an alphabet");
}
return 0;
}
The output on the screen:
the character a is not an alphabet

#include <stdio.h>
#include <ctype.h>
int main ()
{
char a = 'b';
if (isalpha (a))
{
printf (" the character a is an alphabet");
}
else
{
printf ("the character a is not an alphabet");
}
return 0;
}
The output on the screen:
the character a is an alphabet
If the statement char a = b; is written instead of

char a = 'b'; Then the compilation error will be flagged
on the display screen.

Program 2.3
C program to find profit or loss
#include<stdio.h>
int main ()
{
int CP, SP, loss, profit;
printf ("Enter cost price:");
scanf ("%d", & CP);
printf ("Enter selling price:");
scanf ("%d", & SP);
if (SP>CP)
{
printf ("profit=%d", SP-CP);
}
else
{
printf ("loss =%d", CP-SP);
}
return 0;
}
The output on the screen:
Enter cost price:
If you enter the cost price 25
Enter selling price:
If you enter the selling price 26
profit = 1 will be outputted on the screen.
If the condition (SP>CP) is true, then the

statement
{
printf ("profit=%d", SP-CP);
}
is executed to print the output:
profit = SP-CP (in this case profit = 26-25 =1)
else the statement
{

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

60

printf ("loss=%d", CP-SP);
}
is executed to print the output:
loss = CP-SP

Program 2.4
C program to convert inches into centimeter
#include<stdio.h>
int main ()
{
float I, C;
I=3.5;
C = 2.54*I;
printf ("length in centimeters= %f", C);
return 0;
}
The output on the screen:
length in centimeters = 8.89
Note: float is used instead of int because I = 3.5 if

int is used instead of float then the result will not be
clearly outputted i.e., instead of 8.89 the computer
displays only 8. And since float is used instead of int,
the operator %d is replaced by the operator %f.

If you want to supply the floating value for I
through the key board, then the above program should
take the form:

#include<stdio.h>
int main ()
{
float I, C;
printf ("Enter the length in inches:");
scanf ("%f", & I);
C = 2.54*I;
printf ("length in centimeters= %f", C);
return 0;
}
The output on the screen:
Enter the length in inches:
If you enter the floating point value or fractional

or decimal number for I i.e., 25.5
length in centimeters = 64.9 will be outputted on

the screen.
Program 2.5
C program to find the incremented and

decremented values of two numbers.
#include<stdio.h>
int main ()
{
int a, b, c, d, e, f;
a = 10;
b=12;
c=a+1;
d=b+1;
e=a-1;
f=b-1;
printf ("the incremented value of a =%d", c);

printf ("the incremented value of b =%d", d);
printf ("the decremented value of a =%d", e);
printf ("the decremented value of b =%d", f);
return 0;
}
The output on the screen:
the incremented value of a = 11 the incremented

value of b = 13 the decremented value of a = 9 the
decremented value of b = 11

If the statements:
printf ("the incremented value of a =%d", c);
printf ("the incremented value of b =%d", d);
printf ("the decremented value of a =%d", e);
printf ("the decremented value of b =%d", f);
are replaced by the statements:
printf ("the incremented value of a =%d\n", c);
printf ("the incremented value of b =%d\n", d);
printf ("the decremented value of a =%d\n", e);
printf ("the decremented value of b =%d\n", f);
Then the output on the screen is:
the incremented value of a = 11
the incremented value of b = 13
the decremented value of a = 9
the decremented value of b = 11
Note:
Even if the statements:
printf ("the incremented value of a =%d\n", c);
printf ("the incremented value of b =%d\n", d);
printf ("the decremented value of a =%d\n", e);
printf ("the decremented value of b =%d\n", f);
are replaced by the statements:
printf ("\n the incremented value of a =%d", c);
printf ("\n the incremented value of b =%d", d);
printf ("\n the decremented value of a =%d", e);
printf ("\n the decremented value of b =%d", f);
There will be no change in the output on the

screen.
If you want to supply the values for a and b

through the key board, then the above program should
take the form:

#include<stdio.h>
int main ()
{
int a, b, c, d, e, f;
printf ("Enter any number:");
scanf ("%d", & a);
printf ("Enter any number:");
scanf ("%d", & b);
c=a+1;
d=b+1;
e=a-1;
f=b-1;
printf ("the incremented value of a =%d\n", c);
printf ("the incremented value of b =%d\n", d);
printf ("the decremented value of a =%d\n", e);
printf ("the decremented value of b =%d\n", f);

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

61

return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2
Enter any number:
If you enter the number 3
the incremented value of a = 3
the incremented value of b = 4
the decremented value of a = 1
the decremented value of b = 2
will be outputted on the screen.
Note: b++ is same as b + 1 and b-- is same as b -

1.
Program 2.6
The percentage marks are entered and the grades

are allotted as follows:
percentage>= 60 First Class
percentage>=50 and per <= 60 Second Class
percentage>= 40 and per <= 50 Pass Class
percentage< 40 Fail
Write a C program for the above:
#include<stdio.h>
int main ()
{
int P;
printf ("Enter the percentage:");
scanf ("%d", & P);
if (P >= 60)
{
printf ("first class");
}
if (P>=50 & & P <60)
{
printf ("second class");
}
else if (P>=40 & & P<=50)
{
printf ("pass class");
}
else
{
printf ("fail");
}
return 0;
}
The output on the screen:
Enter the percentage:
If you enter the percentage 65
first class will be outputted on the screen.
Program 2.7
C program to calculate the discounted price and

the total price after discount
Given:
If purchase value is greater than 1000, 10%

discount

If purchase value is greater than 5000, 20%
discount

If purchase value is greater than 10000, 30%
discount

discounted price
#include<stdio.h>
int main ()
{
double PV, dis;
printf ("Enter purchased value:");
scanf ("%lf", & PV);
if (PV>1000)
{
printf ("dis=%lf", PV* 0.1);
}
else if (PV>5000)
{
printf ("dis =%lf", PV* 0.2);
}
else
{
printf ("dis=%lf", PV* 0.3);
}
return 0;
}
The output on the screen:
Enter purchased value:
If you enter the purchased value 6500
dis = 1300.000000 will be outputted on the

screen.
(PV>1000), (PV>5000) denote the conditions

and if the condition (PV>1000) is true i.e., purchased
value is greater than 1000, then the statement

{
printf ("dis=%d", PV* 0.1);
}
is executed to print the output:
dis= PV* 10% = PV* 10 /100 = PV* 0.1
and if the condition (PV>1000) is false and if the

condition (PV>5000) is true i.e., purchased value is
greater than 5000, then the statement

{
printf ("dis=%d", PV* 0.2);
}
is executed to print the output:
dis= PV* 20% = PV* 20 /100 = PV* 0.2
and if the condition (PV>5000) is not true i.e.,

purchased value is less than 5000, then the statement
{
printf ("dis=%d", PV* 0.3);
}
is executed to print the output:
dis= PV* 30% = PV* 30 /100 = PV* 0.3
total price
#include<stdio.h>
int main ()

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

62

{
double PV, total;
printf ("Enter purchased value:");
scanf ("%lf", & PV);
if (PV<1000)
{
printf ("total=%lf", PV - PV* 0.1);
}
else if (PV<5000)
{
printf ("total =%lf", PV- PV* 0.2);
}
else
{
printf ("total=%lf", PV- PV* 0.3);
}
return 0;
}
The output on the screen:
Enter purchased value:
If you enter the purchased value 650
total = 585.000000 will be outputted on the

screen.
If the condition (PV>1000) is true i.e., purchased

value is greater than 1000, then the statement
{
printf ("total = %d", PV - PV* 0.1);
}
is executed to print the output:
total =PV- dis = PV- PV*10% = PV- PV* 10

/100 = PV - PV * 0.1
and if the condition (PV>1000) is false and if the

condition (PV>5000) is true i.e., purchased value is
greater than 5000, then the statement

{
printf ("total = %d", PV - PV* 0.2);
}
is executed to print the output:
total =PV- dis = PV- PV*20% = PV- PV* 20

/100 = PV - PV * 0.2

and if the condition (PV> 5000) is not true i.e.,

purchased value is less than 5000, then the statement
{
printf ("total = %d", PV - PV* 0.3);
}
is executed to print the output:
total =PV- dis = PV- PV*30% = PV- PV* 30

/100 = PV - PV * 0.3
Now, Combing both the programs (above), we

can write:
#include<stdio.h>
int main ()
{
double PV, dis, total;
printf ("Enter purchased value:");

scanf ("%lf", & PV);
if (PV>1000)
{
printf ("dis=%lf", PV* 0.1);
printf ("total=%lf", PV - PV* 0.1);
}
else if (PV>5000)
{
printf ("dis =%lf", PV* 0.2);
printf ("total=%lf", PV - PV* 0.1);
}
else
{
printf ("dis=%lf", PV* 0.3);
printf ("total=%lf", PV - PV* 0.1);
}
return 0;
}
The output on the screen:
Enter purchased value:
If you enter the purchased value 850
dis = 85.000000
total = 765.000000
will be outputted on the screen.
Program 2.8
C program to print the first ten natural numbers

using for loop statement
#include<stdio.h>
int main ()
{
int i;
for (i=1; i<=10; i++)
printf ("value of i =%d", i);
return 0;
}
The output on the screen is:
value of i = 1 value of i = 2 value of i= 3 value of

i= 4 value of i= 5 value of i= 6 value of i = 7 value of
i= 8 value of i = 9 value of i = 10

for (i=1; i<=10; i++) denote the
for loop statement and the syntax of the
 for loop statement is:
for (initialization; condition; increment)
Here:
i=1 denote initialization (i.e., from where to start)
i<=10 denote the condition (i.e., stop when 10 is

reached)
i++ imply increment (which tells the value of i to

increase by 1 each time the loop is executed) and i++
is the same as i+1.

When a for loop executes, the following occurs:
i = 1
Is the condition (i<=10) is true?
Yes because i=1
The statement printf ("value of i =%d", i); is

executed to print the output:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

63

value of i = 1
Now, the value of i is:
i = 1+1 = 2
Is the condition (i<=10) is true?
Yes because i=2
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 2
Now, the value of i is:
i = 2+1 = 3
Is the condition (i<=10) is true?
Yes because i=3
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 3
Now, the value of i is:
i = 3+1 = 4
Is the condition (i<=10) is true?
Yes because i=4
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 4
Now, the value of i is:
i = 4+1 = 5
Is the condition (i<=10) is true?
Yes because i=5
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 5
Now, the value of i is:
i = 5+1 = 6
Is the condition (i<=10) is true?
Yes because i=6
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 6
Now, the value of i is:
i = 6+1 = 7
Is the condition (i<=10) is true?
Yes because i=7
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 7
Now, the value of i is:
i = 7+1 = 8
Is the condition (i<=10) is true?
Yes because i=8
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 8
Now, the value of i is:
i = 8+1 = 9
Is the condition (i<=10) is true?
Yes because i=9
The statement printf ("value of i =%d", i); is

executed to print the output:

value of i = 9
Now, the value of i is:
i = 9+1 = 10
Is the condition (i<=10) is true?
Yes because i=10
The statement printf ("value of i =%d", i); is

executed to print the output:
value of i = 10
and stop because the condition i<=10 is achieved.
If the statement:
printf ("value of i =%d", i);
is replaced by the statement:
printf ("value of i =%d\n", i);
or
printf ("\n value of i =%d", i);

Then the output on the screen is:
value of i = 1
value of i = 2
value of i = 3
value of i = 4
value of i = 5
value of i = 6
value of i = 7
value of i = 8
value of i = 9
value of i = 10
If the
for loop statement:
for (i=2; i<=10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 2 value of i = 3 value of i= 4 value of

i= 5 value of i= 6 value of i = 7 value of i= 8 value of i
= 9 value of i= 10

If the for loop statement:
for (i=1; i<10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 1 value of i = 2 value of i= 3 value of

i= 4 value of i= 5 value of i= 6 value of i = 7 value of
i= 8 value of i = 9

(Note: the condition i<=10 tells to print till value
of i =10 but the condition i<10 tells to print till value
of i=9)

If the statement:
for (i=1; i=10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 10 value of i = 10 value of i = 10

value of i = 10 value of i= 10 value of i= 10 value of i
= 10 value of i= 10 value of i = 10 value of i = 10
 value of i = 10 value of i = 10 value of i = 10

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

64

 value of i = 10 value of i = 10 (continues...).
Note:
If the statement:
printf ("value of i =%d", i); is replaced by the

statement printf ("%d\n", i);
Then the output on the screen is:
1
2
3
4
5
6
7
8
9
10
What will be the output of the following

program:
#include<stdio.h>
int main ()
{
int i;
for (i =1; i<=5; i ++)
printf ("Linux is not portable\n", i);
return 0;
}
Answer:
Linux is not portable
Linux is not portable
Linux is not portable
Linux is not portable
Linux is not portable
C program to print the first ten natural numbers

using for while loop statement
The syntax of while loop statement is:
while (this is the condition)
{
execute this statement;
}
#include<stdio.h>
int main ()
{
int i = 1;
while (i<=10)
{
printf ("%d\n", i++);
}
return 0;
}
The output on the screen is:
1
2
3
4
5
6

7
8
9
10
(i<=10) is the condition and
The statement
printf ("%d\n", i++);
is repeatedly executed as long as a given

condition (i<=10) is true.
If the statement:
int i=1;
is replaced by the statement:
int i;
Then the compilation error will be displayed on

the console screen because initialization is not defined
i.e., from where to start is not declared.

If the statement:
int i = 1;
is replaced by the int i = 0;
Then the output on the screen is:
0
1
2
3
4
5
6
7
8
9
10
Similarly if the statement int i = 0; is replaced by

the int i = 7;
Then the output on the screen is:
7
8
9
10
C program to print first 10 numbers using do

while loop statement
The syntax of do while loop statement is:
do
{
execute this statement;
}
while (this is the condition);
#include<stdio.h>
int main ()
{
int i =1;
do
{
printf (" i= %d\n", i++);
} while (i<=10);
return 0;
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

65

The output on the screen is:
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10
The statement:
printf (" i= %d\n", i++);
is executed and then condition (i<=10) is checked.

If condition (i<=10) is true then
The statement:
printf (" i= %d\n", i++);
is executed again. This process repeats until the

given condition (i<=10) becomes false.
Why LOOP is USED?
If loop is not used then the C program to print

first 10 numbers should be written as follows:
#include<stdio.h>
int main ()
{
printf ("\n i = 1");
printf ("\n i = 2");
printf ("\n i = 3");
printf ("\n i = 4");
printf ("\n i = 5");
printf ("\n i = 6");
printf ("\n i = 7");
printf ("\n i = 8");
printf ("\n i = 9");
printf ("\n i = 10");
return 0;
}
It takes pretty long time to write the code and the

execution time is pretty long i.e., Because to reduce
the time taken to write the code and to reduce the
execution time -- loop statement is used.

Write a program to print:
Never test for an error condition you don't know

how to handle
5 times using for loop statement.
Answer:
#include<stdio.h>
int main ()
{
int i;
for (i =1; i<=5; i ++)
printf ("Never test for an error condition you

don't know how to handle \n");
return 0;
}
Note:

For the program:
#include<stdio.h>
int main ()
{
int i;
for (i=1; i=5; i++)
printf ("Linux is not portable");
return 0;
}
The output on the screen is:
Linux is not portable Linux is not portable Linux

is not portable Linux is not portable Linux is not
portable Linux is not portable Linux is not portable
Linux is not portable Linux is not portable Linux is not
portable Linux is not portable Linux is not portable
Linux is not portable. continues

Program 2.9
C program to print the characters from A to Z

using for loop, do while loop and while loop
statement.

C program to print the characters from A to Z
using for loop statement:

#include<stdio.h>
int main ()
{
char a;
for (a='A'; a<='Z'; a++)
printf ("%c\n", a);
return 0;
}
The output on the screen:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
W
X
Y
Z
char means the data type is character.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

66

The statement
char a; imply that we are creating the character a.
Since char a is used. Therefore: the format

specifier %c should be used instead of %d or %f
otherwise error will be flagged on the screen.

If the statement for (a=A; a<=Z; a++) is written
instead of the statement for (a='A'; a<='Z'; a++)

Then the compilation error will be displayed on
the console screen.

C program to print the characters from A to Z
using while loop statement:

#include<stdio.h>
int main ()
{
char a = 'A';
while (a<='Z')
{
printf ("%c\n", a++);
}
return 0;
}
C program to print the characters from A to Z

using do while loop statement:
#include<stdio.h>
int main ()
{
char a = 'A';
do
{
printf (" %c\n", a++);
} while (a<='Z');
return 0;
}
Program 3.0
C program to print the given number is even or

odd.
#include<stdio.h>
int main ()
{
int a;
printf ("Enter any number:");
scanf ("%d", & a);
if (a%2 = = 0)
{
printf ("the number is even");
}
else
{
printf ("the number is odd");
}
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 4
the number is even will be outputted on the

screen.
Mathematical symbol % denote modulus and

(a%2 = = 0) is the condition and this condition imply:
a divided by 2 yields reminder = 0.

For example: if you enter the number 4
Then a = 4
Then 4 divided by 2 yields the remainder = 0
Then the statement
{
printf ("the number is even");
}
is executed to print the output:
the number is even
(Note: in C language = = implies equal to)
Suppose if you enter the number 3
Then a = 3
Then 3 divided by 2 yields the remainder = 1
Then the statement
{
printf ("the number is odd");
}
is executed to print the output:
the number is odd

Data type Storage size
char 1 byte
short int 2 byte
float, long int 4 byte
double, long double 8 byte

Program 3.1
C program to print the remainder of two numbers
#include<stdio.h>
int main ()
{
int a, b, c;
printf ("Enter any number:");
scanf ("%d", & a);
printf ("Enter any number:");
scanf ("%d", & b);
c = a%b;
printf ("the remainder of a and b = %d", c);
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 3
Enter any number:
If you enter the number 2
the remainder of a and b = 1 will be outputted on

the screen.

Since (a=3 and b=2). Therefore:
3 divided by 2 (i.e., a divided by b) yields the

remainder equal to 1

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

67

If the statement:
printf ("the remainder of a and b = %d", c);
is replaced by the statement:
printf ("the remainder of %d and %d = %d", a, b,

c);
Then the output on the screen is:
Enter any number:
If you enter the number 3
Enter any number:
If you enter the number 2
the remainder of 3 and 2 = 1 will be outputted on

the screen.
Program 3.2
C program to check the equivalence of two

numbers.
#include<stdio.h>
int main ()
{
int x, y;
printf ("Enter any number:");
scanf ("%d", & x);
printf ("Enter any number:");
scanf ("%d", & y);
if (x-y==0)
{
printf ("the two numbers are equivalent");
}
else
{
printf ("the number are not equivalent");
}
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2
Enter any number:
If you enter the number 2
the two numbers are equivalent will be outputted

on the screen.
Since 2-2 is equal to 0 (i.e., x-y = = 0).
Therefore: the statement
{
printf ("the two numbers are equivalent");
}
is executed to print the output:
two numbers are equivalent
If you enter the integers 3 and 2
The output on the screen:
the two numbers are not equivalent
Since 3-2 is not equal to 0 (i.e., x-y!= 0).

Therefore: the statement
{
printf ("the two numbers are not equivalent");
}
is executed to print the output:

two numbers are not equivalent

(as said earlier: in C language the symbol!=

implies not equal to)
What is the mistake in the following program:
#include<stdio.h>
int main ()
{
int year;
year =1996;
if (year%4==0)
printf ("leap year");
else
printf ("not a leap year");
return 0;
}
Answer:
There is no mistake in the above program. The

output on the screen is:
leap year
Since year=1996. Therefore:
1996 divided by 4 (i.e., year divided by 4) yields

the remainder equal to 0.
The statement
printf ("leap year");
is executed to print the output:
leap year
If the year is = 1995. Then
1995 divided by 4 (i.e., year divided by 4) yields

the remainder not equal to 0.
The statement
printf ("not a leap year");
is executed to print the output:
not a leap year
Note: for a year to be leap year, year divided by 4

should yield remainder = zero.
//

--
--

An algorithm must be seen to be believed.
Donald Knuth
You might have an algorithm for getting from

office home, for making a chunk of code that
calculates the terms of the Fibonacci sequence, or for
finding what you're looking for in a retail store.
Algorithms are the building blocks of computer
programs or a sequence of a sequence of unambiguous
instructions (the term 'unambiguous ' indicates that
there is no room for subjective interpretation) that
tells how the problem can be addressed and solved - -
which is definitely overblown in their importance like
road maps for accomplishing a given, well-defined
automated reasoning task - - which always have a clear
stopping point. Long division and column addition are
examples that everyone is familiar with- even a simple
function for adding two numbers is an implementation

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

68

of a particular algorithm. Online grammar checking
uses algorithms. Financial computations use
algorithms. A search engine like Google uses search
engine algorithms (for example, takes search strings of
keywords as input, searches its associated database for
relevant web pages, and returns results). In fact, it is
difficult to think of a task performed by your computer
that does not use computer procedures that are a lot
like a recipes (called algorithms).

The algorithm to add two numbers entered by
userwould look something like this:

Step 1: Start
Step 2: Declare variables num1, num2 and sum.
Step 3: Read values num1 and num2.
Step 4: Add num1 and num2 and assign the result

to sum.
sumnum1+num2
Step 5: Display sum
Step 6: Stop
Algorithms are the heart of computer science

(usually means a procedure or basically an instance of
logic written in software that solves a recurrent
problem of finding an item with specific properties
among a collection of items or transforming data
according to specified actions to protect it), and the
subject has countless practical applications as well as
intellectual depth that is widely used throughout all
areas of information technology including solving a
mathematical problem (as of finding the greatest
common divisor) in a finite number of steps that
frequently involves repetition of an operation. The
word algorithm - a mathematical concept whose roots
date back to 600 AD with the invention of the decimal
system -- derives from the name of the Muslim
mathematician and astronomer, Mohammed ibn-Musa
al-Khwarizmi, who was part with the royal court in
Baghdad and who lived from about 780 to 850. The
use of computers, however, has elevated the use of
algorithms in daily transactions (like accessing an
automated teller machine (ATM), booking an air or
train or buying something online) to unprecedented
levels of real-world problems with solutions requiring
advanced algorithms abounds. And their use is only
likely to grow. Many of the problems, though they
may not seem realistic, require the set of well-defined
algorithmic knowledge that comes up every day in the
real world. By developing a good understanding of a
series of logical steps in an algorithmic language, you
will be able to choose the right one for a problem and
apply it properly.

The algorithm is written in human readable and
understandable form. To search an element in a given
array, it can be done in two ways: Linear search and
Binary search.

Linear Search:
Linear search is a very basic and simple search

algorithm. In this type of search, a sequential search is
made over all elements one by one. Every element is
checked and if a match is found then that particular
element is returned, otherwise the search continues till
the end of the data collection.

For Example:
To search the element 17 it will go step by step in

a sequence order:

8 10 12 15 17 20 25
=
17
Match not found

8 10 12 15 17 20 25
=
17
Match not found

8 10 12 15 17 20 25
=
17
Match not found

 8 10 12 15 17 20 25
=
17
Match not found

8 10 12 15 17 20 25
=
17
Match found
Element 17 is returned
Linear search (whose running time increases

linearly with the number of elements in the array. For
example if number of elements is doubled then, on
average, the search would take twice as long) is rarely
used practically because other search algorithms such
as the binary search algorithm and hash tables allow
significantly faster searching comparison to linear
search.

Binary Search
http://studytipsandtricks.blogspot.in/2012/08/expl

anation-of-local-and-global.html
Local variables:
Variable whose existence is known only to the

main program or functions are called local variables.
Local variables are declared with in the main program
or a function.

Global variables:
Variables whose existence is known to the both

main () as well as other functions are called global
variables. Global variables are declared outside the
main () and other functions.

The following Program illustrates the concept of

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

69

both local as well as global variables.
 #include<stdio.h>
 // Global variables
 int A;
 int B;
 int Add ()
 {
 return A + B;
 }
 int main ()
 {
 int answer; // Local variable
 A = 5;
 B = 7;
 answer = Add ();
 printf ("%d\n",answer);
 return 0;
 }
Consider the following two definitions of main

().
intmain ()
{
/* */
return0;
}

Run on IDE
and

intmain (void)
{
/* */
return0;
}

Run on IDE
What is the difference?
In C++, there is no difference, both are same.
Both definitions work in C also, but the second

definition with void is considered technically better as
it clearly specifies that main can only be called without
any parameter.

#include <stdio.h>
int main () {
char greeting [6] = {'H', 'e', 'l', 'l', 'o', '\0'};
printf ("Greeting message: %s\n", greeting);
return 0;
}
#include <stdio.h>
#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'
int main () {
int area;
area = LENGTH * WIDTH;
printf ("value of area: %d", area);
printf ("%c", NEWLINE);

return 0;
}
#include<stdio.h>
int main (){
constint LENGTH =10;
constint WIDTH =5;
constchar NEWLINE ='\n';
int area;
area = LENGTH * WIDTH;
printf ("value of area: %d", area);
printf ("%c", NEWLINE);
return0;
}
Note that it is a good programming practice to

define constants in CAPITALS.
Binary Search is applied on the sorted array or

list. In binary search, we first compare the value with
the elements in the middle position of the array. If the
value is matched, then we return the value. If the value
is less than the middle element, then it must lie in the
lower half of the array and if it's greater than the
element then it must lie in the upper half of the array.
We repeat this procedure on the lower (or upper) half
of the array. Binary Search is useful when there are
large numbers of elements in an array.

We shall learn the process of binary search with a
pictorial example. The following is our sorted array
and let us assume that we need to search the location
of value 31 using binary search.

First, we shall determine half of the array by

using this formula
mid = low + (high - low) / 2
Here it is, 0 + (9 - 0) / 2 = 4 (integer value of

4.5). So, 4 is the mid of the array.

Now we compare the value stored at location 4,

with the value being searched, i.e. 31. We find that the
value at location 4 is 27, which is not a match. As the
value is greater than 27 and we have a sorted array, so
we also know that the target value must be in the upper
portion of the array.

We change our low to mid + 1 and find the new

mid value again.
low = mid + 1
mid = low + (high - low) / 2
Our new mid is 7 now. We compare the value

stored at location 7 with our target value 31.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

70

The value stored at location 7 is not a match,

rather it is more than what we are looking for. So, the
value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is

5.

We compare the value stored at location 5 with

our target value. We find that it is a match.

We conclude that the target value 31 is stored at

location 5.
Binary search tree
Consider a array:

2
1
3
5
9
12
18
15
19
17
12 = root
Left subtree (lesser) < root
Right subtree (greater) > root

--
--- //

Program 3.3
C program to print whether the given number is

positive or negative
#include<stdio.h>
int main ()
{
int a;
a = -35;

if (a>0)
{
printf ("number is positive");
}
else
{
printf (" number entered is negative");
}
return 0;
}
The output on the screen:
number entered is negative

Since a = -35. Therefore:
a is less than 0 i.e., a < 0 because any negative

number is always less than zero.
The statement
{
printf ("number is negative");
}
is executed to print the output:
number entered is negative
Program 3.4
C program to print the sum of the first 10 digits

using for loop statement
#include<stdio.h>
int main ()
{
int i, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
printf ("sum of the first 10 digits =%d", sum);
return 0;
}
The output on the screen:
sum of the first 10 digits = 55
How the sum of the first 10 digits = 55 is

outputted on the screen through the for Loop
statement?

i=1 (sum = 0 because the sum is initialized to 0 in
the statement int i, sum = 0;)

Is i<=10 true?
Yes, do this
sum = sum + i = 0 +1 =1
Now,
i=2 (sum = 1)
Is i<=10 true?
Yes, do this
sum = sum + i = 1 +2 =3
Now,
i=3 (sum = 3)
Is i<=10 true?
Yes, do this
sum = sum + i = 3 +3 = 6
Now,

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

71

i=4 (sum = 6)
Is i<=10 true?
Yes, do this
sum = sum + i = 6 + 4= 10
Now,
i=5 (sum = 10)
Is i<=10 true?
Yes, do this
sum = sum + i = 10 + 5= 15
Now,
i=6 (sum = 15)
Is i<=10 true?
Yes, do this
sum = sum + i = 15 + 6 = 21
Now,
i=7 (sum = 21)
Is i<=10 true?
Yes, do this
sum = sum + i = 21 + 7 = 28
Now,
i=8 (sum = 28)
Is i<=10 true?
Yes, do this
sum = sum + i = 28 + 8 = 36
Now,
i=9 (sum = 36)
Is i<=10 true?
Yes, do this
sum = sum + i = 36 + 9 = 45
Now,
i=10 (sum = 45)
Is i<=10 true?
Yes, do this
sum = sum + i = 45 + 10 = 55
stops because the condition i<=10 is achieved
The statement:
printf ("sum of the first 10 digits =%d", sum);
is executed to print the output:
sum of the first 10 digits = 55

If the statement:
int i, sum = 0;
is replaced by int i, sum = 1;
Then the output on the screen is:
sum of the first10 digits = 56
What will be the output if the for loop statement

for (i =1; i<=10; i++) is replaced by the statement for
(i =2; i<10; i++)?

Answer: sum of 10 digits = 44
If the statement int i, sum, sum = 0; is written

instead of int i, sum = 0;
Then the compilation error message will be

displayed on the screen (stating that sum is twice
declared).

If the for loop is ended with a semicolon i.e.,
for (i=1; i<=10; i++);

Then the compilation error will be displayed on
the console screen.

Note:
sum = sum + a; is the same as sum + = a;
sub = sub- a; is the same as sub - = a;
product = product* a; is the same as product * =

a;
div = div / a; is the same as div /= a;
a = a% b; is the same as a % = b;
Program 3.5
C program to print the average of the first 10

numbers using for loop statement
#include<stdio.h>
int main ()
{
int i, avg, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
avg = sum/10;
printf ("sum of the first 10 numbers =%d", sum);
printf ("average of the first 10 numbers =%d",

avg);
return 0;
}
The output on the screen:
sum of the first 10 numbers = 55
average of the first 10 numbers = 5
The average of the first10 numbers = 55/10 = 5.5

not 5. But the output on the screen is:
average of the first 10 numbers = 5
because int is used instead of float.
If the data type float is used i.e.,
#include<stdio.h>
int main ()
{
float i, avg, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
avg = sum/10;
printf ("sum of the first10 numbers =%f", sum);
printf ("average of the first10 numbers = %f",

avg);
return 0;
}
The output on the screen:
sum of the first10 numbers = 55
average of the first 10 numbers = 5.5
Program 3.6
C program to print the product of the first 10

digits using for loop statement
#include<stdio.h>
int main ()
{
int i, product = 1;
for (i=1; i<=10; i++)
product = product * i;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

72

printf ("the product of the first 10 digits =%d",
product);

return 0;
}
The output on the screen:
the product of the first 10 digits = 3628800
How the product of the first 10 digits = 3628800

is outputted on the screen through the for Loop
statement?

i=1 (product = 1 because the product is initialized
to 1 in the statement int i, product = 1;)

Is i<=10 true?
Yes, do this
product = product * i = 1 * 1 =1
Now,
i=2 (product = 1)
Is i<=10 true?
Yes, do this
product = product * i = 1 * 2 = 2
Now,
i=3 (product = 2)
Is i<=10 true?
Yes, do this
product = product * i = 2 * 3 = 6
Now,
i=4 (product = 6)
Is i<=10 true?
Yes, do this
product = product * i = 6 * 4 = 24
Now,
i=5 (product =24)
Is i<=10 true?
Yes, do this
product = product * i = 24 * 5 =120
Now,
i=6 (product =120)
Is i<=10 true?
Yes, do this
product = product * i = 120 * 6 = 720
Now,
i=7 (product =720)
Is i<=10 true?
Yes, do this
product = product * i = 720 * 7 = 5040
Now,
i=8 (product =5040)
Is i<=10 true?
Yes, do this
product = product * i = 5040 * 8 = 40320
Now,
i=9 (product = 40320)
Is i<=10 true?
Yes, do this
product = product * i = 40320 * 9 = 362880
Now,
i=10 (product = 362880)

Is i<=10 true?
Yes, do this
product = product * i = 362880 * 10 = 3628800
stops because the condition i<=10 is achieved.
The statement:
printf ("the product of the first 10 digits =%d",

product); is executed to display the output:
the product of the first 10 digits = 3628800
If the statement int i, product = 1; is replaced by

int i, product = 0;
Then the output on the screen is:
the product of the first 10 digits = 0
If the statement for (i=1; i<=10; i++) is replaced

by for (i=5; i<=8; i++)
Then the output on the screen is:
the product of the first 10 digits = 1680
Program 3.7
C Program to print the table of a number using

the for loop statement
#include<stdio.h>
int main ()
{
int n, i;
printf ("Enter any number:");
scanf ("%d", & n);
for (i=1; i<=5; i++)
printf ("%d * %d = %d\n", n, i, n*i);
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2 (i.e., n=2)
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10
will be outputted on the screen.
How the execution takes its Way through the for

Loop statement
Since you entered the number 2, therefore: n=2.
i=1
Is i<=5 true?
Yes, print this
2 * 1 = 2
using the statement printf ("%d * %d = %d\n", n,

i, n*i);
Now,
i=2
Is i<=5 true?
Yes, print this
2 * 2 = 4
using the statement printf ("%d * %d = %d\n", n,

i, n*i);
Now,
i=3

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

73

Is i<=5 true?
Yes, print this
2 * 3 = 6
using the statement printf ("%d * %d = %d\n", n,

i, n*i);
Now,
i=4
Is i<=5 true?
Yes, print this
2 * 4 = 8
using the statement printf ("%d * %d = %d\n", n,

i, n*i);
Now,
i=5
Is i<=5 true?
Yes, print this
2 * 5 = 10
using the statement printf ("%d * %d = %d\n", n,

i, n*i);
stop Now because the condition i <=5 is

achieved.
If the symbol * is replaced by +
i.e.,
#include<stdio.h>
int main ()
{
int n, a;
printf ("Enter any number:");
scanf ("%d", & n);
for (i=1; i<=5; i++)
printf ("%d + %d = %d\n", n, i, n+ i);
return 0;
}
Then the output on the screen is:
Enter any number:
If you enter the number 2 (i.e., n=2)
2 + 1 = 3
2 + 2 = 4
2 + 3 = 5
2 + 4 = 6
2 + 5 = 7
will be outputted on the screen.
Program 3.8
C program:
If you enter a character M
Output must be: ch = M
#include<stdio.h>
int main ()
{
char M;
printf ("Enter any character:");
scanf ("%c", & M);
printf ("ch=%c", M);
return 0;
}
The output on the screen:

Enter any character:
If you enter the character M
ch = M will be outputted on the screen.
Note:
getchar () function is simplified version of the

scanf function
If we replace the statement scanf ("%c", &

 M); by the statement:
M = getchar ();
i.e.,
#include<stdio.h>
int main ()
{
char M;
printf ("Enter any character:");
M = getchar ();
printf ("ch=%c", M);
return 0;
}
There will be no change in the output on the

screen i.e., The output on the screen is:
Enter any character:
If you enter the character K
ch = K will be outputted on the screen.
putchar () function is simplified version of the

printf function
If we replace the statement printf ("ch=%c",

M);by the statement:
putchar (M); i.e.,
#include<stdio.h>
int main ()
{
char M;
printf ("Enter any character:");
scanf ("%c", & M);
putchar (M);
return 0;
}
Then there will be no change in the output on the

screen i.e., The output on the screen is:
Enter any character:
If you enter the character M
M will be outputted on the screen.
If you replace the statement scanf ("%c",

& M); by the statement:
M = getchar ();
and the statement printf ("ch=%c", M);by the

statement:
putchar (M); i.e.,
#include<stdio.h>
int main ()
{
char M;
printf ("Enter any character:");
M = getchar ();
putchar (M);

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

74

return 0;
}
The output on the screen:
Enter any character:
If you enter the character S
S will be outputted on the screen.
Program 3.9
C program to print the first 5 numbers starting

from one together with their squares.
#include<stdio.h>
int main ()
{
int i;
for (i=1; i<=5; i++)
printf ("number=%d its square=%d\n", i, i*i);
return 0;
}
The output on the screen:
number=1 its square=1
number=2 its square=4
number=3 its square=9
number=4 its square=16
number=5 its square=25
How the execution takes its way through the for

loop statement
i=1
Is i<=5 true?
Yes, print this
number=1 its square=1
using the statement printf ("number=%d its

square=%d\n", i, i*i);
Now,
i=2
Is i<=5 true?
Yes, print this
number=2 its square=4
using the statement printf ("number=%d its

square=%d\n", i, i*i);
Now,
i=3
Is i<=5 true?
Yes, print this
number=3 its square=9
using the statement printf ("number=%d its

square=%d\n", i, i*i);
Now,
i=4
Is i<=5 true?
Yes, print this
number=4 its square=16
using the statement printf ("number=%d its

square=%d\n", i, i*i);
Now,
i=5
Is i<=5 true?
Yes, print this

number=5 its square=25
using the statement printf ("number=%d its

square=%d\n", i, i*i);
stop Now because the condition (i<=5) is

achieved.
Note:
If the statement
printf ("number=%d its square=%d\n", i, i*i);
is replaced by the statement:
printf ("\n number=%d/t its square=%d", i, i*i);

Then the output on the screen is:
number=1 its square=1
number=2 its square=4
number=3 its square=9
number=4 its square=16
number=5 its square=25

tab /t is included because to leave space between
number=1 and its square=1
Suppose printf ("number=%d its square=%d", a,

a*a); is replaced by the statement:
printf ("number=%d\n its square=%d\n", a, a*a);
The output on the screen is:
number=1
its square=1
number=2
its square=4
number=3
its square=9
number=4
its square=16
number=5
its square=25
And if you replace the printf statement:
printf ("number=%d its square=%d", a, a*a); by

the statement:
printf ("number=%d\n, its square=%d\n", a, a*a);
i.e., if you place variable separator (i.e., comma)

between number=%d\n and its square=%d\n
Then the compilation error will be displayed on

the screen.
Write a program to print the first 10 numbers

starting from one together with their squares and
cubes?

Answer:
#include<stdio.h>
int main ()
{
int i;
for (i=1; i<=10; i++)
printf ("number=%d its square=%d its

cube=%d\n", i, i*i, i*i*i);
return 0;
}
Program 4.0
C program to print the sum of two numbers using

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

75

pointers
If we create an integer variable x by declaring the

statement:
int x;
within the body of the main function int main ()

-- this variable is stored in the computer memory i.e.,
this variable occupies a specific location in the space
of computer memory.

And this integer variable x is assigned an address
(i.e., & x) to locate its position in the computer
memory (like a house in the street is assigned an
address to locate its position in the street).

Pointers are the variables that represent the
address of x in the computer memory i.e., p = & x,
where & x imply the address of x in the
computer memory and p is the pointer variable (which
is the variable that represent the address of x in the
computer memory).

And further if you assign a value to the variable x
by declaring the statement:

x=1;
within the body of the main functionthis value is

stored in the address of x in the computer memory. "*"
denote pointer operator and *p denote the pointer

(which represent the value stored in the address
of x in the computer memory).

C program to print the address of x and the value
assigned to x

#include <stdio.h>
int main ()
{
int x, *p;
x = 1;
p = & x;
printf ("The address of the variable x =%d", p);
printf ("The value of the variable x =%d", *p);
return 0;
}
The output on the screen:
The address of the variable x = 0x7fffc60478a4
The value of the variable x = 1
Since p = & x:
*p= * & x
The value of the variable x = 1 because you have

assigned a value to the variable x by declaring the
statement:

x=1;
within the body of the main function.
If the statements:
printf ("The address of the variable x =%d", p);
printf ("The value of the variable x =%d", *p);
are replaced by the statement:
printf ("The address of the variable x =%d and its

value =%d", p,*p);
i.e.,
#include <stdio.h>

int main ()
{
int x, *p;
x=1;
p = & x;
printf ("The address of the variable x =%d and its

value =%d", p,*p);
return 0;
}
Then the output on the screen is:
The address of the variable x =

0x7fffc60478a4and its value = 1

#include <stdio.h>
int main ()
{
int x, y, *p, *q, sum;
printf ("Enter any number:");
scanf ("%d", & x);
printf ("Enter any number:");
scanf ("%d", & y);
p = & x;
q = & y;
sum = *p + *q;
printf ("Sum of entered numbers = %d\n", sum);
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2
Enter any number:
If you enter the number 3
Sum of entered numbers = 5 will be outputted on

the screen.
Since pointer *p imply the value assigned to the

variable x (i.e., 2) through the keyboard and the
pointer *q imply the value assigned to the variable y
(i.e., 3) through the keyboard. Therefore:

sum = *p + *q = 2 + 3 = 5 (which will be
outputted on the screen)

C program to print the product, subtraction and
division of two numbers using pointers

#include <stdio.h>
int main ()
{
int x, y, *p, *q, product, subtract, div;
printf ("Enter any number:");
scanf ("%d", & x);
printf ("Enter any number:");
scanf ("%d", & y);
p = & x;
q = & y;
product = *p * *q;
subtract = *p - *q;
div= *p / *q;
printf ("product of entered numbers = %d\n",

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

76

product);
printf ("subtract of entered numbers = %d\n",

subtract);
printf ("division of entered numbers = %d\n",

div);
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 4
Enter any number:
If you enter the number 2
product of entered numbers = 8
subtract of entered numbers = 2
division of entered numbers = 2
will be outputted on the screen.
C program to find the greatest of two numbers

using pointers
#include<stdio.h>
int main ()
{
int x, y, *p, *q;
printf ("Enter any integer:");
scanf ("%d", & x);
printf ("Enter any integer:");
scanf ("%d", & y);
p = & x;
q = & y;
if (*p>*q)
{
printf ("x is greater than y");
}
if (*q>*p)
{
printf ("y is greater than x");
}
return 0;
}
The output on the screen:
Enter any integer:
If you enter the integer 10
Enter any integer:
If you enter the integer 16
y is greater than x will be outputted on the

screen.
What is the output of the following programs:
i)
#include <stdio.h>
int main ()
{
int x;
x=12;
printf ("per = %d%", x);
return 0;
}
Answer:

per=12
ii)
#include <stdio.h>
int main ()
{
int x, t, c;
x =12;
t = 2;
c = x/t;
printf ("velocity = %d m/s", c);
return 0;
}
Answer:
velocity = 6 m/s
Program 4.1
C program to print the sum of two numbers using

functions
#include<stdio.h>
int addition ();
int main ()
{
int answer;
answer = addition ();
printf ("The sum of two numbers

is: %d\n",answer);
return 0;
}
int addition ()
{
int x, y;
printf ("Enter any integer:");
scanf ("%d", & x);
printf ("Enter any integer:");
scanf ("%d", & y);
return x+y;
}
The output on the screen:
Enter any integer:
If you enter the integer 3
Enter any integer:
If you enter the integer 5
sum of two numbers = 8 will be displayed on the

screen.
int addition (); // the statement implies function

declaration
int means integer and int addition () implies:

addition () should return integer value.
int addition ()// implies: the function to add the

entered values (i.e., 3 and 5) and return the result (i.e.,
3 + 5 i.e., 8) to the statement:

printf ("sum of two numbers = %d", answer); to
 make provision to display the output:
sum of two numbers = 8
{
int x, y;
printf ("Enter any integer:");

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

77

scanf ("%d", & x);
printf ("Enter any integer:");
scanf ("%d", & y);
return x+y;
} // implies: the body of the function int addition

()
answer = addition (); // implies: the function call

i.e., this statement calls the function:
addition ()
to add the entered values (i.e., 3 and 5) and return

the result (i.e., 3 + 5 i.e., 8)
to the statement:
printf ("sum of two numbers = %d", answer);
to make provision to display the output:
sum of two numbers = 8
on the screen.
In the statement:
printf ("sum of two numbers=%d", answer);
the format string %d indicates that the value to be

displayed at that point in the string i.e., after the
statement:

sum of two numbers =
needs to be taken from the result returned by the

function int addition ().
C program to print the product of two numbers

using functions
#include<stdio.h>
int multiplication ();
int main ()
{
int answer;
answer = multiplication ();
printf ("The product of two numbers

is: %d\n",answer);
return 0;
}
int multiplication ()
{
int x, y;
printf ("Enter any integer:");
scanf ("%d", & x);
printf ("Enter any integer:");
scanf ("%d", & y);
return x*y;
}
The output on the screen:
Enter any integer:
If you enter the integer 3
Enter any integer:
If you enter the integer 5
product of two numbers = 15 will be outputted on

the screen.
C program to print the greatest of two numbers

using functions
#include<stdio.h>
int largest ();

int main ()
{
int answer;
answer = largest ();
printf ("The largest of two numbers

is: %d\n",answer);
return 0;
}
int largest ()
{
int x, y;
printf ("Enter any integer:");
scanf ("%d", & x);
printf ("Enter any integer:");
scanf ("%d", & y);
if (x>y)
return x;
if (y>x)
return y;
}
The output on the screen:
Enter any integer:
If you enter the integer 3
Enter any integer:
If you enter the integer 5
largest of two numbers= 5 will be outputted on

the screen.
C program to print the greatest of three numbers

using functions
#include<stdio.h>
int largest ();
int main ()
{
int answer;
answer = largest ();
printf ("largest of three numbers=%d", answer);
return 0;
}
int largest ()
{
int x, y, z;
printf ("Enter any integer:");
scanf ("%d", & x);
printf ("Enter any integer:");
scanf ("%d", & y);
printf ("Enter any integer:");
scanf ("%d", & z);
if (x>y & & x>z)
return x;
if (y>x & & y > z)
return y;
if (z>x & & z>y)
return z;
}
The output on the screen:
Enter any integer:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

78

If you enter the integer 3
Enter any integer:
If you enter the integer 5
Enter any integer:
If you enter the integer 10
largest of three numbers = 10 will be outputted

on the screen.
C program to print the square of the number

using functions
#include<stdio.h>
int square ();
int main ()
{
int answer;
answer = square ();
printf ("square of the given number=%d",

answer);
}
int square ()
{
int x;
printf ("Enter any integer:");
scanf ("%d", & x);
return x*x;
}
The output on the screen is:
Enter any integer:
If you enter an integer 5
square of the number = 25 will be outputted on

the screen.
What is the output of the following program:
#include<stdio.h>
int main ()
{
int x;
x=6;
printf ("The address of x = %d", & x);
return 0;
}
Answer:
The address of x = -604171156
Program 4.2
Switch (case) allows to make decision from the

number of choices i.e., from the number of cases
For example:
#include<stdio.h>
int main ()
{
char ch;
printf ("Enter any character:");
scanf ("%c", & ch);
switch (ch)
{
case 'R':
printf ("Red");
break;

case 'W':
printf ("White");
break;
case 'Y':
printf ("Yellow");
break;
case 'G':
printf ("Green");
break;
default:
printf ("Error");
break;
}
return 0;
}
The output on the screen:
Enter any character:
If you enter a character R
Red will be outputted on the screen.
switch (ch) allow to make decision from the

number of choices i.e., from the number of cases
case 'R':
case 'W':
case 'Y':
case 'G':
Since we have entered the character R (which

corresponds to case 'R':)
The statement
printf ("Red");
is executed to display the output:
Red
on the screen.
Suppose you enter a character K
Then the output on the screen is:
Error
(Entered character K does not correspond to any

of the cases:
case 'R':
case 'W':
case 'Y':
case 'G':
Therefore the statement:
printf ("Error");
is executed to display the output:
Error
on the screen).
If the statements:
case 'R':
printf ("Red");
break;
case 'W':
printf ("White");
break;
case 'Y':
printf ("Yellow");
break;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

79

case 'G':
printf ("Green");
break;
default:
printf ("Error");
break;
are replaced by the statements:
case 'R':
printf ("Red");
case 'W':
printf ("White");
case 'Y':
printf ("Yellow");
break;
case 'G':
printf ("Green");
break;
default:
printf ("Error");
break;
Then the output on the screen is:
Red
White
Yellow
i.e., the output will be printed till yellow even

though you have entered the character R.
Program 4.3
C program to print the output:
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
using arrays:
#include<stdio.h>
int main ()
{
int i;
int num [5] = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
printf ("\n Element [%d] = %d", i, num [i]);
return 0;
}
The output on the screen:
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
The statement:
int num [5] = {16, 18, 20, 25, 36};
imply that we are creating an integer array (and

the name of array is num) consisting of 5 values (i.e.,
16, 18, 20, 25, 36) of the same data type int.

The number of values between the braces { }
cannot be larger than the number of values that we

declare for the array between square brackets [].
There are 5 integers i.e., 16, 18, 20, 25, 36 within

the braces { }, so 5 is written within the square
brackets [].

If there were 6 integers i.e., 16, 18, 20, 25, 36, 42
within the braces { }, then 6 must be written within the
square brackets [].

Note: With the declaration int num [5], computer
creates 5 memory cells with name num [0], num [1],
num [2], num [3], num [4].

And since:
int num [5] = {16, 18, 20, 25, 36};
the values 16, 18, 20, 25, 36 are stored in num [0],

num [1], num [2], num [3], num [4] respectively.
How the execution takes its way through the for

loop statement
i=0
Is i<5 true?
Yes, print this
Element [0] = 16
using the statement:
printf ("\n Element [%d] = %d", i, num [i])
format string %d in the square brackets indicates

that the value to be displayed at that point in the string
i.e., with the square brackets [] needs to be taken from
a variable (which is i i.e., i=0) and the format
string %d after the statement (\n Element [%d] =)
indicates that the value to be displayed at that point in
the string i.e., after the statement (\n Element [%d] =)
needs to be taken from a variable (which is stored in
num [i] i.e., num [0] i.e., 16).

Now,
i=1
Is i<5 true?
Yes, print this
Element [1] = 18
using the statement:
printf ("\n Element [%d] = %d", i, num [i])
format string %d in the square brackets indicates

that the value to be displayed at that point in the string
i.e., with the square brackets [] needs to be taken from
a variable (which is i i.e., i=1) and the format
string %d after the statement (\n Element [%d] =)
indicates that the value to be displayed at that point in
the string i.e., after the statement (\n Element [%d] =)
needs to be taken from a variable (which is stored in
num [i] i.e., num [1] i.e., 18).

Now,
i=2
Is i<5 true?
Yes, print this
Element [2] = 20
using the statement:
printf ("\n Element [%d] = %d", i, num [i])
format string %d in the square brackets indicates

that the value to be displayed at that point in the string

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

80

i.e., with the square brackets [] needs to be taken from
a variable (which is i i.e., i=2) and the format
string %d after the statement (\n Element [%d] =)
indicates that the value to be displayed at that point in
the string i.e., after the statement (\n Element [%d] =)
needs to be taken from a variable (which is stored in
num [i] i.e., num [2] i.e., 20).

Now,
i=3
Is i<5 true?
Yes, print this
Element [3] = 25
using the statement:
printf ("\n Element [%d] = %d", i, num [i])
format string %d in the square brackets indicates

that the value to be displayed at that point in the string
i.e., with the square brackets [] needs to be taken from
a variable (which is i i.e., i=3) and the format
string %d after the statement (\n Element [%d] =)
indicates that the value to be displayed at that point in
the string i.e., after the statement (\n Element [%d] =)
needs to be taken from a variable (which is stored in
num [i] i.e., num [3] i.e., 25).

Now,
i=4
Is i<5 true?
Yes, print this
Element [4] = 36
using the statement:
printf ("\n Element [%d] = %d", i, num [i])
Stop because the condition i<5 is achieved.
format string %d in the square brackets indicates

that the value to be displayed at that point in the string
i.e., with the square brackets [] needs to be taken from
a variable (which is i i.e., i=4) and the format
string %d after the statement (\n Element [%d] =)
indicates that the value to be displayed at that point in
the string i.e., after the statement (\n Element [%d] =)
needs to be taken from a variable (which is stored in
num [i] i.e., num [4] i.e., 36).

Suppose the statement:
printf ("\n Element [%d] = %d", i, num [i]); is

replaced by the statement:
printf ("\n Element [%d] = %d", i, num [0]);
Then the output on the screen:
Element [0] = 16
Element [1] = 16
Element [2] = 16
Element [3] = 16
Element [4] = 16
Suppose the statement:
printf ("\n Element [%d] = %d", i, num [i]); is

replaced by the statement:
printf ("\n Element [%d] = %d", i, num [1]);
The output on the screen:
Element [0] = 18

Element [1] = 18
Element [2] = 18
Element [3] = 18
Element [4] = 18
Suppose the statement:
printf ("\n Element [%d] = %d", i, num [i]); is

replaced by the statement:
printf ("\n Element [%d] = %d", i, num [2]);
The output on the screen:
Element [0] = 20
Element [1] = 20
Element [2] = 20
Element [3] = 20
Element [4] = 20
Suppose the statement:
printf ("\n Element [%d] = %d", i, num [i]); is

replaced by the statement:
printf ("\n Element [%d] = %d", i, num [3]);
The output on the screen:
Element [0] = 25
Element [1] = 25
Element [2] = 25
Element [3] = 25
Element [4] = 25
Suppose the statement:
printf ("\n Element [%d] = %d", i, num [i]); is

replaced by the statement:
printf ("\n Element [%d] = %d", i, num [4]);
The output on the screen:
Element [0] = 36
Element [1] = 36
Element [2] = 36
Element [3] = 36
Element [4] = 36
If the condition:
i<5
is replaced by the condition:
i<=5
Then the output on the screen is:
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
Element [5] = 3656
3656 is the number stored in the memory i.e., any

number stored in the memory will be displayed.
If the statement:
int num [5] = {16, 18, 20, 25, 36}; is replaced by

the statement:
 int num [i] = {16, 18, 20,

25, 36};
Then the compilation will be displayed on the

screen because there are 5 elements within the braces {}
not i elements.

Note:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

81

C program to print the sum of the elements in
array.

#include<stdio.h>
int main ()
{
int i, sum = 0;
int num [5] = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
sum = sum + num [i];
printf ("Sum of the Elements in the array = %d",

sum);
return 0;
}
The output on the screen:
Sum of the Elements in the array = 115
i.e., 16 + 18 + 20 + 25 + 36 = 115
How the Execution takes its way through the for

loop statement
i=0 (sum = 0)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [0] = 0 +16

=16
Now,
i=1 (sum = 16)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [1] = 16 +18

=34
Now,
i=2 (sum = 34)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [2] = 34 +20

=54
Now,
i=3 (sum = 54)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [3] = 54 +25

=79
Now,
i=5 (sum = 79)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [5] = 79 + 36

=115
stop because the condition i<5 is achieved
The statement:
printf ("Sum of the Elements in the array = %d",

sum); is executed to display the output:
Sum of the Elements in the array = 115
on the screen.
If the statement:
int i, sum = 0;
is replaced by int i, sum = 1;

Then The output on the screen:
Sum of the Elements in the array = 116
C program to print the average of the elements in

array
#include<stdio.h>
int main ()
{
int i, avg, sum = 0;
int num [5] = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
sum = sum + num [i];
avg = sum/5;
printf ("Sum of the Elements in the array = %d",

sum);
printf ("average of the elements in the

array= %d", avg);
return 0;
}
The output on the screen:
Sum of the Elements in the array = 115
average of the elements in the array = 23
Write a program to print:
Einstein [0] = E
Einstein [1] = I
Einstein [2] = N
Einstein [3] = S
Einstein [4] = T
Einstein [5] = E
Einstein [6] = I
Einstein [7] = N
using arrays
Answer:
#include<stdio.h>
int main ()
{
int i;
char name [8] = {' E', ' I', ' N', ' S', ' T ', ' E', ' I', '

N'};
for (i=0; i<8; i++)
printf ("\n Element [%d] = %c", i, name [i]);
return 0;
}
Note:
If the format string %d is used instead of %c i.e.,

if the statement:
printf ("\n Element [%d] = %c", name [i], name

[i]); is written instead of the statement:
printf ("\n Element [%c] = %c", name [i], name

[i]);

Then the output on the screen is:
Element [69] = E
Element [73] = I
Element [78] = N
Element [83] = S
Element [84] = T

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

82

Element [69] = E
Element [73] = I
Element [78] = N
What will be the output of the following

programs?
i)
#include <stdio.h>
#include <math.h>
int main ()
{
printf ("%f", cbrt (27));
return 0;
}
Answer:
3.000
ii)
#include <stdio.h>
int main ()
{
char i;
char body [4] = {'b', 'o', 'd', 'y'};
for (i=0; i<4; i++)
printf ("\n body [%c] = %c", body [i], body [i]);
return 0;
}
Answer:
body [b] = b
body [o] = o
body [d] = d
body [y] = y
iii)
#include <stdio.h>
#include <malloc.h>
int main ()
{
int x=2;
printf ("%d", malloc (200*sizeof (x)));
return 0;
}
Answer:
8183824
What is the mistake in the following program:
#include<stdio.h>
int main ()
{
int i;
int num [] = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
printf ("\n Element [%d] = %d", i, num [i]);
return 0;
}
Answer: There is no mistake in the above

program. The output on the screen is:
Element [0] = 16
Element [1] = 18
Element [2] = 20

Element [3] = 25
Element [4] = 36
Program 4.3
C program to print the output:
Name of the book = B
Price of the book = 135.00
Number of pages = 300
Edition = 8
using structures
#include<stdio.h>
int main ()
{
struct book {
char name;
float price;
int pages;
int edition;
};
struct book b1;
b1.name = 'B';
b1.price = 135.00;
b1.pages = 300;
b1.edition = 8;
printf ("\n Name of the book = %c", b1.name);
printf ("\n Price of the book = %f", b1.price);
printf ("\n Number of pages = %d", b1.pages);
printf ("\n Edition of the book = %d", b1.edition);
return 0;
}
The output on the screen:
Name of the book = B
Price of the book = 135.00
Number of pages = 300
Edition of the book = 8
The statement:
struct book {
char name;
float price;
int pages;
int edition;
};
imply the structure definition i.e., we are defining

a structure (and the data type name of the structure is
book) and it consists of elements:

name (which is of data type char), price (which is
of data type float), pages (which is of data type int),
edition (which is of data type int) which are placed
within the body of the structure.

The statement:
struct book b1;
imply the structure variable declaration (where

b1 denote the structure variable)
Why structure variable b1 is declared or defined?
In order to assign the values to the elements

within the body of the structure, each element must be
linked with structure variable with dot operator or

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

83

period operator or member accessibility operator.
For example: name is the element which must be

linked with structure variable b1 with dot operator to
assign a value B to the element name.

format string %c (corresponding to the data type
char) in the statement:

printf ("\n Name of the book = %c", b1.name);
indicates that the value to be displayed at that

point in the string i.e., after the statement (\n Name of
the book =) needs to be taken from b1.name.

The statement:
printf ("\n Name of the book = %c", b1.name);
make provision to print the output:
Name of the book = B
on the screen.
format string %f (corresponding to the data type

float) in the statement:
printf ("\n Price of the book = %f", b1.price);
indicates that the value to be displayed at that

point in the string i.e., after the statement (\n Price of
the book =) needs to be taken from b1.price.

The statement:
printf ("\n Price of the book = %f", b1.price);
make provision to print the output:
Price of the book = 135.00
on the screen.
format string %d (corresponding to the data type

int) in the statement:
printf ("\n Number of pages = %d", b1.pages);
indicates that the value to be displayed at that

point in the string i.e., after the statement (\n Number
of pages =) needs to be taken from b1.pages.

The statement:
printf ("\n Number of pages = %d", b1.pages);
make provision to print the output:
Number of pages = 300
on the screen.
format string %d (corresponding to the data type

int) in the statement:
printf ("\n Edition of the book = %d", b1.edition);
indicates that the value to be displayed at that

point in the string i.e., after the statement (\n Edition of
the book =) needs to be taken from b1.edition.

The statement:
printf ("\n Edition of the book = %d", b1.edition);
make provision to print the output:
Edition of the book = 8
on the screen.
What will be output of the following programs?
A)
#include<stdio.h>
struct book {
char name;
float price;
int pages;
int edition;

};
int main ()
{
struct book b1;
b1.name = 'B';
b1.price = 135.00;
b1.pages = 300;
b1.edition = 8;
printf ("\n Name of the book = %c", b1.name);
printf ("\n Price of the book = %f", b1.price);
printf ("\n Number of pages = %d", b1.pages);
printf ("\n Edition of the book = %d", b1.edition);
}
Answer:
Name of the book = B
Price of the book = 135.000000
Number of pages = 300
Edition of the book = 8
B)
#include <stdio.h>
int main (){
for (;;) {
printf ("This loop will run forever.\n");
}
return 0;
}
Answer:
This loop will run forever.
This loop will run forever.
This loop will run forever.
This loop will run forever.
This loop will run forever.
This loop will run forever.......... continues
C)
#include<stdio.h>
int main ()
{
char ch [5];
printf ("Enter the name: ");
scanf ("%s", & ch);
printf ("the name you entered = %s", ch);
return 0;
}
Answer:
Enter the name:
If you enter the name Dennis
the name you entered = Denni will be outputted

on the screen.
Instead of Dennis, only Denni will be displayed

on the screen because of the statement char ch [5];
The statement:
char ch [5];
make provision only for 5 lettered name to be

displayed on the screen.
If the statement:
char ch [5]; is replaced by the statement char ch

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

84

[6];
Then the output on the screen is:
Enter the name:
If you enter the name Dennis
the name you entered = Dennis will be outputted

on the screen.
Note: %s implies the format specifier for string.
Program 4.4
Continue and break statements:
i)
#include <stdio.h>
int main ()
{
int i;
for (i=1; i<=5; i++)
{
if (i==3)
{
continue;
}
printf ("%d\n ", i);
}
return 0;
}
Output on the screen:
1
2
4
5
Note:
i = 1
Is the condition (i<=5) is true?
Yes because i=1
The statement printf ("%d\n ", i); is executed to

print the output:
1
Now, the value of i is:
i = 1+1 = 2
Is the condition (i<=5) is true?
Yes because i=2
The statement printf ("%d\n ", i); is executed to

print the output:
2
Now, the value of i is:
i = 2+1 = 3
Is the condition (i<=5) is true?
Yes because i=3
The statement printf ("%d\n ", i); is not executed

to print the output:
3
Because of the statement:
if (i==3)
{
continue;
}
// Execution skips //

Now, the value of i is:
i = 3+1 = 4
Is the condition (i<=5) is true?
Yes because i=4
The statement printf ("%d\n ", i); is executed to

print the output:
4
Now, the value of i is:
i = 4+1 = 5
Is the condition (i<=5) is true?
Yes because i=5
The statement printf ("%d\n ", i); is executed to

print the output:
5
and stop because the condition i<=5 is achieved.
ii)
#include <stdio.h>
int main ()
{
int i;
for (i=1; i<=5; i++)
{
if (i==3)
{
break;
}
printf ("%d\n ", i);
}
return 0;
}
Output on the screen:
1
2
Note:
i = 1
Is the condition (i<=5) is true?
Yes because i=1
The statement printf ("%d\n ", i); is executed to

print the output:
1
Now, the value of i is:
i = 1+1 = 2
Is the condition (i<=5) is true?
Yes because i=2
The statement printf ("%d\n ", i); is executed to

print the output:
2
Now, the value of i is:
i = 2+1 = 3
Is the condition (i<=5) is true?
Yes because i=3
The statement printf ("%d\n ", i); is not executed

to print the output:
Because of the statement:
if (i==3)
{

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

85

break;
}
The for loop:
for (i=1; i<=5; i++)
is immediately terminated (even before the

condition i<=5 is achieved) and program execution
stops.

//--
--

The goto statement:
#include <stdio.h>
int main ()
{
int i;
for (i=1;i<=5;i++)
{
if (i==3)
{
goto HAI;
}
printf ("\n %d ",i);
}
HAI: printf ("\n Linux");
}
Output on the screen:
1
2
Linux
Note:
i = 1
Is the condition (i<=5) is true?
Yes because i=1
The statement printf ("\n %d ",i); is executed to

print the output:
1
Now, the value of i is:
i = 1+1 = 2
Is the condition (i<=5) is true?
Yes because i=2
The statement printf ("\n %d ",i); is executed to

print the output:
2
Now, the value of i is:
i = 2+1 = 3
Is the condition (i<=5) is true?
Yes because i=3
The statement printf ("%d\n ", i); is not executed

to print the output:
3
Rather
The statement printf ("\n Linux"); is executed to

print the output:
Linux
Because of the statement:
if (i==3)

{
goto HAI;
}
The for loop:
for (i=1; i<=5; i++)
is immediately terminated (even before the

condition i<=5 is achieved) and program execution
stops.

--//

Program 4.5
C program to convert the upper case letter to

lower case letter
#include<stdio.h>
int main ()
{
char ch = 'A';
char b = tolower (ch);
printf ("upper case letter %c is converted to lower

case letter %c", ch, b);
return 0;
}
Output on the screen:
upper case letter A is converted to lower case

letter a
If you want to enter the character through the

keyboard, then the above program should take the
form:

#include<stdio.h>
int main ()
{
char ch;
printf ("Enter any character:");
scanf ("%c", & ch);
char b = tolower (ch);
printf ("upper case letter %c is converted to lower

case letter %c", ch, b);
return 0;
}
Output on the screen:
Enter any character:
If you enter the character C
upper case letter C is converted to lower case

letter c will be outputted on the screen.
Program 4.6
C program to convert the lower case letter to

upper case letter
#include<stdio.h>
int main ()
{
char ch = 'a';
char b = toupper (ch);
printf ("lower case letter %c is converted to upper

case letter %c", ch, b);
return 0;
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

86

Output on the screen:
lower case letter a is converted to upper case

letter A

If you want to enter the character through the

keyboard, then the above program should take the
form:

#include<stdio.h>
int main ()
{
char ch;
printf ("Enter any character:");
scanf ("%c", & ch);
char b = toupper (ch);
printf ("lower case letter %c is converted to upper

case letter %c", ch, b);
return 0;
}
Output on the screen:
Enter any character:
If you enter the character h
lower case letter h is converted to upper case

letter H will be outputted on the screen.
Program 4.7
C program to test whether the entered character is

upper case letter or not
#include<stdio.h>
int main ()
{
char ch = 'a';
if (isupper (ch))
printf ("you have entered the upper case letter");
else
printf ("you have entered the lower case letter");
return 0;
}
Output on the screen:
you have entered the lower case letter
If the statement:
char ch = 'a'; is replaced by the statement:
char ch = 'A';
Then the output on the screen is:
you have entered the upper case letter
Program 4.8
C program to test whether the entered character is

lower case letter or not
#include<stdio.h>
int main ()
{
char ch = 'a';
if (islower (ch))
printf ("you have entered the lower case letter");
else
printf ("you have entered the upper case letter");
return 0;
}

Output on the screen:
you have entered the lower case letter
Program 4.9
C program to print the value of tan inverse x (i.e.,

the value of tan-1x)
#include<stdio.h>
#include<math.h>
int main ()
{
int x = 20;
printf ("the value of tan inverse x = %f", atan

(x));
return 0;
}
Output on the screen:
the value of tan inverse x = 1.520838
Program 5.0
C program to print the value of tan inverse x/y

(i.e., the value of tan-1x/y)
#include<stdio.h>
#include<math.h>
int main ()
{
int x,y;
x = 20;
y =20;
printf ("the value of tan inverse x/y = %f",

atan2(x,y));
return 0;
}
Output on the screen:
the value of tan inverse x/y = 0.785398
Program 5.1
C program to print the value of fmod (x, y)
#include<stdio.h>
#include<math.h>
int main ()
{
float x = 20.500000;
float y =20.799999;
printf ("the remainder of %f divided by %f is %f",

x, y, fmod (x,y));
return 0;
}
Output on the screen:
the remainder of 20.500000 divided by

20.799999 is 20.500000
Program 5.2
C program to print the value of ~x
#include<stdio.h>
int main ()
{
int x, y;
x = 205;
y=~x;
printf ("the value of y is:%d", y);

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

87

return 0;
}
Output on the screen:
the value of y is:-206

If the statement:
y=~x; is replaced by the statement:
y= -(~x);
Then the output on the screen is:
the value of y is: 206
Program 5.3
C program to print the ASCII (American

Standard Code for Information Interchange) value of
the entered character

#include<stdio.h>
int main ()
{
char ch ='A';
printf ("the ASCII value of ch is: %d", ch);
return 0;
}
Output on the screen:
the ASCII value of ch is: 65

If the statement:
printf ("the ASCII value of ch is: %d", ch);
is replaced by the statement:
printf ("the ASCII value of ch is: %c", ch);
Then the output on the screen is:
the ASCII value of ch is: A
What will be the output of the following

programs:
i)
#include<stdio.h>
int main ()
{
int i;
int num [5] ={16,18,19,20,21};
for (i=0;i<5;i++)
printf ("\n Element = %d", num [i] +1);
return 0;
}
Answer:
Element = 17
Element = 19
Element = 20
Element = 21
Element = 22
ii)
#include<stdio.h>
int main ()
{
int i = 54;
int y = i<<1;
printf ("The value of y = %d", y);

return 0;
}
Answer:
The value of y = 108

If the statement:
i<<1 is replaced by the statement: i<<2
Then the output on the screen is:
The value of y = 216
Note:
i<<1 implies 54 * 2 = 108
i<<2 implies 54 * 4 = 216
i<<3 implies 54 * 6 = 324
i<<4 implies 54 * 8 = 432
iii)
#include<stdio.h>
int main ()
{
int i = 54;
int y = i>>1;
printf ("The value of y = %d", y);
return 0;
}
Answer:
The value of y = 27
If the statement:
i>>1 is replaced by the statement: i>>2
Then the output on the screen is:
The value of y = 13
Note:
i>>1 implies 54 / 2 = 27
i>>2 implies 54 / 4 = 13
i>>3 implies 54 / 6 = 9
i>>4 implies 54 / 8 = 6
<< implies: left shift operator
 >> implies: right shift operator
Program 5.4
C program to print the length of the entered

character (i.e., to print the length of the string)
#include<stdio.h>
#include<string.h>
int main ()
{
char ch [4];
printf ("Enter any word: ");
scanf ("%c", & ch);
printf ("The length of the string = %d", strlen

(ch));
return 0;
}
Output on the screen:
Enter any word:
If you enter the word dog
The length of the string = 3
 will be displayed on the console screen

because there are three letters in the word dog.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

88

Suppose if you enter the word tech
The length of the string = 4
 will be displayed on the console screen

because there are four letters in the word tech.
Program 5.5
C program to print the factorial of the entered

number
#include<stdio.h>
int main ()
{
int i, n, fact=1;
printf ("Enter any number:");
scanf ("%d", & n);
for (i=1; i<=n; i++)
fact = fact *i;
printf ("\n Entered number is: %d", n);
printf ("\n The factorial of the entered

number %d is: %d", n, fact);
return 0;
}
Output on the screen:
Enter any number:
If you enter the number 2
Entered number is: 2
The factorial of the entered number 2 is: 2
will be displayed on the screen.
Suppose if you enter the number 4
Entered number is: 4
The factorial of the entered number 4 is: 24
will be displayed on the screen.

What will be the output of the following

program:
#include <stdio.h>
int main ()
{
printf ("\nLinux \' linux ");
printf ("\nLinux \? linux ");
return0;
}
Answer:
Linux ' linux
Linux? linux
#include<stdio.h>
#include<stdlib.h>
int main () {
printf ("linux\n");
exit (0);
printf ("php\n");
return 0;
}
Answer:
linux
Note: exit (0) is useful for terminating a program

upon having discovered some error which prevents the
program from continuing to execute normally. The

header file for exit (0); is stdlib.h.
C++ Programming
An Object-oriented (Programming methodology

that views a computer program as a combination of
variables, functions, and data structures called objects)
high level language (which uses alphabets, digits,
punctuations and some special symbols and cannot be
executed directly without being converted into
machine level language (the language which uses only
0 and 1))

developed by a Danish computer scientist
Bjarne Stroustrup (in 1979 at AT & T Bell

laboratories, USA) as an extension of the C language
initially named C with classes which later named

C ++ in 1983.
As a successor of C language, C++ has been

certified as a 99.9 percent pure standard and possesses
exceptional performance, efficiency and flexibility of
use compared to C language.

Advantage: Has the power and extensibility to
write large-scale programs and runs on a variety of
platforms, such as Windows, Mac OS, and the various
versions of UNIX.

Uses: Used in the development of Apple
Macintosh, PC running Windows, operating systems
and Adobe Systems (like Photoshop, Acrobat etc).

C++ fully supports most important features of
object-oriented programming including the four pillars
of object-oriented development:

Encapsulation
Data hiding
Inheritance
Polymorphism
Inheritance
The ability of a class (sub class) to derive

properties and characteristics from another class (super
class) is called Inheritance. Inheritance is one of the
most important feature of Object Oriented
Programming.

The capability of a class to derive properties and
characteristics from another class is calledInheritance.
Inheritance is one of the most important feature of
Object Oriented Programming.

Sub Class:The class that inherits properties from
another class is called Sub class or Derived Class.

Super Class:The class whose properties are
inherited by sub class is called Base Class or Super
class.

Why and when to use inheritance?
Consider a group of vehicles. You need to create

classes for Bus, Car and Truck. The methods
fuelAmount (), capacity (), applyBrakes () will be
same for all of the three classes. If we create these
classes avoiding inheritance then we have to write all
of these functions in each of the three classes as shown
in below figure:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

89

Process of C++ program execution: A C++
program:

#include<iostream>
int main ()
{
std::cout<<"Hello, crazy world!";
return 0;
}
is written using Text Editor, such as [Notepad++,

Notepad] and saved with [.ccp] Extension.
File Saved with [.ccp] extension is called Source

Program or Source Code.
C++ Source code with [.ccp] Extension is sent to

preprocessor first.
The preprocessor generates an expanded source

code:
//

--
--

The contents of <iostream>would be pasted at
the location of #include<iostream>

int main ()
{
std::cout<<"Hello, crazy world!";
return 0;
}

--
--- //

Expanded source code is given as input to
compiler where the expanded source program is
compiled (i.e., the program is entirely read and
translated to instructions the computer can understand
i.e., machine understandable / readable language i.e.,
to machine code sequence of 0s and 1s).

If the C++ compiler finds any error during
compilation, it provides information about the error to
the programmer.

The programmer has to review code and re-edit
the program. After re-editing program, Compiler again
check for any error.

If program is error-free then it is sent to
assembler (where the code is assembled and converted
into object code. Now a simple.obj file is generated).

The object code is sent to linker (where the
object code is linked with included header files (such
as iostream) and appropriate libraries).

Then it is converted into executable code. A
simple.exe file is generated.

The executable code is sent to loader (where the
executable code is loaded into memory and then it is
executed).

After execution, output
Hello,world!
is displayed on the console screen.
Like C

C++ is case sensitive language: only lower case
letters (or small letters) must be used.

Capital letters (or upper case letters) must be
avoided to prevent the display of error on the screen

(For example: If the statement
STD::COUT<<"Hello, crazy world!"; is written
instead of

std::cout<<"Hello, crazy world!";
or INT MAIN () is written instead of int main (),

compilation Error will be displayed on the console
screen).

Parentheses () indicate a function and the word
main indicate the name of the function.

main () implies: main function
And if we forget to end each statement within the

body of the main function with a semicolon (;), then
the compilation Error will be displayed on the screen.

There should be no space between main and the
parentheses ()

i.e., int main ()
and there should be no space inside the

parentheses ()
i.e., int main ()
to prevent the display of compilation error on the

screen.
As we know C++ is Platform dependent language.

So the Operating system needs to know when the
program execution ends.

So when there is value returns from the main
function

the Operating System get to know that the
program execution is over.

int main () implies: main () should return integer
value.

If the main function returns 0 to the operating
system, then the

program has completed execution successfully.
If the main function returns 1 to the operating

system, then the
program has not completed execution

successfully.
The statement #include<iostream> tells the

compiler to include the text from the file iostream
(which is already present in the operating system)
before it translates or compiles the program into a
sequence of 0s and 1s.

#include <iostream> is to C++ what
#include<iostream> is to C (note one thing: there is
no.h extension to the name iostream. The reason is that
<iostream> is one of the modern style headers)

iostream means input output screen (i input, o
output, stream screen) and iostream comprises input
output functions like cout, cin etc. -- note: cin is a
input function (cin means console input) and cout is a
output function (cout means console output) and it is
included into the C ++ program by writing the

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

90

statement #include <iostream>). The statement
#include tell the compiler to include the contents of the
file iostream before compilation. If a program is
written without the statement #include<iostream>,
then the C++ compiler cant compile and a compilation
error will be displayed on the screen (because C++
compiler fails to recognize the functions such as cin
and cout).

int main () The program begins its execution
with the function main () -- which is called the user
defined function (because this function is defined by
the user) - the main function -- the entry point of the
program execution i.e., the point from where the
execution of C++ program begins and the point at
which the operating system passes control of the
computer over to that program.

int main () {
} implies body of the main function within which

the sequence of instructions in the form of statements
i.e., the program is written and executed. The left

curly brace
{
implies: the beginning of the main function
and the right curly brace
}
implies: the end of the main function.
return 0; implies the exit status of execution of

the program i.e., at this point,
main function returns back the control of the

computer to the operating system since
the execution is terminated at this point and once

a return statement
i.e., return 0; is executed, no further instructions

within the main function are executed
For example:
#include<iostream>
int main ()
{
std::cout<<"Hello, crazy world!";
return 0;
std::cout<<"Hello, crazy world!";
}
Or
#include<iostream>
using namespace std;
int main ()
{
cout<<"Hello, crazy world!";
return 0;
cout<<"Hello, crazy world!";
}
Output on the screen:
Hello,world!
; implies semicolon --> A program is a

well-defined set of instructions and each well-defined
instruction (in the form of a statement)

is ended by a semicolon (which is C++ language
punctuation --

like a period in English i.e., in an English
paragraph each sentence is ended by a full stop which
tells that one sentence ends and another begins,

semicolon implies that one instruction (or
statement) ends and another begins).

cout implies the output function of the C++
language which makes provision to print the output:

Hello, crazy world!
on the console screen.
In the statement:
std::cout
std standard
:: scope resolution operator
cout console output
std::cout basically means: look in standard library

and get cout function. The text
Hello, crazy world! should be enclosed by the

double quotation marks ("") and if the statement:
using std::cout;
is added below the statement:
#include<iostream>
then the program takes the form:
#include<iostream>
using std::cout;
int main ()
{
cout<<"Hello, crazy world!";
return 0;
}
i.e., no need to include std:: in the statement:
std::cout<<"Hello, crazy world!";
Note: The symbol << implies: output the text:
Hello, crazy world!
on the console screen using the cout function.
Program 1.1
C++ program to print the word "hello Bill Gates"

on screen
#include<iostream>
using std::cout;
int main ()
{
cout<<"hello Bill Gates";
return 0;
}
The output on the screen:
hello Bill Gates
Program 1.2
C++ program to print
*

on screen

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

91

#include<iostream>
using std::cout;
int main ()
{
cout<<"\n * ";
cout<<"\n ***** ";
cout<<"\n ***** ";
cout<<"\n ***** ";
cout<<"\n ***** ";
return 0;
}
The output on the screen:
*

If new line \n is not included in the above

program then the output on the screen is:

Note:
endl
can be used instead of \n:
#include<iostream>
using std::cout;
int main ()
{
cout<<" * "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
return 0;
}
The output on the screen:
// The error:
endl was not declared in this scope //
will be displayed on the screen.
If the above program is rewritten:
#include<iostream>
using std::cout;
using std::endl;
int main ()
{
cout<<" * "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
return 0;
}
The output on the screen:
*

The single statement:
using namespace std;
can be used instead of the statements:
using std::cout;
using std::endl;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
cout<<" * "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
cout<<" ***** "<< endl;
return 0;
}
The output on the screen:
*

//--

--

cout <<"Hello world."<< endl; // Here it is
necessary to put 'using namespace std' on the top of
code.

std::cout <<"Hello world."<< std::endl; // Here
there is no need to put 'using namespace std' on the top
of code.

--
------//

Write a program to print the following outputs:
(a)
*

*
(b)

* *
* Hello World! *
* *

(c)
Braces come in pairs!
Comments come in pairs!
All statements end with a semicolon!
Spaces are optional!
Must have a main function!
C++ is done mostly in lowercase. It's a

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

92

case-sensitive language
Answers:
(a)
#include<iostream>
using namespace std;
int main ()
{
cout<<"\n * ";
cout<<"\n **** ";
cout<<"\n ******* ";
cout<<"\n **** ";
cout<<"\n * ";
return 0;
}
(b)
#include<iostream>
using namespace std;
int main ()
{
cout<<"\n **************** ";
cout<<"\n * * ";
cout<<"\n * Hello World! * ";
cout<<"\n * * ";
cout<<"\n **************** ";
return 0;
}
(c)
#include<iostream>
using namespace std;
int main ()
{
cout<<"\n Braces come in pairs!";
cout<<"\n Comments come in pairs!";
cout<<"\n All statements end with a semicolon!";
cout<<"\n Spaces are optional!";
cout<<"\n Must have a main function!";
cout<<"\n C++ is done mostly in lowercase. It's a

case-sensitive language";
return 0;
}
Program 1.3
C++ program to find the area of a circle
#include<iostream>
using namespace std;
main ()
{
int r, area;
r = 2;
area = 4 * 3.14 * r * r;
cout<<"The area of the circle = "<< area;
return 0;
}
The output on the screen:
The area of the circle = 50
int means the data type is integer.
Note: An integer is a whole number -- no

fractions, decimal parts, or funny stuff.
The statement
int r, area;
imply that we are creating the integer variables r,

area.
Equal sign (" = ") implies storage operator.
The statements
r = 2;
area = 4 * 3.14 * r * r;
imply that we are storing the values to the created

variables (i.e., we are storing the value 2 for r
and 4 * 3.14 * r * r = 4 * 3.14 * 2 * 2 = 50 for

area).
Comma in the statement
int r, area;
imply variable separator.
The statement
cout<<"The area of the circle = "<< area;
make provision to print the output:
The area of the circle = 50
on the screen.
The area of the circle is 50. 24 (for r = 2) but The

area of the circle = 50 is displayed on the screen
because data type int is used instead of float.
If the statement:
float r, area; is used instead of int r, area;
i.e.,
#include<iostream>
int main ()
{
float r, area;
r = 2;
area = 4 * 3.14 * r * r;
cout<<"The area of the circle = "<< area;
return 0;
}
Then the output on the screen:
The area of the circle = 50.24
float means the data type is float.
The statement
float r, area;
imply that we are creating the floating variables r,

area.
(floating point variable means fractional variable

or decimal number (for example: 1.5, 2.5, 3.5, 4.7 etc.)
whereas integer means non-fractional variable or
whole number (for example: 1, 2, 3, 4 etc.))

data type float is used instead of int because if the
data type int is used instead of float then the result will
not be clearly outputted i.e., instead of 50.24 the
computer displays only 50.

If you want to supply the value for r through the
key board, then the statement

float r = 2;
should be replaced by the statements
cout<<"Enter any number:";

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

93

cin>>r;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
float r, area;
cout<<"Enter any number:";
cin>>r;
area = 4 * 3.14 * r * r;
cout<<"The area of the circle = "<< area;
return 0;
}
The output on the screen:
Enter any number:
If you the number 2
The area of the circle = 50.24 will be outputted

on the screen.
As told earlier: cout is an output function and cin

is an input function.
The statement:
cout<<"Enter any number:";
make provision to print the text
Enter any number:
on the screen.
cin>> r; is to C++ what scanf ("%d", & r);

is to C
If you write the statement:
area = 4 * 3.14 * r ^ 2;
instead of
area = 4 * 3.14 * r * r;
Then compilation error will be displayed on the

console screen because like in C Language there is no
operator for performing exponentiation operation -- so
the statement

area = 4 * 3.14 * r ^ 2; is invalid.
Note:
cout and cin are not part of C++ language but

they are part of iostream file
Hence the statement #include<iostream> should

be included in the C++ program otherwise cout and
cin will not work and the compilation error will be
displayed on the console screen.

Note:
Right shift operator >> denote stream extraction

operator (extract data entered through the keyboard)
Left shift operator << denote stream insertion

operator (insert data into an output screen)
<< and >> are termed overloaded operators and

the file iostream defines these operators.
Note: As told earlier: when you enter an integer

for x through the keyboard, this integer will be stored
in the computer memory.

If you yearn to know the storage size of the
integer in computer memory

(i.e., space occupied by the entered integer in the

computer memory), you need to appeal to the
following program:

#include<iostream>
using namespace std;
int main ()
{
int x;
x=10;
cout<<"size of r = "<< sizeof (r);
return 0;
}
The output on the screen:
size of x = 4
i.e., integer entered for r i.e., 10 has occupied a

space of 4 bytes in the computer memory.
Write a program to print the circumference of the

circle (given r = 2.5)
Answer:
#include<iostream>
using namespace std;
int main ()
{
float r, area;
r = 2.5;
circumference = 3.14 * r * r;
cout<<"The circumference of the circle = "<<

circumference;
return 0;
}
Write a program to print the area of the rectangle

(given l = 2.5 and b = 3)
Answer:
#include<iostream>
using namespace std;
int main ()
{
float l, b, area;
l = 2.5;
b = 3;
area = 1*b;
cout<<"The area of the rectangle = "<< area;
return 0;
}
Format Specifiers in C++

Data Type Format Specifier
int %d
float %f or %e
char %c
double %lf or %le
long int %ld

Program 4.6
C++ program to find the sum of two numbers
#include<iostream>
using namespace std;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

94

int main ()
{
int a, b, sum;
a=1;
b=2;
sum = a + b;
cout<<"the sum of a and b = "<< sum;
return 0;
}
The output on the screen:
the sum of a and b = 3
If you assign the floating point values 1.5

& 2.6 for a & b, then the statement:
int a, b, sum; should be replaced by the statement

float a, b, sum;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
float a, b, sum;
a=1.5;
b=2.6;
sum = a + b;
cout<<"the sum of a and b = "<< sum;
return 0;
}
The output on the screen:
the sum of a and b = 4.1
The statement:
cout<<"the sum of a and b = "<< sum;
make provision to print the output:
the sum of a and b = 4.1
on the console screen. And if the statement:
cout<<"the sum of a and b = "<< sum;
is omitted from the C ++ program, then the

program will be successfully executed but there will
be no display of the output on the console screen.

If you want to supply the values for a and b
through the key board, then the statements:

a=1.5;
b=2.6;
should be replaced by the statements:
cout<<"Enter any two numbers:";
cin>>a;
cin>>b;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
float a, b, sum;
cout<<"Enter any two numbers:";
cin>>a;
cin>>b;
sum = a+ b;

cout<<"the sum of a and b = "<< sum;
return 0;
}
The output on the screen:
Enter any two numbers:
If you enter two numbers 2.9 & 3.6
the sum of a and b = 6.5
will be outputted on the screen.
The statement:
cout<<"Enter any two numbers:";
make provision to print
Enter any two numbers:
on the screen and the statements:
cin>>a;
cin>>b;
make provision to read the two numbers 2.9 and

3.6 entered through the keyboard and store them in the
computer memory.

If the statements:
cout<<"Enter any two numbers:";
cin>>a;
cin>>b;
are replaced by the statements:
cout<<"Enter any number:";
cin>>a;
cout<<"Enter any number:";
cin>>b;
Then the output on the screen is:
Enter any number:
If you enter the number 2.9
Enter any number:
If you enter the number 3.6
the sum of a and b = 6.5
will be outputted on the screen.
If the statement:
cout<<"the sum of a and b = "<< sum;
is replaced by the statement:
cout<< a <<" + "<< b <<" = "<< sum;
Then the output:
2.9 + 3.6 = 6.5
will be displayed on the console screen.
What will be the output of the following

program:
#include<iostream>
using namespace std;
int a = 5;
int main ()
{
int a =2;
cout<< a;
return 0;
}
Answer: 2
Note:
2 is a local variable (variable declared within the

body of the main function)

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

95

The statement:
int a = 2;
imply: local variable declaration.
5 is a global variable (variable declared outside

the body of the main function)
The statement:
int a = 5;
imply: global variable declaration.
If the statement:
cout<< a;
is replaced by the statement:
cout<<:: a; (where:: denote scope resolution

operator)
i.e.,
#include<iostream>
using namespace std;
int a = 5;
int main ()
{
int a =2;
cout<<::a;
return 0;
}
Then the output on the screen is:
5
i.e., global variable will be outputted on the

screen.
If the same program is written in C language
i.e.,
#include<stdio.h>
int a = 5;
int main ()
{
int a =2;
print ("%d",::a);
return 0;
}
Then the compilation error will be outputted on

the screen because
scope resolution operator is not defined in the C

language (i.e., C does not hold scope resolution
operator).

Whether the following program will be
successfully outputted or not:

#include<iostream>
using namespace std;
int main ()
{
int a, b, c;
a=3;
b=2;
c= a+b;
cout<<" sum of two numbers = 6"<< c;
return 0;
}
Answer:

Yes, the output on the screen is:
sum of two numbers = 65
Program 4.7
C ++ program to convert the temperature in

Celsius to Fahrenheit
#include<iostream>
using namespace std;
int main ()
{
float C, F;
C=38.5;
F = 9*C/5 +32;
cout<<"temperature in Fahrenheit= "<< F;
return 0;
}
The output on the screen:
temperature in Fahrenheit = 101.3
As said Earlier:
If is used instead of *
and F = 9C/5 +32 is used of F = 9*C/5 +32, the

compilation error will be displayed on the screen.

If you want to supply a value 16 digits after

decimal point i.e., 36.5555555555555555 for C, then
the statement:

double C, F;
should be used instead of the statement:
float C, F;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
double C, F;
C=38.5555555555555555;
F = 9*C/5 +32;
cout<<"temperature in Fahrenheit= "<< F;
return 0;
}
If you want to supply the value for C through the

key board, then the statement:
C=38.5;
should be replaced by the statements:
cout<<"Enter any number:";
cin>>C;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
float C, F;
cout<<"Enter any number:";
cin>>C;
F = 9*C/5 +32;
cout<<"temperature in Fahrenheit= "<< F;
return 0;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

96

}
The output on the screen:
Enter any number:
If you enter the number 23.6
temperature in Fahrenheit = 74.48
will be outputted on the screen.
Program 4.8
C++ program to find the product of two numbers
#include<iostream>
using namespace std;
int main ()
{
int a, b, product;
a=1;
b=2;
product = a * b;
cout<<"the product of a and b = "<< product;
return 0;
}
The output on the screen:
the product of a and b = 2

If you insert a value 2^3 for a and 3^2 for b, then

as said earlier wrong result or compilation error will be
flagged on the screen.

a=2^3;
b=3^2; ---> ERROR
a=2* 2*2
b=3*3; ---> Result will be outputted on the

screen i.e.,
the product of a and b = 72
If you want to insert a 10 digit number for a and

b i.e.,
a=1000000000
b=3000000000, then the statement:
int a, b, product;
should be replaced by the statement:
long int a, b, product;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
long int a, b, product;
a=1;
b=2;
product = a * b;
cout<<"the product of a and b = "<< product;
return 0;
}
The output on the screen:
the product of a and b = 3000000000000000000
If you want to supply the integer values for a and

b through the key board, then the statements:
a=1;
b=2; should be replaced by the statements:

cout<<"Enter any two numbers:";
cin >> a;
cin >> b;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
int a, b, product;
cout<<"Enter any two numbers:";
cin>>a;
cin>>b;
product = a* b;
cout<<"the product of a and b = "<< product;
return 0;
}
The output on the screen:
Enter any two numbers:
If you enter two numbers 2 & 3
the product of a and b = 6
will be outputted on the screen.
If the statement:
cout<<the product of a and b = << product;
is written instead of the statement:
cout<<"the product of a and b = "<< product;
i.e., the statement the product of a and b = is not

enclosed by the double quotation marks
Then the compilation error will be displayed on

the console screen.
Program 4.9
C++ program to find the square of a number
#include<iostream>
using namespace std;
int main ()
{
int a, b;
a=2;
b = a * a;
cout<<"the square of a = "<< b;
return 0;
}
The output on the screen:
the square of a = 4

If you want to supply the integer value for a

through the key board, then the statement:
a=2;
should be replaced by the statements:
cout<<"Enter any number:";
cin>>a;
i.e.,
#include<iostream>
using namespace std;
int main ()
{

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

97

int a, b;
cout<<"Enter any number:";
cin>>a;
b = a * a;
cout<<"the square of a = "<< b;
return 0;
}
The output on the screen:
Enter any number:
If you enter a number 3
the square of a = 9
will be outputted on the screen.
Note:
If the statement:
int main ();
is written instead of int main () then the error will

be displayed on the screen
Write a program to print the cube of a number
Answer:
#include<iostream>
using namespace std;
int main ()
{
int a, b;
cout<<"Enter any number:";
cin>>a;
b = a * a*a;
cout<<"the cube of a = "<< b;
return 0;
}
Write a program to print the force applied to the

mass m.
Answer:
#include<iostream>
using namespace std;
int main ()
{
int m, a, F;
cout<<"Enter the mass:";
cin>>m;
cout<<"Enter acceleration:";
cin>>a;
F = m * a;
cout<<"the force applied to the mass = "<< F;
return 0;
}
Program 5.0
C ++ program to find the greatest of two numbers

using if - else statement
The syntax of if - else statement is:
if (this condition is true)
{
print this statement;
}
else
{

print this statement;
}
#include<iostream>
using namespace std;
int main ()
{
int a, b;
a = 2;
b = 3;
if (a>b)
{
cout<<"a is greater than b";
}
else
{
cout<<"b is greater than a";
}
return 0;
}
The output on the screen:
b is greater than a

Since the condition a>b within the parentheses is

not true, the statement a is greater than b is not
executed;

instead the execution skips and pass to print the
statement b is greater than a.

In simpler words,
(a>b) is the condition (i.e., logical expression that

results in true or false) and
if the condition (a>b) is true, then the statement
{
cout<<"a is greater than b";
}
is executed to print the output:
a is greater than b
else the statement
{
cout<<"b is greater than a";
}
is executed to print the output:
b is greater than a
If you want to supply the integer values for a and

b through the key board, then the statements:
a=2;
b=3; should be replaced by the statements
cout<<"Enter any number:";
scanf ("%d", & a;
cout<<"Enter any number:";
scanf ("%d", & b;
i.e., the program should be rewritten as:
#include<iostream>
using namespace std;
int main ()
{

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

98

int a, b;
cout<<"Enter any number:";
scanf ("%d", & a;
cout<<"Enter any number:";
scanf ("%d", & b;
if (a>b)
{
cout<<"a is greater than b";
}
else
{
cout<<"b is greater than a";
}
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 6
Enter any number:
If you enter the number 3
a is greater than b
will be outputted on the screen.
Program 5.1
C++ program to find the greatest of three

numbers using if else if else statement
The syntax of if - else if - else statement:
if (this condition is true)
{
print this statement;
}
else if (this condition is true)
{
print this statement;
}
else
{
print this statement;
}
#include<iostream>
using namespace std;
int main ()
{
int a, b, c;
cout<<"Enter any number:";
cin>>a;
cout<<"Enter any number:";
cin>>b;
cout<<"Enter any number:";
cin>>c;
if (a>b & & a>c)
{
cout<< a<<" is greater than"<< b<<" and "<<c;
}
else if (b>a & & b>c)
{
cout<< b<<" is greater than"<< a <<" and "<<c;

}
else
{
cout<< c<<" is greater than"<< b<<" and "<< a;
}
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2
Enter any number:
If you enter the number 3
Enter any number:
If you enter the number 4
4 is greater than 3 and 2 will be outputted on the

screen.
double ampersand " & & " imply:
and
(a>b & & a>c)
(b>a & & b>c)
denote conditions.
i.e., the condition
(a>b & & a>c) imply:
a is greater than b and a is greater than c
and if this condition is true, then the statement:
{
cout<< a<<" is greater than"<< b<<" and "<<c;
}
is executed to print the output:
a is greater than b and c
and if the condition (a>b & & a>c) is not

true
the statement

{
cout<< a<<" is greater than"<< b<<" and "<<c;
}
is not executed; instead the execution skips and

pass to the condition (b>a & & b>c)
and if this condition is true, then the statement:
{
cout<< b<<" is greater than"<< a <<" and "<<c;
}
is executed to print the output:
b is greater than a and c
and if the condition (b>a & & b>c) is not

true, then the statement:
{
cout<< b<<" is greater than"<< a <<" and "<<c;
}
is not executed; instead the execution skips and

the statement:
{
cout<< c<<" is greater than"<< b<<" and "<< a;
}
is executed to print the output:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

99

c is greater than b and a

What will be the output of the following

program?
#include <iostream>
int main ()
{
int a, b;
a=2;
b=2;
if (a>b || a= = b)
cout<<"a is greater than or equal to b";
else
cout<<"b is greater than a";
return 0;
}
Answer:
a is greater than or equal to b

Note: symbol || denote OR i.e., a>b || a = = b

denote a is greater than or a is equal to b.
Program 5.2
C ++ program to find the average of 10 numbers
#include<iostream>
using namespace std;
int main ()
{
int N1, N2, N3, N4, N5, N6, N7, N8, N9, N10,

X;
cout<<"Enter any 10 numbers:";
cin>>N1;

cin>>N2;
cin>>N3;
cin>>N4;
cin>>N5;
cin>>N6;
cin>>N7;
cin>>N8;
cin>>N9;
cin>>N10;
X = (N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8

+ N9 + N10) /10;
cout<<"the average of 10 numbers = "<< X;
return 0;
}
The output on the screen:
Enter any 10 numbers:
If you enter ten numbers 1, 2, 3, 4, 5, 6, 7, 8, 9

and 10
the average of 10 numbers = 5
will be outputted on the screen.
Note: The average of 10 numbers is 5.5, the

output on the screen is 5 because int is used instead of
float.

Like in C language, any mathematical expression
should be written in C ++ equivalent expression to
prevent the display of compilation error on the screen
because C ++ language also does not accept the
general mathematical expressions.

Note: C++ equivalent mathematical expression is
same as C equivalent mathematical expression

For example:

Mathematical expression: C equivalent expression: C++ equivalent expression:
log10x + bx log10 (x) + b * x log10 (x) + b * x

Program 5.3
C ++ program to find the square root of a

number
#include<iostream>
#include<cmath>
using namespace std;
int main ()
{
int a, b;
cout<<"Enter any number:";
cin>> a;
b = sqrt (a);
cout<<"the square root of a number = "<< b;
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 16
the square root of a number = 4
will be outputted on the screen.

Note:
This program can also be written as:
#include<iostream>
#include<cmath>
using namespace std;
int main ()
{
cout<<"the square root of a number = "<< sqrt

(4);
return 0;
}
Suppose if you enter the number 8,
the square root of a number = 2
will be outputted instead of
the square root of a number = 2.82
on the screen because int is used instead of

float.
Note: Since b = sqrt (a) is written
the statement:
#include<cmath> must be included in the above

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

100

program because cmath file defines the mathematical
functions like sqrt ().

If the statement:
#include<cmath> is not included in the above

program:
#include<iostream>
using namespace std;
int main ()
{
int a, b;
cout<<"Enter any number:";
cin>> a;
b = sqrt (a);
cout<<"the square root of a number = "<< b;
return 0;
}
Then the compilation error will be displayed on

the console screen.
Note:
#include<math.h> is used in C
whereas #include<cmath> is used in C ++
Write a program to print the cube root of a

number:
Answer:
#include<iostream>
#include<cmath>
using namespace std;
int main ()
{
cout<<"the cube root of a number = "<< cbrt

(8);
return 0;
}
Program 5.4
C++ program to find the simple interest
#include<iostream>
using namespace std;
int main ()
{
int P,T, R, SI;
P = 1000;
T = 2;
R = 3;
SI = P*T*R/100;
cout<<"the simple interest = "<< SI;
return 0;
}
The output on the screen:
the simple interest = 60
Note:
If you write:
SI = PTR/100;
instead of:
SI = P*T*R/100;
Then the compilation error is displayed on the

screen because (like C) C ++ language does not
accept the general expressions.

If you want to supply the integer values for P, T
and R through the key board, then the statements:

P = 1000;
T = 2;
R = 3;
should be replaced by the statements:
cout<<"Enter principal amount:";
cin>>P;
cout<<"Enter time:";
cin>>T;
cout<<"Enter rate of interest:";
cin>>R;
i.e., the above program should take the form:
#include<iostream>
using namespace std;
int main ()
{
int P,T, R, SI;
cout<<"Enter principal amount:";
cin>>P;
cout<<"Enter time:";
cin>>T;
cout<<"Enter rate of interest:";
cin>>R;
SI = P*T*R/100;
cout<<"the simple interest = "<<SI;
return 0;
}
The output on the screen:
Enter principal amount:
If you enter the principal amount 1000
Enter time:
If you enter the time 2
Enter rate of interest:
If you enter the rate of interest 3
the simple interest = 60
will be outputted on the screen.
Program 5.5
C++ program to find the senior citizen
#include<iostream>
using namespace std;
int main ()
{
int age;
age=20;
if (age > = 60)
{
cout<<"senior citizen";
}
if (age<60)
{
cout<<"not a senior citizen";
}
return 0;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

101

}
The output on the screen:
not a senior citizen
(age > = 60) means: age greater than or equal to

60.
If you want to supply the value for age through

the key board, then the statement:
age = 20;
should be replaced by the statements:
cout<<"Enter age:";
cin>>age;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
int age;
cout<<"Enter age:";
cin>>age;
if (age>60)
{
cout<<"senior citizen";
}
if (age<60)
{
cout<<"not a senior citizen";
}
return 0;
}
The output on the screen:
Enter age:
If you enter the age 60
senior citizen
will be outputted on the screen.
Suppose if you enter the age 31
not a senior citizen
will be outputted on the screen
Program 5.6
C ++ program to get marks for 3 subjects and

declare the result.
If the marks >= 35 in all the subjects the student

passes else fails.
#include<iostream>
using namespace std;
int main ()
{
int M1, M2, M3;
M1 = 38;
M2= 45;
M3 = 67;
if (M1 >= 35 & & M2>= 35 &

& M3>= 35)
{
cout<<"candidate is passed";
}
else

{
cout<<"candidate is failed";
}
return 0;
}
The output on the screen:
candidate is passed
>= imply: greater than or equal to and double

ampersand imply: and
(M1>= 35 & & M2>= 35 &

& M3>= 35) denote the condition and this
condition imply M1 is greater than or equal to 35

and M2 is greater than or equal to 35 and M3 is
greater than or equal to 35. And if this condition is
TRUE, then the statement

{
cout<<"candidate is passed";
}
is executed to print the output:
candidate is passed
else the statement:
{
cout<<"candidate is failed";
}
is executed to print the output:
candidate is failed
If you want to supply the integer values for

marks M1, M2 and M3 through the key board, then
the statements:

M1 = 38;
M2= 45;
M3 = 67;
should be replaced by the statements:
cout<<"Enter any three marks:";
cin>> M1;
cin>> M2;
cin>> M3;
i.e.,
#include<iostream>
int main ()
{
int M1, M2, M3;
cout<<"Enter any three marks:";
cin>> M1;
cin>> M2;
cin>> M3;
if (M1 >= 35 & & M2>= 35 &

& M3>= 35)
{
cout<<"candidate is passed";
}
else
{
cout<<"candidate is failed";
}
return 0;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

102

}
The output on the screen:
Enter any three numbers:
If you enter three numbers 26, 28, 39
candidate is failed
will be outputted on the screen.

Program 5.7
C ++ program to find profit or loss
#include<iostream>
using namespace std;
int main ()
{
int CP, SP, loss, profit;
cout<<"Enter cost price:";
cin >> CP;
cout<<"Enter selling price:";
cin>>SP;
if (SP > CP)
{
cout<<"profit= "<< SP-CP;
}
else
{
cout<<"loss = "<< CP-SP;
}
return 0;
}
The output on the screen:
Enter cost price:
If you enter the cost price 25
Enter selling price:
If you enter the selling price 26
profit = 1
will be outputted on the screen.
If the condition (SP>CP) is true, then the

statement:
{
cout<<"profit= "<< SP-CP;
}
is executed to print the output:
profit = SP-CP (in this case profit = 26-25 =1)
else the statement:
{
cout<<"loss = "<< CP-SP;
}
is executed to print the output:
loss = CP-SP
Program 5.8
C++ program to convert inches into centimeter
#include<iostream>
using namespace std;
int main ()
{
float I, C;
I=3.5;

C = 2.54*I;
cout<<"length in centimeters = "<< C;
return 0;
}
The output on the screen:
length in centimeters = 8.89
Note: float is used instead of int because I = 3.5

if int is used instead of float then the result will not
be clearly outputted i.e., instead of 8.89 the computer
displays only 8.

If you want to supply the value for I through the
key board, then the above program should take the
form:

#include<iostream>
using namespace std;
int main ()
{
float I, C;
cout<<"Enter the length in inches:";
cin >> I;
C = 2.54*I;
cout<<"length in centimeters= "<< C;
return 0;
}
The output on the screen:
Enter the length in inches:
If you enter the value for I i.e., 25.5
length in centimeters = 64.9 will be outputted

on the screen.
Suppose
If you enter the value 25
The output on the screen:
length in centimeters = 63.5
Even if you enter the value 25 instead of 25.5,

float should be used instead of int because if float is
not used then

C = 63 will be outputted on the screen.
Program 5.9
C++ program to find the incremented and

decremented values of two numbers
#include<iostream>
using namespace std;
int main ()
{
int a, b, c, d, e, f;
a = 10;
b=12;
c=a+1;
d=b+1;
e=a-1;
f=b-1;
cout<<"the incremented value of a = "<< c;
cout<<"the incremented value of b = "<< d;
cout<<"the decremented value of a = "<< e;
cout<<"the decremented value of b = "<< f;
return 0;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

103

}
The output on the screen:
the incremented value of a = 11 the incremented

value of b = 13 the decremented value of a = 9 the
decremented value of b = 11

If the statements:
cout<<"the incremented value of a = "<< c;
cout<<"the incremented value of b = "<< d;
cout<<"the decremented value of a = "<< e;
cout<<"the decremented value of b = "<< f;
are replaced by the statements:
cout<<"\n the incremented value of a = "<< c;
cout<<"\n the incremented value of b = "<< d;
cout<<"\n the decremented value of a = "<< e;
cout<<"\n the decremented value of b = "<< f;
Then the output on the screen is:
the incremented value of a = 11
the incremented value of b = 13
the decremented value of a = 9
the decremented value of b = 11
If the statements:
cout<<"the incremented value of a = "<< c;
cout<<"the incremented value of b = "<< d;
cout<<"the decremented value of a = "<< e;
cout<<"the decremented value of b = "<< f;
are replaced by the statements:
cout<<"the incremented value of a = "<< c <<

endl;
cout<<"the incremented value of b = "<< d <<

endl;
cout<<"the decremented value of a = "<< e <<

endl;
cout<<"the decremented value of b = "<< f <<

endl;
Then the output on the screen:
the incremented value of a = 11
the incremented value of b = 13
the decremented value of a = 9
the decremented value of b = 11
If you want to supply the values for a and b

through the key board,
then the above program should take the form:
#include<iostream>
using namespace std;
int main ()
{
int a, b, c, d, e, f;
cout<<"Enter any number:";
cin>> a;
cout<<"Enter any number:";
cin>> b;
c=a+1;
d=b+1;
e=a-1;
f=b-1;
cout<<"\n the incremented value of a = "<< c;

cout<<"\n the incremented value of b = "<< d;
cout<<"\n the decremented value of a = "<< e;
cout<<"\n the decremented value of b = "<< f;
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2
Enter any number:
If you enter the number 3
the incremented value of a = 3
the incremented value of b = 4
the decremented value of a = 1
the decremented value of b = 2
will be outputted on the screen.
Note:
b++ is same as b+1 and b-- is same as b-1
What will be the output of the following

program:
#include<iostream>
using namespace std;
int main ()
{
float T1, T2, A;
cout<<"Enter any number:";
cin >>T1;
cout<<"Enter any number:";
cin >>T2;
A = (T1 + T2) / 2;
cout<<"the average temperature of the day =

"<< A;
return 0;
}
Answer:
Enter any number:
If you enter the number:
2
Enter any number:
If you enter the number:
3
the average temperature of the day = 2.5
will be displayed on the console screen.
Program 6.0
The percentage marks are entered and the

grades are allotted as follows:
percentage >= 60 First Class
percentage >=50 and per <= 60 Second Class
percentage >= 40 and per <= 50 Pass Class
percentage < 40 Fail
Write a C++ program for the above:
#include<iostream>
using namespace std;
main ()
{
int P;
cout<<"Enter the percentage:";

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

104

cin>>P;
if (P >= 60)
{
cout<<"first class";
}
if (P>=50 & & P <60)
{
cout<<"second class";
}
if (P>=40 & & P<=50)
{
cout<<"pass class";
}
if (P<40)
{
cout<<"fail";
}
return 0;
}
The output on the screen:
Enter the percentage:
If you enter the percentage 35
fail
will be outputted on the screen.
Program 6.1
C++ program to calculate the discounted price

and the total price after discount
Given:
If purchase value is greater than 1000, 10%

discount
If purchase value is greater than 5000, 20%

discount
If purchase value is greater than 10000, 30%

discount
discounted price
#include<iostream>
using namespace std;
int main ()
{
double PV, dis;
cout<<"Enter purchased value:";
cin>>PV;
if (PV>1000)
{
cout<<"dis= "<< PV* 0.1;
}
else if (PV>5000)
{
cout<<"dis= "<< PV* 0.2;
}
else
{
cout<<"dis= "<< PV* 0.3;
}
return 0;
}

The output on the screen:
Enter purchased value:
If you enter the purchased value 6500
dis = 1300.000000
will be outputted on the screen.
(PV>1000), (PV>5000) denote the conditions

and if the condition (PV>1000) is true i.e., purchased
value is greater than 1000, then the statement

{
cout<<"dis= "<< PV* 0.1;
}
is executed to print the output:
dis= PV* 10% = PV* 10 /100 = PV* 0.1
and if the condition (PV>1000) is false and if

the condition (PV>5000) is true i.e., purchased value
is greater than 5000, then the statement

{
cout<<"dis= "<< PV* 0.2;
}
is executed to print the output:
dis= PV* 20% = PV* 20 /100 = PV* 0.2
and if the condition (PV>5000) is not true i.e.,

purchased value is less than 5000, then the statement
{
cout<<"dis= "<< PV* 0.3;
}
is executed to print the output:
dis= PV* 30% = PV* 30 /100 = PV* 0.3
total price
#include<iostream>
using namespace std;
int main ()
{
double PV, total;
cout<<"Enter purchased value:";
scanf ("%lf", & PV;
if (PV<1000)
{
cout<<"total= "<< PV - PV* 0.1;
}
else if (PV<5000)
{
cout<<"total = "<< PV- PV* 0.2;
}
else
{
cout<<"total= "<< PV- PV* 0.3;
}
return 0;
}
The output on the screen:
Enter purchased value:
If you enter the purchased value 650
total = 585.000000
will be outputted on the screen.
If the condition (PV>1000) is true i.e.,

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

105

purchased value is greater than 1000, then the
statement

{
cout<<"total = %d", PV - PV* 0.1;
}
is executed to print the output:
total =PV- dis = PV- PV*10% = PV- PV* 10

/100 = PV - PV * 0.1
and if the condition (PV>1000) is false and if

the condition (PV>5000) is true i.e., purchased value
is greater than 5000, then the statement

{
cout<<"total = %d", PV - PV* 0.2;
}
is executed to print the output:
total =PV- dis = PV- PV*20% = PV- PV* 20

/100 = PV - PV * 0.2

and if the condition (PV> 5000) is not true i.e.,

purchased value is less than 5000, then the statement
{
cout<<"total = %d", PV - PV* 0.3;
}
is executed to print the output:
total =PV- dis = PV- PV*30% = PV- PV* 30

/100 = PV - PV * 0.3
Now, Combing both the programs (above), we

can write:
#include<iostream>
using namespace std;
int main ()
{
double PV, dis, total;
cout<<"Enter purchased value:";
cin>>PV;
if (PV>1000)
{
cout<<"dis= "<< PV* 0.1;
cout<<"total= "<< PV - PV* 0.1;
}
else if (PV>5000)
{
cout<<"dis = "<< PV* 0.2;
cout<<"total= "<< PV - PV* 0.1;
}
else
{
cout<<"dis= "<< PV* 0.3;
cout<<"total= "<< PV - PV* 0.1;
}
return 0;
}
The output on the screen:
Enter purchased value:
If you enter the purchased value 850
dis = 85.000000

total = 765.000000
will be outputted on the screen.
Program 6.2
C++ program to print the first ten natural

numbers using for loop statement
#include<iostream>
using namespace std;
int main ()
{
int i;
for (i=1; i<=10; i++)
cout<<"value of i = "<< i;
return 0;
}
The output on the screen is:
value of i = 1 value of i = 2 value of i = 3 value

of i = 4 value of i= 5 value of i= 6 value of i = 7
value of i= 8 value of i= 9 value of i= 10

for (i=1; i<=10; i++) denote the
for loop statement and the syntax of the
for loop statement is:
for (initialization; condition; increment)
Here:
i=1 denote initialization (i.e., from where to

start)
i<=10 denote the condition (i.e., stop when 10 is

reached)
i++ implies increment (which tells the value of i

to increase by 1 each time the loop is executed) and
i++ is the same as i+1.

When for loop executes, the following occurs:
i = 1
Is the condition (i<=10) is true?
Yes because i=1
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 1
Now, the value of i is:
i = 1+1 = 2
Is the condition (i<=10) is true?
Yes because i=2
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 2
Now, the value of i is:
i = 2+1 = 3
Is the condition (i<=10) is true?
Yes because i=3
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 3
Now, the value of i is:
i = 3+1 = 4
Is the condition (i<=10) is true?
Yes because i=4
The statement cout<<"value of i = "<< i; is

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

106

executed to print the output:
value of i = 4
Now, the value of i is:
i = 4+1 = 5
Is the condition (i<=10) is true?
Yes because i=5
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 5
Now, the value of i is:
i = 5+1 = 6
Is the condition (i<=10) is true?
Yes because i=6
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 6
Now, the value of i is:
i = 6+1 = 7
Is the condition (i<=10) is true?
Yes because i=7
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 7
Now, the value of i is:
i = 7+1 = 8
Is the condition (i<=10) is true?
Yes because i=8
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 8
Now, the value of i is:
i = 8+1 = 9
Is the condition (i<=10) is true?
Yes because i=9
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 9
Now, the value of i is:
i = 9+1 = 10
Is the condition (i<=10) is true?
Yes because i=10
The statement cout<<"value of i = "<< i; is

executed to print the output:
value of i = 10
and stop because the condition i<=10 is

achieved.
If the statement:
cout<<"value of i = "<< i;
is replaced by the statement:
cout<<"\n value of i = "<< i;

Then the output on the screen is:
value of i = 1
value of i = 2
value of i = 3
value of i = 4

value of i = 5
value of i = 6
value of i = 7
value of i = 8
value of i = 9
value of i = 10
If the
for loop statement:
for (i=2; i<=10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 2 value of i = 3 value of i= 4 value

of i= 5 value of i= 6 value of i = 7 value of i= 8 value
of i = 9 value of i= 10

If the for loop statement:
for (i=1; i<10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 1 value of i = 2 value of i= 3 value

of i= 4 value of i= 5 value of i= 6 value of i = 7 value
of i= 8 value of i = 9

(Note: the condition i<=10 tells to print till
value of i =10 but the condition i<10 tells to print till
value of i=9)

If the statement:
for (i=1; i=10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 10 value of i = 10 value of i = 10

value of i = 10 value of i= 10 value of i= 10 value of i
= 10 value of i= 10 value of i = 10 value of i = 10
 value of i = 10 value of i = 10 value of i = 10
 value of i = 10 value of i = 10 (continues...).

Note:
If the statement:
cout<<"value of i = "<< i; is replaced by the

statement:
cout<<"\n "<< i;
Then the output on the screen is:
1
2
3
4
5
6
7
8
9
10
What will be the output of the following

program:
#include<iostream>
using namespace std;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

107

int main ()
{
int i;
for (i =1; i<=5; i ++)
cout<<"\n Linux is not portable";
return 0;
}
Answer:
Linux is not portable
Linux is not portable
Linux is not portable
Linux is not portable
Linux is not portable
C++ program to print the first ten natural

numbers using for while loop statement
The syntax of while loop statement is:
while (this is the condition)
{
execute this statement;
}
#include<iostream>
using namespace std;
int main ()
{
int i = 1;
while (i<=10)
{
cout<<"\n "<< i++;
}
return 0;
}
The output on the screen is:
1
2
3
4
5
6
7
8
9
10
(i<=10) is the condition and
The statement
cout<<"\n "<< i++;
is repeatedly executed as long as a given

condition (i<=10) is true.
If the statement:
int i=1;
is replaced by the statement:
int i;
Then the compilation error will be displayed on

the console screen because initialization is not
defined i.e., from where to start is not declared.

If the statement:
int i = 1;

is replaced by the int i = 0;
Then the output on the screen is:
0
1
2
3
4
5
6
7
8
9
10
Similarly if the statement int i = 0; is replaced

by the int i = 7;
Then the output on the screen is:
7
8
9
10
C++ program to print first 10 numbers using do

while loop statement
The syntax of do while loop statement is:
do
{
execute this statement;
}
while (this is the condition;
#include<iostream>
using namespace std;
int main ()
{
int i =1;
do
{
cout<<" \n i= "<< i++;
} while (i<=10);
return 0;
}
The output on the screen is:
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10
The statement:
cout<<" \ni= "<< i++;
is executed and then condition (i<=10) is

checked. If condition (i<=10) is true then
The statement:
cout<<" \ni= "<< i++;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

108

is executed again. This process repeats until the
given condition (i<=10) becomes false.

Write a program to print
When in doubt use brute force
100 times using for loop statement.
Answer:
#include<iostream>
using namespace std;
int main ()
{
int i;
for (i=0; i<=99; i++)
cout<<"\n When in doubt use brute force";
return 0;
}
Program 6.3
C++ program to print the characters from A to Z

using for loop, do while loop and while loop
statement.

C ++ program to print the characters from A to
Z using for loop statement:

#include<iostream>
using namespace std;
int main ()
{
char a;
for (a='A'; a<='Z'; a++)
cout<<" \n"<< a;
return 0;
}
The output on the screen:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
W
X
Y
Z
char means the data type is character.

The statement:
char a;
imply that we are creating the character a.
If the statement:
for (a=A; a<=Z; a++) is written instead of the

statement for (a='A'; a<='Z'; a++)
i.e., A is used instead of 'A' and Z is used

instead of 'Z', then the compilation error will be
displayed on the screen.

C ++ program to print the characters from A to
Z using while loop statement:

#include<iostream>
using namespace std;
int main ()
{
char a = 'A';
while (a<='Z')
{
cout<<" \n"<< a++;
}
return 0;
}
C ++ program to print the characters from A to

Z using do while loop statement:
#include<iostream>
using namespace std;
int main ()
{
char a = 'A';
do
{
cout<<" \n"<< a++;
} while (a<='Z');
return 0;
}
Program 6.4
C++ program to print the given number is even

or odd.
#include<iostream>
using namespace std;
int main ()
{
int a;
cout<<"Enter any number:";
cin>>a;
if (a%2 = = 0)
{
cout<<"the number is even";
}
else
{
cout<<"the number is odd";
}
return 0;
}
The output on the screen:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

109

Enter any number:
If you enter the number 6
the number is even
will be outputted on the screen.
(a%2 = = 0) is the condition and this condition

imply: a divided by 2 yields reminder = 0.
For example: if you enter the number 2
Then a = 2
Then 2 divided by 2 yields the remainder = 0
Then the statement
{
cout<<"the number is even";
}
is executed to print the output:
the number is even
(Note: (like in C) in C ++ language = = implies:

equal to)
If you enter the number 3
Then a = 3
Then 3 divided by 2 yields the remainder = 1
Then the statement
{
cout<<"the number is odd";
}
is executed to print the output:
the number is odd
Program 6.5
C++ program to print the remainder of two

numbers
#include<iostream>
using namespace std;
int main ()
{
int a, b, c;
cout<<"Enter any number:";
cin>>a;
cout<<"Enter any number:";
cin>>b;
c = a % b;
cout<<"the remainder of a and b = "<< c;
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 3
Enter any number:
If you enter the number 2
the remainder of a and b = 1
will be outputted on the screen.
Since (a =3 and b =2). Therefore:
3 divided by 2 (i.e., a divided by b) yields the

remainder equal to 1
If the statement:
cout<<"the remainder of a and b = "<< c; is

replaced by the statement:
cout <<" the remainder of "<<a <<"and"<< b

<<"= "<< c;
i.e.,
#include<iostream>
using namespace std;
int main ()
{
int a, b, c;
cout<<"Enter any number:";
cin>>a;
cout<<"Enter any number:";
cin>>b;
c = a % b;
cout <<" the remainder of "<<a <<"and"<< b

<<"= "<< c;
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 3
Enter any number:
If you enter the number 2
the remainder of 3 and 2 = 1
will be outputted on the screen.
Program 6.6
C++ program to check equivalence of two

numbers
#include<iostream>
using namespace std;
int main ()
{
int x, y;
cout<<"Enter any number:";
cin>>x;
cout<<"Enter any number:";
cin>>y;
if (x-y==0)
{
cout<<"the two numbers are equivalent";
}
else
{
cout<<"the number are not equivalent";
}
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2
Enter any number:
If you enter the number 2
the two numbers are equivalent
will be outputted on the screen.
Since 2-2 is equal to 0 (i.e., x-y = = 0).

Therefore: the statement
{
cout<<"the two numbers are equivalent";

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

110

}
is executed to print the output:
two numbers are equivalent
If you enter the numbers 3 and 2
The output on the screen:
the two numbers are not equivalent
Since 3-2 is not equal to 0 (i.e., x-y!= 0).

Therefore: the statement
{
cout<<"the two numbers are not equivalent";
}
is executed to print the output:
two numbers are not equivalent
(Note: (like in C) in C ++ language!= implies

not equal to)
Program 6.7
C ++ program to print whether the given

number is positive or negative
#include<iostream>
using namespace std;
int main ()
{
int a;
a = -35;
if (a>0)
{
cout<<"number is positive";
}
else
{
cout<<" number entered is negative";
}
return 0;
}
The output on the screen:
number entered is negative
Since a = -35. Therefore:
a is less than 0 i.e., a < 0 because any negative

number is always less than zero.
The statement:
{
cout<<"number is negative";
}
is executed to print the output:
number entered is negative
Program 6.8
C++ program to print the sum of the first 10

numbers using for loop statement
#include<iostream>
using namespace std;
int main ()
{
int i, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
cout<<"sum of the first10 numbers = "<< sum;

return 0;
}
The output on the screen:
sum of the first 10 digits = 55
How the sum of the first 10 digits = 55 is

outputted on the screen through the for Loop
statement?

i=1 (sum = 0 because the sum is initialized to 0
in the statement int i, sum = 0;)

Is i<=10 true?
Yes, do this
sum = sum + i = 0 +1 =1
Now,
i=2 (sum = 1)
Is i<=10 true?
Yes, do this
sum = sum + i = 1 +2 =3
Now,
i=3 (sum = 3)
Is i<=10 true?
Yes, do this
sum = sum + i = 3 +3 = 6
Now,
i=4 (sum = 6)
Is i<=10 true?
Yes, do this
sum = sum + i = 6 + 4= 10
Now,
i=5 (sum = 10)
Is i<=10 true?
Yes, do this
sum = sum + i = 10 + 5= 15
Now,
i=6 (sum = 15)
Is i<=10 true?
Yes, do this
sum = sum + i = 15 + 6 = 21
Now,
i=7 (sum = 21)
Is i<=10 true?
Yes, do this
sum = sum + i = 21 + 7 = 28
Now,
i=8 (sum = 28)
Is i<=10 true?
Yes, do this
sum = sum + i = 28 + 8 = 36
Now,
i=9 (sum = 36)
Is i<=10 true?
Yes, do this
sum = sum + i = 36 + 9 = 45
Now,
i=10 (sum = 45)
Is i<=10 true?
Yes, do this

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

111

sum = sum + i = 45 + 10 = 55
stops because the condition i<=10 is achieved
The statement:
cout<<"sum of the first 10 digits = "<< sum;
is executed to print the output:
sum of the first 10 digits = 55

If the statement:
int i, sum = 0;
is replaced by int i, sum = 1;
Then the output on the screen is:
sum of the first10 digits = 56
What will be the output if the for loop statement

for (i =1; i<=10; i++) is replaced by the statement for
(i =2; i<10; i++)?

Answer: sum of 10 digits = 44
If the statement int i, sum, sum = 0; is written

instead of int i, sum = 0;
Then the compilation error message will be

displayed on the screen (stating that sum is twice
declared).

If the for loop is ended with a semicolon i.e.,
for (i=1; i<=10; i++;
Then the compilation error will be displayed on

the console screen.
//--

sum = sum + a; is the same as sum + = a;
sub = sub - a; is the same as sub - = a;
product = product* a; is the same as product * =

a;
div = div / a; is the same as div /= a;
a = a% b; is the same as a % = b;
--

------------------------------//
Program 6.9
C++ program to print the average of the first 10

numbers using for loop statement
#include<iostream>
using namespace std;
int main ()
{
int i, avg, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
avg = sum/10;
cout<<"sum of the first 10 numbers = "<< sum;
cout<<"average of the first 10 numbers = "<<

avg;
return 0;
}
The output on the screen:
sum of the first 10 numbers = 55
average of the first 10 numbers = 5
The average of the first10 numbers = 55/10 =

5.5 not 5. But the output on the screen is:

average of the first 10 numbers = 5
because int is used instead of float.
If the data type float is used i.e.,
#include<iostream>
using namespace std;
int main ()
{
float i, avg, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
avg = sum/10;
cout<<"sum of the first 10 numbers = "<< sum;
cout<<"average of the first 10 numbers = "<<

avg;
return 0;
}
The output on the screen:
sum of the first 10 numbers = 55
average of the first 10 numbers = 5.5
Program 7.0
C++ program to print the product of the first 10

digits using for loop statement
#include<iostream>
using namespace std;
int main ()
{
int i, product = 1;
for (i=1; i<=10; i++)
product = product * i;
cout<<"the product of the first 10 digits =%d",

product;
return 0;
}
The output on the screen:
the product of the first 10 digits = 3628800
How the product of the first 10 digits = 3628800

is outputted on the screen through the for Loop
statement?

i=1 (product = 1 because the product is
initialized to 1 in the statement int i, product = 1;)

Is i<=10 true?
Yes, do this
product = product * i = 1 * 1 =1
Now,
i=2 (product = 1)
Is i<=10 true?
Yes, do this
product = product * i = 1 * 2 = 2
Now,
i=3 (product = 2)
Is i<=10 true?
Yes, do this
product = product * i = 2 * 3 = 6
Now,
i=4 (product = 6)
Is i<=10 true?

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

112

Yes, do this
product = product * i = 6 * 4 = 24
Now,
i=5 (product =24)
Is i<=10 true?
Yes, do this
product = product * i = 24 * 5 =120
Now,
i=6 (product =120)
Is i<=10 true?
Yes, do this
product = product * i = 120 * 6 = 720
Now,
i=7 (product =720)
Is i<=10 true?
Yes, do this
product = product * i = 720 * 7 = 5040
Now,
i=8 (product =5040)
Is i<=10 true?
Yes, do this
product = product * i = 5040 * 8 = 40320
Now,
i=9 (product = 40320)
Is i<=10 true?
Yes, do this
product = product * i = 40320 * 9 = 362880
Now,
i=10 (product = 362880)
Is i<=10 true?
Yes, do this
product = product * i = 362880 * 10 = 3628800
stops because the condition i<=10 is achieved.
The statement:
cout<<"the product of the first 10 digits = "<<

product; is executed to display the output:
the product of the first 10 digits = 3628800
If the statement:
int i, product = 1; is replaced by int i, product =

0;
Then the output on the screen is:
the product of the first 10 digits = 0
If the statement:
for (i=1; i<=10; i++) is replaced by for (i=5;

i<=8; i++)
Then the output on the screen is:
the product of the first 10 digits = 1680
Program 7.1
C++ Program to print the table of a number

using the for loop statement
#include<iostream>
using namespace std;
int main ()
{
int n, i;
cout<<"Enter any number:";

cin>>n;
for (i=1; i<=5; i++)
cout<< n <<" * "<< i <<" = "<< n*i;
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 2 (i.e., n=2)
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10
will be outputted on the screen.
How the execution takes its Way through the for

Loop statement
Since you entered the number 2, therefore: n=2.
i=1
Is i<=5 true?
Yes, print this
2 * 1 = 2
using the statement cout<< n <<" * "<< i <<" =

"<< n*i;
Now,
i=2
Is i<=5 true?
Yes, print this
2 * 2 = 4
using the statement cout<< n <<" * "<< i <<" =

"<< n*i;
Now,
i=3
Is i<=5 true?
Yes, print this
2 * 3 = 6
using the statement cout<< n <<" * "<< i <<" =

"<< n*i;
Now,
i=4
Is i<=5 true?
Yes, print this
2 * 4 = 8
using the statement cout<< n <<" * "<< i <<" =

"<< n*i;
Now,
i=5
Is i<=5 true?
Yes, print this
2 * 5 = 10
using the statement cout<< n <<" * "<< i <<" =

"<< n*i;
stop Now because the condition i<=5 is

achieved.
If the symbol * is replaced by +
i.e.,
#include<iostream>

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

113

using namespace std;
int main ()
{
int n, a;
cout<<"Enter any number:";
cin>>n;
for (i=1; i<=5; i++)
cout<< n <<" + "<< i <<" = "<< n + i <<endl;
return 0;
}
Then the output on the screen is:
Enter any number:
If you enter the number 2 (i.e., n=2)
2 + 1 = 3
2 + 2 = 4
2 + 3 = 5
2 + 4 = 6
2 + 5 = 7
will be outputted on the screen.
Program 7.2
C++ program:
If you enter a character M
Output must be: ch = M
#include<iostream>
using namespace std;
int main ()
{
char M;
cout<<"Enter any character:";
cin>>M;
cout<<"ch= "<< M;
return 0;
}
The output on the screen:
Enter any character:
If you enter the character M
ch = M
will be outputted on the screen.
Note:
If we replace the statement:
cin>>M; by the statement:
M = getchar ();
i.e.,
#include<iostream>
using namespace std;
int main ()
{
char M;
cout<<"Enter any character:";
M = getchar ();
cout<<"ch= "<< M;
return 0;
}
There will be no change in the output on the

screen i.e., The output on the screen is:
Enter any character:

If you enter the character K
ch = K
will be outputted on the screen.
If we replace the statement:
cout<<"ch= "<< M; by the statement:
putchar (M); i.e.,
#include<iostream>
using namespace std;
int main ()
{
char M;
cout<<"Enter any character:";
cin>>M;
putchar (M);
return 0;
}
There will be no change in the output on the

screen i.e., The output on the screen is:
Enter any character:
If you enter the character M
M will be outputted on the console screen.
If we replace the statement:
cin>>M; by the statement:
M = getchar ();
and the statement:
cout<<"ch= "<< M; by the statement:
putchar (M); i.e.,
#include<iostream>
using namespace std;
int main ()
{
char M;
cout<<"Enter any character:";
M = getchar ();
putchar (M);
return 0;
}
The output on the screen:
Enter any character:
If you enter the character S
S will be outputted on the screen.
Write a program to print the absolute value of a

number
Answer:
#include<iostream>
#include<cmath>
using namespace std;
int main ()
{
int a, b;
a= - 2;
b= abs (a);
cout<<" absolute value of a = "<< b<< endl;
return 0;
}
The output on the screen:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

114

absolute value of a = 2

Program 7.2
C ++ program to print the first 5 numbers

starting from one together with their squares
#include<iostream>
using namespace std;
int main ()
{
int i;
for (i=1; i<=5; i++)
cout<<"\n number = "<< i <<"its square = "<<

i*i;
return 0;
}
The output on the screen:
number=1 its square=1
number=2 its square=4
number=3 its square=9
number=4 its square=16
number=5 its square=25

How the execution takes its way through the for

loop statement
i=1
Is i<=5 true?
Yes, print this
number=1 its square=1
using the statement cout<<"\n number = "<< i

<<"its square = "<< i*i;
Now,
i=2
Is i<=5 true?
Yes, print this
number=2 its square=4
using the statement cout<<"\n number = "<< i

<<"its square = "<< i*i;
Now,
i=3
Is i<=5 true?
Yes, print this
number=3 its square=9
using the statement cout<<"\n number = "<< i

<<"its square = "<< i*i;
Now,
i=4
Is i<=5 true?
Yes, print this
number=4 its square=16
using the statement cout<<"\n number = "<< i

<<"its square = "<< i*i;
Now,

i=5
Is i<=5 true?
Yes, print this
number=5 its square=25
using the statement cout<<"\n number = "<< i

<<"its square = "<< i*i;
stop Now because the condition (i<=5) is

achieved.
Note:
If the statement cout<<"\n number = "<< i

<<"its square = "<< i*i; is replaced by the statement:
cout<<"\n number = "<< i <<"\t its square = "<<

i*i;
Then the output on the screen is:
number=1 its square=1
number=2 its square=4
number=3 its square=9
number=4 its square=16
number=5 its square=25

tab /t is included because to leave space between
number=1 and its square=1
Suppose cout<<"\n number = "<< i <<"\t its

square = "<< i*i; is replaced by the statement
cout<<"\n number = "<< i <<"\n its square =

"<< i*i;
Then the output on the screen is:
number=1
its square=1
number=2
its square=4
number=3
its square=9
number=4
its square=16
number=5
its square=25
Write a program to print the first 10 numbers

starting from one together with their squares and
cubes?

Answer:
#include<iostream>
using namespace std;
int main ()
{
int i;
for (i=1; i<=10; i++)
cout<<"number = "<< i <<" its square = "<< i*i

<<" its cube = "<< i*i*i<< endl;
return 0;
}
Program 7.3
C++ program to print the sum of two numbers

using pointers
If we create an integer variable x by declaring

the statement:
int x;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

115

within the body of the main function "main ()"
-- this variable is stored in the computer memory i.e.,

this variable occupies a specific location in the
space of computer memory.

And this integer variable x is assigned an
address (i.e., & x) to locate its position in the
computer memory

(like a house in the street is assigned an address
to locate its position in the street).

Pointers are the variables that represent the
address of x in the computer memory i.e., p = &
 x,

where & x imply the address of x in the
computer memory and

p is the pointer variable (which is the variable
that represent the address of x in the computer
memory).

And further if you assign a value to the variable
x by declaring the statement x=1; within the body of
the

main functionthis value is stored in the address
of x in the computer memory. "*" denote pointer
operator and *p denote the pointer

(which represent the value stored in the address
of x in the computer memory).

C ++ program to print the address of x and the
value assigned to x

#include<iostream>
using namespace std;
int main ()
{
int x, *p;
cout<<"Enter any integer:";
cin>>x;
p = & x;
cout<<"The address of the variable x = "<< p;
cout<<"The value of the variable x = "<< *p;
return 0;
}
The output on the screen:
Enter any integer:
If you enter the integer 1
The address of the variable x = 0x7fffc60478a4
The value of the variable x = 1
will be outputted on the screen.
The value of the variable x = 1 because you

have assigned the value 1 to the variable x by
entering 1 through the keyboard.

If the statements:
cout<<"The address of the variable x = "<< p;
cout<<"The value of the variable x = "<< *p;
are replaced by the statement:
cout<<"The address of the variable x = "<< p

<<"its value = "<< *p;
i.e.,
#include<iostream>

using namespace std;
int main ()
{
int x, *p;
cout<<"Enter any integer:";
cin >> x;
p = & x;
cout<<"The address of the variable x = "<< p

<<"its value = "<< *p;
return 0;
}
Then the output on the screen is:
The address of the variable x = 0x7fff78508cc4

its value = 2
#include<iostream>
using namespace std;
int main ()
{
int x, y, *p, *q, sum;
cout<<"Enter any number:";
cin >> x;
cout<<"Enter any number:";
cin >> y;
p = & x;
q = & y;
sum = *p + *q;
cout<<"\n sum of entered numbers = "<< sum;
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 4
Enter any number:
If you enter the number 3
sum of entered numbers = 7
will be outputted on the screen.
Since *p imply the value assigned to the

variable x (i.e., 4) by entering 4 through the keyboard
and *q imply the value assigned to the variable

y (i.e., 3) by entering 3 through the keyboard.
Therefore:

sum = *p + *q = 4 + 3 = 7 (which is outputted
on the screen).

C++ program to print the product, subtraction
and division of two numbers using pointers

#include<iostream>
using namespace std;
int main ()
{
int x, y, *p, *q, product, subtract, div;
cout<<"Enter any number:";
cin>> x;
cout<<"Enter any number:";
cin>> y;
p = & x;
q = & y;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

116

product = *p * *q;
subtract = *p - *q;
div= *p / *q;
cout<<"\n product of entered numbers = "<<

product;
cout<<"\n subtract of entered numbers = "<<

subtract;
cout<<"\n division of entered numbers = "<<

div;
return 0;
}
The output on the screen:
Enter any number:
If you enter the number 4
Enter any number:
If you enter the number 2
product of entered numbers = 8
subtract of entered numbers = 2
division of entered numbers = 2
will be displayed on the screen.
C++ program to find the greatest of two

numbers using pointers
#include<iostream>
using namespace std;
int main ()
{
int x, y, *p, *q;
cout<<"Enter any integer:";
cin>> x;
cout<<"Enter any integer:";
cin>> y;
p = & x;
q = & y;
if (*p>*q)
{
cout<<"x is greater than y";
}
else
{
cout<<"y is greater than x";
}
return 0;
}
The output on the screen:
Enter any integer:
If you enter the integer 10
Enter any integer:
If you enter the integer 16
y is greater than x
will be outputted on the screen.
What is the output of the following programs:
A)
#include <iostream>
using namespace std;
int main ()
{

int x;
x=12;
cout<<"per = "<< x;
return 0;
}
Answer:
per=12
B)
#include <iostream>
using namespace std;
int main ()
{
int x, t, c;
x=12;
t=2;
c = x/t;
cout<<"velocity = "<< c <<"m/s";
return 0;
}
Answer:
velocity = 6 m/s
Program 7.4
C++ program to print the sum of two numbers

using functions
#include<iostream>
using namespace std;
int addition ();
int main ()
{
int answer;
answer = addition ();
cout<<"The sum of two numbers is: "<<answer;
return 0;
}
int addition ()
{
int x, y;
cout<<"Enter any integer:";
cin>>x;
cout<<"Enter any integer:";
cin>>y;
return x+y;
}
The output on the screen:
Enter any integer:
If you enter the integer 3
Enter any integer:
If you enter the integer 5
sum of two numbers = 8
will be displayed on the screen.
int addition (); // the statement implies function

declaration
int means integer and int addition () implies:

addition () should return integer value.
int addition ()// implies: the function to add the

entered values (i.e., 3 and 5) and return the result (i.e.,

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

117

3 + 5 i.e., 8) to the statement:
cout<<"The sum of two numbers is: "<<answer;

to
make provision to display the output:
sum of two numbers = 8
{
int x, y;
cout<<"Enter any integer:";
cin>>x;
cout<<"Enter any integer:";
cin>>y;
return x+y;
}// implies: the body of the function int addition

()
answer = addition (); // implies: the function call

i.e., calls the function:
addition ()
to add the entered values (i.e., 3 and 5) and

return the result (i.e., 3 + 5 i.e., 8)
to the statement:
cout<<"The sum of two numbers is: "<<answer;
to make provision to display the output:
sum of two numbers = 8
C++ program to print the product of two

numbers using functions
#include<iostream>
using namespace std;
int multiplication ();
int main ()
{
int answer;
answer = multiplication ();
cout<<"The product of two numbers is:

"<<answer;
return 0;
}
int multiplication ()
{
int x, y;
cout<<"Enter any integer:";
cin>>x;
cout<<"Enter any integer:";
cin>>y;
return x*y;
}
The output on the screen:
Enter any integer:
If you enter the integer 3
Enter any integer:
If you enter the integer 5
product of two numbers = 15
will be outputted on the screen.
C++ program to print the greatest of two

numbers using functions
#include<iostream>
using namespace std;

int largest ();
int main ()
{
int answer;
answer = largest ();
cout<<"The largest of two numbers is:

"<<answer;
return 0;
}
int largest ()
{
int x, y;
cout<<"Enter any integer:";
cin>>x;
cout<<"Enter any integer:";
cin>>y;
if (x>y)
return x;
if (y>x)
return y;
}
The output on the screen:
Enter any integer:
If you enter the integer 3
Enter any integer:
If you enter the integer 5
largest of two numbers= 5
will be outputted on the screen.
C++ program to print the greatest of three

numbers using functions
#include<iostream>
using namespace std;
int largest ();
int main ()
{
int answer;
answer = largest ();
cout<<"largest of three numbers= "<< answer;
return 0;
}
int largest ()
{
int x, y, z;
cout<<"Enter any integer:";
cin>>x;
cout<<"Enter any integer:";
cin>>y;
cout<<"Enter any integer:";
cin>>z;
if (x>y & & x>z)
return x;
if (y>x & & y > z)
return y;
if (z>x & & z>y)
return z;
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

118

The output on the screen:
Enter any integer:
If you enter the integer 3
Enter any integer:
If you enter the integer 5
Enter any integer:
If you enter the integer 10
largest of three numbers = 10
will be outputted on the screen.
C++ program to print the square of the number

using functions
#include<iostream>
using namespace std;
int square (;
int main ()
{
int answer;
answer = square ();
cout<<"square of the given number = "<<

answer;
return 0;
}
int square ()
{
int x;
cout<<"Enter any integer:";
cin>>x;
return x*x;
}
The output on the screen:
Enter any integer:
If you enter an integer 5
square of the number = 25
will be outputted on the screen.
What is the output of the following program:
#include<iostream>
using namespace std;
int main ()
{
int x;
x=6;
cout<<"The address of x = "<< & x;
return 0;
}
Answer:
The address of x = 0x7ffd80d2c06c
Program 7.5
Switch (case) allows to make decision from the

number of choices i.e., from the number of cases
For example:
#include<iostream>
using namespace std;
int main ()
{
char ch;
cout<<"Enter any character:";

cin>>ch;
switch (ch)
{
case 'R':
cout<<"Red";
break;
case 'W':
cout<<"White";
break;
case 'Y':
cout<<"Yellow";
break;
case 'G':
cout<<"Green";
break;
default:
cout<<"Error";
break;
}
return 0;
}
The output on the screen:
Enter any character:
If you enter a character R
Red
will be outputted on the screen.
switch (ch) allow to make decision from the

number of choices i.e., from the number of cases
case 'R':
case 'W':
case 'Y':
case 'G':
Since we have entered the character R (which

corresponds to case 'R':)
The statement
cout<<"Red";
is executed to display the output:
Red
on the screen.
Suppose you enter a character K
Then the output on the screen is:
Error
(Entered character K does not correspond to any

of the cases:
case 'R':
case 'W':
case 'Y':
case 'G':
Therefore the statement:
cout<<"Error";
is executed to display the output:
Error
on the console screen).
If the statements:
case 'R':
cout<<"Red";

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

119

break;
case 'W':
cout<<"White";
break;
case 'Y':
cout<<"Yellow";
break;
case 'G':
cout<<"Green";
break;
default:
cout<<"Error";
break;
are replaced by the statements:
case 'R':
cout<<"Red";
case 'W':
cout<<"White";
case 'Y':
cout<<"Yellow";
break;
case 'G':
cout<<"Green";
break;
default:
cout<<"Error";
break;
Then the output on the screen is:
Red
White
Yellow
i.e., the output will be printed till yellow even

though you have entered the character R.
Program 7.6
C++ program to print the output:
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
using arrays:
#include<iostream>
using namespace std;
main ()
{
int i;
int num [5] = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl;
return 0;
}
The output on the screen:
Element [0] = 16
Element [1] = 18
Element [2] = 20

Element [3] = 25
Element [4] = 36
The statement:
int num [5] = {16, 18, 20, 25, 36};
imply that we are creating an integer array (and

the name of array is num) consisting of 5 values (i.e.,
16, 18, 20, 25, 36) of the same data type int.

The number of values between the braces { }
cannot be larger than the number of values that we
declare for the array between square brackets [].

There are 5 integers i.e., 16, 18, 20, 25, 36
within the braces { }, so 5 is written within the square
brackets [].

If there were 6 integers i.e., 16, 18, 20, 25, 36,
42 within the braces { }, then 6 must be written
within the square brackets [].

Note: With the declaration int num [5],
computer creates 5 memory cells with name num [0],
num [1], num [2], num [3], num [4].

And since:
int num [5] = {16, 18, 20, 25, 36};
the values 16, 18, 20, 25, 36 are stored in num

[0], num [1], num [2], num [3], num [4] respectively.
How the execution takes its way through the for

loop statement
i=0
Is i<5 true?
Yes, print this
Element [0] = 16
using the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl;
format string %d in the square brackets

indicates that the value to be displayed at that point in
the string i.e., with the square brackets [] needs to be
taken from a variable (which is i i.e., i=0) and the
format string %d after the statement (\n Element [%d]
=) indicates that the value to be displayed at that
point in the string i.e., after the statement (\n Element
[%d] =) needs to be taken from a variable (which is
stored in num [i] i.e., num [0] i.e., 16).

Now,
i=1
Is i<5 true?
Yes, print this
Element [1] = 18
using the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl;
format string %d in the square brackets

indicates that the value to be displayed at that point in
the string i.e., with the square brackets [] needs to be
taken from a variable (which is i i.e., i=1) and the
format string %d after the statement (\n Element [%d]
=) indicates that the value to be displayed at that
point in the string i.e., after the statement (\n Element

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

120

[%d] =) needs to be taken from a variable (which is
stored in num [i] i.e., num [1] i.e., 18).

Now,
i=2
Is i<5 true?
Yes, print this
Element [2] = 20
using the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl;
format string %d in the square brackets

indicates that the value to be displayed at that point in
the string i.e., with the square brackets [] needs to be
taken from a variable (which is i i.e., i=2) and the
format string %d after the statement (\n Element [%d]
=) indicates that the value to be displayed at that
point in the string i.e., after the statement (\n Element
[%d] =) needs to be taken from a variable (which is
stored in num [i] i.e., num [2] i.e., 20).

Now,
i=3
Is i<5 true?
Yes, print this
Element [3] = 25
using the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl;
format string %d in the square brackets

indicates that the value to be displayed at that point in
the string i.e., with the square brackets [] needs to be
taken from a variable (which is i i.e., i=3) and the
format string %d after the statement (\n Element [%d]
=) indicates that the value to be displayed at that
point in the string i.e., after the statement (\n Element
[%d] =) needs to be taken from a variable (which is
stored in num [i] i.e., num [3] i.e., 25).

Now,
i=4
Is i<5 true?
Yes, print this
Element [4] = 36
using the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl;
Stop because the condition i<5 is achieved.
format string %d in the square brackets

indicates that the value to be displayed at that point in
the string i.e., with the square brackets [] needs to be
taken from a variable (which is i i.e., i=4) and the
format string %d after the statement (\n Element [%d]
=) indicates that the value to be displayed at that
point in the string i.e., after the statement (\n Element
[%d] =) needs to be taken from a variable (which is
stored in num [i] i.e., num [4] i.e., 36).

Suppose the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl; is replaced by the statement:
cout<<"Element ["<< i <<"] = "<< num [0] <<

endl;
Then the output on the screen:
Element [0] = 16
Element [1] = 16
Element [2] = 16
Element [3] = 16
Element [4] = 16
Suppose the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl; is replaced by the statement:
cout<<"Element ["<< i <<"] = "<< num [1] <<

endl;
The output on the screen:
Element [0] = 18
Element [1] = 18
Element [2] = 18
Element [3] = 18
Element [4] = 18
Suppose the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl; is replaced by the statement:
cout<<"Element ["<< i <<"] = "<< num [2] <<

endl;
The output on the screen:
Element [0] = 20
Element [1] = 20
Element [2] = 20
Element [3] = 20
Element [4] = 20
Suppose the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl; is replaced by the statement:
cout<<"Element ["<< i <<"] = "<< num [3] <<

endl;
The output on the screen:
Element [0] = 25
Element [1] = 25
Element [2] = 25
Element [3] = 25
Element [4] = 25
Suppose the statement:
cout<<"Element ["<< i <<"] = "<< num [i] <<

endl; is replaced by the statement:
cout<<"Element ["<< i <<"] = "<< num [4] <<

endl;
The output on the screen:
Element [0] = 36
Element [1] = 36
Element [2] = 36
Element [3] = 36
Element [4] = 36
If the condition:
i<5
is replaced by the condition:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

121

i<=5
Then the output on the screen is:
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
Element [5] = 3656
3656 is the number stored in the memory i.e.,

any number stored in the memory will be displayed.
If the statement:
int num [5] = {16, 18, 20, 25, 36}; is replaced

by the statement:
int num [i] = {16, 18, 20, 25, 36};
Then the compilation will be displayed on the

screen because there are 5 elements within the braces
{} not i elements.

Note:
C++ program to print the sum of the elements in

array.
#include<iostream>
using namespace std;
int main ()
{
int i, sum = 0;
int num [5] = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
sum = sum + num [i];
cout<<"Sum of the Elements in the array = "<<

sum;
return 0;
}
The output on the screen:
Sum of the Elements in the array = 115
i.e., 16 + 18 + 20 + 25 + 36 = 115
How the Execution takes its way through the for

loop statement
i=0 (sum = 0)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [0] = 0 +16

=16
Now,
i=1 (sum = 16)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [1] = 16 +18

=34
Now,
i=2 (sum = 34)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [2] = 34 +20

=54
Now,
i=3 (sum = 54)

Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [3] = 54 +25

=79
Now,
i=5 (sum = 79)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [5] = 79 +

36 =115
stop because the condition i<5 is achieved
The statement:
cout<<"Sum of the Elements in the array = "<<

sum; is executed to display the output:
Sum of the Elements in the array = 115
on the screen.
If the statement:
int i, sum = 0;
is replaced by int i, sum = 1;
Then The output on the screen:
Sum of the Elements in the array = 116
C++ program to print the average of the

elements in array
#include<iostream>
using namespace std;
int main ()
{
int i, avg, sum = 0;
int num [5] = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
sum = sum + num [i];
avg = sum/5;
cout<<"Sum of the Elements in the array = "<<

sum;
cout<<"average of the elements in the array=

"<< avg;
return 0;
}
The output on the screen:
Sum of the Elements in the array = 115
average of the elements in the array = 23
Write a program to print:
Einstein [0] = E
Einstein [1] = I
Einstein [2] = N
Einstein [3] = S
Einstein [4] = T
Einstein [5] = E
Einstein [6] = I
Einstein [7] = N
using arrays
Answer:
#include<iostream>
using namespace std;
int main ()
{

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

122

int i;
char name [8] = {'E', 'I', 'N', 'S', 'T', 'E', 'I', 'N'};
for (i=0; i<8; i++)
cout<<"Element ["<< i <<"] = "<< name [i] <<

endl;
return 0;
}
What will be the output of the following

programs?
i)
#include <iostream>
#include <math.h>
using namespace std;
int main ()
{
cout<<""<< cbrt (27);
return 0;
}
Answer:
3
ii)
#include <iostream>
using namespace std;
int main ()
{
char i;
char body [4] = {'b', 'o', 'd', 'y'};
for (i=0; i<4; i++)
cout<<"\n body ["<<body [i] <<"] = "<< body

[i] << endl;
return 0;
}
Answer:
body [b] = b
body [o] = o
body [d] = d
body [y] = y
iii)
#include <iostream>
#include <malloc.h>
using namespace std;
int main ()
{
int x=2;
cout<<""<< malloc (200*sizeof (x));
return 0;
}
Answer:
8183824
Program 7.7
C++ program to print the output:
Name of the book = B
Price of the book = 135.00
Number of pages = 300
Edition = 8
using structures

#include<iostream>
using namespace std;
int main ()
{
struct book {
char name;
float price;
int pages;
int edition;
};
struct book b1= {'B', 135.00, 300, 8};
cout<<"Name of the book = "<< b1.name<<

endl;
cout<<"Price of the book = "<< b1.price<<endl;
cout<<"Number of pages = "<<

b1.pages<<endl;
cout<<"Edition of the book = "<< b1.edition<<

endl;
return 0;
}
The output on the screen:
Name of the book = B
Price of the book = 135.00
Number of pages = 300
Edition of the book = 8
The statement:
struct book {
char name;
float price;
int pages;
int edition;
};
imply the structure definition i.e., we are

defining a structure (and the data type name of the
structure is book) and it consists of elements:

name (which is of data type char), price (which
is of data type float), pages (which is of data type int),
edition (which is of data type int) which are placed
within the body of the structure.

The statement:
struct book b1;
imply the structure variable declaration (where

b1 denote the structure variable)
Why structure variable b1 is declared or

defined?
In order to assign the values to the elements

within the body of the structure, each element must
be linked with structure variable with dot operator or
period operator or member accessibility operator.

For example: name is the element which must
be linked with structure variable b1 with dot operator
to assign a value B to the element "name".

The statement:
cout<<"Name of the book = "<< b1.name<<

endl;
is executed to print the output:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

123

Name of the book = B
on the screen.
The statement:
cout<<"Price of the book = "<< b1.price<<endl;
is executed to print the output:
Price of the book = 135.00
on the screen.
The statement:
cout<<"Number of pages = "<<

b1.pages<<endl;
is executed to print the output:
Number of pages = 300
on the screen.
The statement:
cout<<"Edition of the book = "<< b1.edition<<

endl;
is executed to print the output:
Edition of the book = 8
on the screen.
What will be output of the following programs?
A)
#include<iostream>
using namespace std;
struct book {
char name;
float price;
int pages;
int edition;
};
int main ()
{
struct book b1;
b1.name = 'C';
b1.price = 135.00;
b1.pages = 300;
b1.edition = 8;
cout<<"Name of the book = bulgarian "<<

b1.name << endl;
cout<<"\n Price of the book = "<< b1.price;
cout<<"\n Number of pages = "<<

b1.pages<<endl;
cout<<"\n Edition of the book = "<< b1.edition;
}
Answer:
Name of the book = B
Price of the book = 135.000000
Number of pages = 300
Edition of the book = 8
B)
#include <iostream>
using namespace std;
int main ()
{
for (;;) {
cout<<"This loop will run forever.\n";
}

return 0;
}
Answer:
This loop will run forever.
This loop will run forever.
This loop will run forever.
This loop will run forever.
This loop will run forever.
This loop will run forever.......... continues
Program 7.8
Continue and break statements:
i)
#include <iostream>
using namespace std;
int main ()
{
int i;
for (i=1; i<=5; i++)
{
if (i==3)
{
continue;
}
cout<<"\n "<< i;
}
return 0;
}
Output on the screen:
1
2
4
5
ii)
#include <iostream>
using namespace std;
int main ()
{
int i;
for (i=1; i<=5; i++)
{
if (i==3)
{
break;
}
cout<<"\n "<< i;
}
return 0;
}
Output on the screen:
1
2
Program 7.9
C++ program to convert the upper case letter to

lower case letter
#include<iostream>
using namespace std;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

124

int main ()
{
char ch = 'A';
char b = tolower (ch);
cout<<" upper case letter "<< ch <<" is

converted to lower case letter "<< b;
return 0;
}
Output on the screen:
upper case letter A is converted to lower case

letter a

If you want to enter the character through the

keyboard, then the above program should take the
form:

#include<iostream>
using namespace std;
int main ()
{
char ch;
cout<<"Enter any character:";
cin>>ch;
char b = tolower (ch);
cout<<" upper case letter "<< ch <<" is

converted to lower case letter "<< b;
return 0;
}
Output on the screen:
Enter any character:
If you enter the character C
upper case letter C is converted to lower case

letter c will be outputted on the screen.
Program 8.0
C++ program to convert the lower case letter to

upper case letter
#include<iostream>
using namespace std;
int main ()
{
char ch = 'a';
char b = toupper (ch);
cout<<" lower case letter "<<ch<<" is converted

to upper case letter "<<b;
return 0;
}
Output on the screen:
lower case letter a is converted to upper case

letter A

If you want to enter the character through the

keyboard, then the above program should take the
form:

#include<iostream>
using namespace std;
int main ()
{

char ch;
cout<<"Enter any character:";
cin>>ch;
char b = toupper (ch);
cout<<" lower case letter "<<ch<<" is converted

to upper case letter "<<b;
return 0;
}
Output on the screen:
Enter any character:
If you enter the character h
lower case letter h is converted to upper case

letter H
will be outputted on the screen.
Program 8.1
C++ program to test whether the entered

character is upper case letter or not
#include<iostream>
using namespace std;
int main ()
{
char ch = 'a';
if (isupper (ch))
cout<<"you have entered the upper case letter";
else
cout<<"you have entered the lower case letter";
return 0;
}
Output on the screen:
you have entered the lower case letter
If the statement:
char ch = 'a'; is replaced by the statement:
char ch = 'A';
Then the output on the screen is:
you have entered the upper case letter
Program 8.2
C++ program to test whether the entered

character is lower case letter or not
#include<iostream>
using namespace std;
int main ()
{
char ch = 'a';
if (islower (ch))
cout<<"you have entered the lower case letter";
else
cout<<"you have entered the upper case letter";
return 0;
}
Output on the screen:
you have entered the lower case letter
Program 8.3
C++ program to print the value of tan inverse x

(i.e., the value of tan-1 x)
#include<iostream>
#include<math.h>

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

125

using namespace std;
int main ()
{
int x = 20;
cout<<"the value of tan inverse x = "<< atan

(x);
return 0;
}
Output on the screen:
the value of tan inverse x = 1.520838
Program 8.4
C++ program to print the value of tan inverse

x/y (i.e., the value of tan-1x/y)
#include<iostream>
#include<math.h>
using namespace std;
int main ()
{
int x,y;
x = 20;
y =20;
cout<<"the value of tan inverse x/y = "<<

atan2(x,y);
return 0;
}
Output on the screen:
the value of tan inverse x/y = 0.785398
Program 8.5
C++ program to print the value of fmod (x, y)
#include<iostream>
#include<math.h>
using namespace std;
int main ()
{
float x = 20.500000;
float y =20.799999;
cout<<" the remainder of "<<x <<" divided by

"<<y <<" is: "<< fmod (x,y);
return 0;
}
Output on the screen:
the remainder of 20.500000 divided by

20.799999 is 20.500000
Program 8.6
C++ program to print the value of ~x
#include<iostream>
using namespace std;
int main ()
{
int x, y;
x = 205;
y=~x;
cout<<"the value of y is: "<< y;
return 0;
}
Output on the screen:

the value of y is:-206

If the statement:
y=~x; is replaced by the statement:
y= -(~x);
Then the output on the screen is:
the value of y is:206
What will be the output of the following

programs:
i)
#include<iostream>
using namespace std;
int main ()
{
int i = 54;
int y = i<<1;
cout<<"The value of y = "<< y;
return 0;
}
Answer:
The value of y = 108

If the statement:
i<<1 is replaced by the statement: i<<2
Then the output on the screen is:
The value of y = 216
Note:
i<<1 implies 54 * 2 = 108
i<<2 implies 54 * 4 = 216
i<<3 implies 54 * 6 = 324
i<<4 implies 54 * 8 = 432
ii)
#include<iostream>
using namespace std;
int main ()
{
int i = 54;
int y = i>>1;
cout<<"The value of y = "<< y;
return 0;
}
Answer:
The value of y = 27
If the statement:
i>>1 is replaced by the statement: i>>2
Then the output on the screen is:
The value of y = 13
Note:
i>>1 implies 54 / 2 = 27
i>>2 implies 54 / 4 = 13
i>>3 implies 54 / 6 = 9
i>>4 implies 54 / 8 = 6
<< implies: left shift operator
>> implies: right shift operator
Program 8.7

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

126

C++ program to print the length of the entered
character (i.e., to print the length of the string)

#include<iostream>
#include<string.h>
using namespace std;
int main ()
{
char ch [4];
cout<<"Enter any word: ";
cin>>ch;
cout<<"The length of the string = "<< strlen

(ch);
return 0;
}
Output on the screen:
Enter any word:
If you enter the word dog
The length of the string = 3
 will be displayed on the console screen

because there are three letters in the word dog.
Suppose if you enter the word tech
The length of the string = 4
 will be displayed on the console screen

because there are four letters in the word tech.
Program 8.8
C++ program to print the factorial of the entered

number
#include<iostream>
using namespace std;
int main ()
{
int i, n, fact=1;
cout<<"Enter any number:";
cin>>n;
for (i=1; i<=n; i++)
fact = fact *i;
cout<<"\n Entered number is: "<< n;
cout<<"\n The factorial of the entered

number"<<n<<"is:"<< fact;
return 0;
}
Output on the screen:
Enter any number:
If you enter the number 2
Entered number is: 2
The factorial of the entered number 2 is: 2
will be displayed on the screen.
Suppose if you enter the number 4
Entered number is: 4
The factorial of the entered number 4 is: 24
will be displayed on the screen.
Java Programming
Java is a high level programming language

conceived by James Gosling
, Patrick Naughton, Chris Warth, Ed Frank, and

Mike Sheridan at Sun Microsystems, Inc. in 1991 to

create programs to control consumer electronics
(which is now a subsidiary of Oracle Corporation)
and released in 1995, used in internet programming,
mobile devices, games, e-business solutions etc.,
because of its reliability, high performance,
simplicity and easy to use and quick to learn and
rigid versus extensibility.

Process of Java program execution: A Java
program:

public class HelloWorld {
public static void main (String [] args) {
System.out.println ("Hello, World!");
}
}
is written using Text Editor, such as

[Notepad++, Notepad] and saved with [.java]
Extension.

File Saved with [.java] extension is called
Source Program or Source Code.

// ---
HelloWorld.java--
--

public class HelloWorld {
public static void main (String [] args) {
System.out.println ("Hello, World!");
}
}
-------(because the class name is HelloWorld the

source file should be named as
HelloWorld.java)---------------//

and sent to the java compiler (i.e., javac
compiler) where the source program is compiled (i.e.,
the program is entirely read and translated into Java
byte codes (but not into machine language)).

If the javac compiler finds any error during
compilation, it provides information about the error
to the programmer. The programmer has to review
code and check for the solution.

And if there are no errors the translated program
(i.e., java byte codes -- a highly optimized set of
instructions) is stored in computers main memory as
HelloWorld.class and since the java byte codes
cannot be trusted to be correct. Therefore before
execution they are verified and converted to machine
level language i.e., machine code sequence of 0s and
1s by Java run-time system, which is called the Java
Virtual Machine (JVM) and is executed by a Java
interpreter and

Hello, World!
is displayed on the console screen.
Note:
JVM (Java Virtual Machine) resides under
RAM (Random Access Memory the stuff that

boost up your computer to run faster and allows your
computer to perform many tasks at the same time)

and JVM comprises:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

127

Class Loader: it loads.class file that contains
Java byte codes.

Byte Code Verifier: it verifies byte codes.
Execution Engine: it translates java byte codes

to machine codes and executes them.
In the statement:
public class HelloWorld
The word "HelloWorld" implies: name of the

class is HelloWorld and this class is public.
public means that the class HelloWorld can be

accessed by any other class in any package.
In the program:
//--

public class HelloWorld {
public static void main (String [] args) {
System.out.println ("Hello, World!");
}
}
--

--------------------------------//
public class HelloWorld {
} // imply the body of the class HelloWorld

(Here: the curly brace '{' imply the beginning of the
class and the curly brace '}' imply the end of the class)
within which the

main method
public static void main (String [] args) {
} is written.
public static void main (String [] args) imply:

main method (a collection of statements or methods
like System.out.println () that are grouped together
to perform an operation)

and this main method is public
and
{
} imply the body of the main method
(Here: the curly brace '{' imply the beginning of

the main method and the curly brace '}' imply the end
of the main method) within which the statement:

System.out.println ("Hello, World!");
is written and executed.
Note: main method in java functions like main

function main () in C and C++.
If the statement:
public class HelloWorld is replaced by the

statement:
public class sample i.e.,
public class sample {
public static void main (String [] args) {
System.out.println ("Hello, World!");
}
}
Then the error will be displayed on the screen

because the program written in notepad is saved as
HelloWorld.java not as sample.java.

If we want to write the statement:
public class sample instead of the statement:
 public class HelloWorld, then we

have to save the program written in notepad as
sample.java but not as HelloWorld.java.

Like C & C++, Java is also a case

sensitive language i.e., capital letters (or upper case
letters) must be avoided to prevent the display of
error on the screen

For example: If the statement:
PUBLIC static void main (String [] args) is

written instead of the statement:
public static void main (String [] args),

compilation Error will be displayed on the screen.

If we forget to end each program statement

within the body of main method with a semicolon
(";"), Error will be displayed on the screen

public static void main (String [] args) The
program begins its execution with the method:

public static void main (String [] args)- the main
method -- the entry point of the program execution

i.e., the point from where the execution of Java
program begins.

Semicolon: program is a set of instructions and
each instruction (or each statement) is ended by a
semicolon. Like in an English paragraph each
sentence is ended by a full stop which tells that one
sentence ends and another begins, semicolon implies
that one instruction (or statement) ends and another
begins.

In the statement:
System.out.println ();
System name of a standard class that contains

variables and methods for supporting simple
keyboard and character output to the display.

out represents the standard output stream println

() output method of the Java language which makes
provision to print the output in the next line:

Hello,world!

on the screen.
The text
Hello,world!
should be enclosed by the double quotation

marks ("") and should be written within the println
method and this

println method should be ended with the
semicolon i.e.,

System.out.println ("Hello,world!");
otherwise the compilation error will be

displayed on the console screen.
//--

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

128

--

public class HelloWorld {
public static void main (String [] args) {
System.out.println ("Hello, World!");
System.out.println ("Hello, World!");
}
}
Output on the screen:
Hello, World!
Hello, World!
public class HelloWorld {
public static void main (String [] args) {
System.out.print ("Hello, World!");
System.out.print ("Hello, World!");
}
}
Output on the screen:
Hello, World!Hello, World!
--

--
-------------//

In the statement:
public static void main (String [] args)
public implies: this method can accessed from

anywhere outside the class HelloWorld
If the word "public" in the statement:
public static void main (String [] args)
is replaced by the word
private
or
protected
Then compilation error will be flagged on the

screen because if the method is declared private or
protected then this method does not make itself
available to JVM for execution.

main implies the name of the method
static means the main method is the part of the

class HelloWorld
Why static?
Because the program execution begins from the

main method and if the main method is not declared
static then the execution of the program does not take
place.

void implies the main method does not return
any value i.e., main method return nothing when it
completes execution.

String args [] While running the program if we
want to pass something to the main method, then this
parameter is used as the way of taking input from the
user--so we can pass some strings while running the
program if we want.

Moreover, JVM cannot recognize the method:
public static void main (String [] args)
as method if the parameter String [] args is not

included.
If the word args in the statement:
public static void main (String [] args) is

replaced by another word say jamesgosling or java
i.e.,
//--

--
public class HelloWorld
{
public static void main (String [] jamesgosling)
{
System.out.println ("Hello, World!");
}
}
public class HelloWorld {
public static void main (String [] java) {
System.out.println ("Hello, World!");
}
}
--

--//
No compilation error will be displayed on the

screen i.e., Hello, World! will be outputted on the
screen without display of any error on the screen.

If the statement:
public static void main (String [] args)
is replaced by the statement public static void

main (String []) -- Then the error is displayed on the
screen.

Note: Most Java programmers prefer args and
argv i.e., the statements:

public static void main (String [] args)
and public static void main (String [] argv) are

preferred.
If the space is left between the words Hello and

World i.e., if the statement:
public class Hello World is written instead of

the statement:
public class HelloWorld. Then the compilation

error will be displayed on the screen.
Program 1.1
Java program to print the word "hello Bill

Gates" on screen
public class HelloWorld {
public static void main (String [] args) {
System.out.println ("hello Bill Gates");
}
}
The output on the screen:
hello Bill Gates
Program 1.2
Java program to print the word "****hello

silicon city****" on screen
public class HelloWorld {
public static void main (String [] args) {
System.out.println (" ****hello silicon city****

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

129

");
}
}
The output on the screen:
****hello silicon city****
Program 1.3
Java program to print
*

on screen
public class HelloWorld {
public static void main (String [] args) {
System.out.println ("\n * ");
System.out.println ("\n ***** ");
System.out.println ("\n ***** ");
System.out.println ("\n ***** ");
System.out.println ("\n ***** ");
}
}
The output on the screen:
*

If new line \n is not included in the above

program then the output on the screen is:

Write a program to print the following outputs:
(a)
*

java

*
(b)

* *
* Hello World! *
* *

(c)
Braces come in pairs!
Comments come in pairs!
All statements end with a semicolon!
Spaces are optional!
Must have a main method!
java is done mostly in lowercase. Like C &

 C++ its also a case-sensitive language
Answers:
a)
public class HelloWorld {

public static void main (String [] args) {
System.out.println ("\n * ");
System.out.println ("\n **** ");
System.out.println ("\n **java** ");
System.out.println ("\n **** ");
System.out.println ("\n * ");
}
}
b)
public class HelloWorld {
public static void main (String [] args) {
System.out.println ("\n ****************

 ");
System.out.println ("\n * * ");
System.out.println ("\n * Hello World! *

 ");
System.out.println ("\n * * ");
System.out.println ("\n ****************

 ");
}
}
c)
public class HelloWorld {
public static void main (String [] args) {
System.out.println ("\n Braces come in pairs!");
System.out.println ("\n Comments come in

pairs!");
System.out.println ("\n All statements end with

a semicolon!");
System.out.println ("\n Spaces are optional!");
System.out.println ("\n Must have a main

method!");
System.out.println ("\n java is done mostly in

lowercase. Like C & C++ it's also a
case-sensitive language");

}
}
Program 1.4
Java program to find the area of the circle
public class HelloWorld {
public static void main (String [] args) {
int r, area;
r = 2;
area = 4 * 3.14 * r * r;
System.out.println ("The area of the circle = " +

area);
}
}
The output on the screen:
The area of the circle = 50
int means the integer data type.
Note: An integer is a whole number - no

fractions, decimal parts, or funny stuff.
The statement:
int r, area; imply that we are creating the integer

variables r, area.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

130

Equal sign implies: storage operator.
The statements:
r = 2;
area = 4 * 3.14 * r * r;
imply that we are storing the values to the

created variables (i.e., we are storing the value 2 for r
and 4 * 3.14 * r * r for area).

Comma in the statement:
int r, area; imply:: variable separator.

If multiplication sign & times; is used

instead of multiplication operator * i.e.,
area = 4 3.14 r r;
then the compilation error will be displayed on

the screen.
In C language, the statement:
printf ("The area of the circle = %d ", area);
make the provision to print the output on the

screen.
In C++ language, the statement
cout<<"The area of the circle = "<< area;
make the provision to print the output on the

screen.
whereas in the Java language, the statement:
System.out.println ("The area of the circle = " +

area);
make the provision to print the output on the

screen.
In the statement:
System.out.println ("The area of the circle = " +

area);
There are two strings:
The area of the circle =
area
plus operator (+) functions as the concatenation

operator (concatenation means connecting two
statements to produce a single statement) which (here)
concatenates

the string:
"The area of the circle = " and the string:
"area (which is 4 * 3.14 * r * r (=50 since r =

2))" -- producing a String statement:
The area of the circle = 50
which will be displayed on the screen as the

result.
The area of the circle is = 50. 24 (for r = 2) but
The area of the circle = 50 is displayed on the

screen because the data type int is used instead of
data type float.

If the data type float is used instead of int i.e.,
then the output on the screen is:

The area of the circle = 50.24
If you write:
4 * 3.14 * r^2; instead of 4 * 3.14 * r * r;
Then error is displayed on the screen because

like in other high level languages (such as C and C++)

there is no operator for performing r ^ 2 operation so
the statement:

4 * 3.14 * r^2; is invalid.
Even though if we write ARGS instead of args

i.e., even though if we express args in capital letter,
No error will be displayed on the screen.

public static void main (String [] ARGS) no
error will be displayed on the console screen.

Program 1.5
Java program to find the circumference of the

circle
public class HelloWorld {
public static void main (String [] args) {
float r, circumference;
r = 2;
circumference = 3.14 * r * r;
System.out.println ("The circumference of the

circle = " + circumference);
}
}
The output on the screen is:
The circumference of the circle = 12.56
What will be the output of the following

programs:
a)
public class HelloWorld {
public static void main (String [] args) {
double l, b, area;
l=2;
b=2.5;
area = l*b;
System.out.println ("The area of the rectangle =

" + area);
}
}
Answer:
The area of the rectangle = 5.0
b)
public class HelloWorld {
public static void main (String [] args) {
int a, b, c;
a= 3;
b=3;
c=3;
if ((a + b< c) || (b + c < a) || (a==b & &

 b==c))
System.out.println (" the triangle is

equilateral");
else
System.out.println (" the triangle is not

possible");
}
}
Answer:
the triangle is equilateral
Program 1.6

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

131

Java program to convert the temperature in
Celsius to Fahrenheit

public class HelloWorld{
public static void main (String [] args){
float C, F;
C=38.5;
F = 9*C/5 +32;
System.out.println ("temperature in Fahrenheit=

" +F);
}
}
The output on the screen:
temperature in Fahrenheit= 101.3
Program 1.7
Java program to find the sum of two numbers
public class HelloWorld
{
public static void main (String [] args)
{
int a, b, sum;
a=1;
b=2;
sum = a + b;
System.out.println ("the sum of a and b = " +

sum);
}
}
The output on the screen:
the sum of a and b = 3
If you want to supply the values for a and b

through the key board, then we have to rewrite the
program as follows:

import java.util.Scanner;
public class HelloWorld
{
public static void main (String [] args) {
int a, b, sum;
Scanner scan = new Scanner (System.in);
System.out.print ("Enter any two Numbers: ");
a = scan.nextInt ();
b = scan.nextInt ();
sum = a + b;
System.out.println ("the sum of a and b = " +

sum);
}
}
The output on the screen:
Enter any two Numbers:
If you enter two numbers 2 and 3
the sum of a and b = 5
will be outputted on the screen
//--

--

Scanner is a class found in java.util package. So
to use Scanner class, we first need to include:

java.util package
in our program.
import java.util.Scanner; // This will import just

the Scanner class
import java.util.*; // This will import the entire

java.util package
--

--
----------//

The statement:
Scanner scan = new Scanner (System.in);
implies: declaring an object of the Scanner class

"scan" to read the values entered for a and b through
the key board.

And the statements:
a = scan.nextInt ();
b = scan.nextInt ();
imply: scan is an object of Scanner class and

nextInt () is a method of the object "scan" that allows
the object "scan" to read only integer values from the
keyboard.

//--
--

Same as the method:
nextInt () that allows the object "scan" to read

only integer values from the keyboard, methods that
allows the object "scan" to read other data types from
the keyboard are listed below:

Methods datatype
nextInt () Integer
nextFloat () Float
nextDouble () Double
nextLong () Long
nextShort () Short
next () Single word
nextLine () Line of Strings
nextBoolean () Boolean

--

--
----------//

Program 1.8
Java program to find the square root of a

number
i)
public class HelloWorld
{
public static void main (String [] args) {
float x;
x = 233;
System.out.println (" square root of a number =

" + Math.sqrt (x));
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

132

}
The output on the screen:
square root of a number = 15.264
If you want to supply the value for x through the

key board, then the above program should take the
form:

import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
int x;
Scanner scan = new Scanner (System.in);
System.out.print ("Enter any Number: ");
x = scan.nextFloat ();
System.out.println (" square root of a number =

" + Math.sqrt (x));
}
}
The output on the screen:
Enter any Number:
If you enter the number 233
square root of a number = 15.264337522
will be outputted on the screen.
ii)
public class HelloWorld
{
public static void main (String [] args) {
double x;
x = 233;
System.out.println (" square root of a number =

" + Math.sqrt (x));
}
}
The output on the screen:
 square root of a number =

15.264337522473747

If you want to supply the value for x through the
key board, then the above program should take the
form:

import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
double x;
Scanner scan = new Scanner (System.in);
System.out.print ("Enter any Number: ");
x = scan.nextDouble ();
System.out.println (" square root of a number =

" + Math.sqrt (x));
}
}
The output on the screen:
Enter any Number:
If you enter the number 233
square root of a number = 15.264337522473747
will be outputted on the screen.
Program 1.9

What will be the output of the following
program:

public class HelloWorld{
public static void main (String [] args) {
char c;
c = 'A';
System.out.println ("ch= " + c);
}
}
The output on the screen:
ch=A

If you want to supply the value for c through the

key board, then the above program should take the
form:

public class HelloWorld {
public static void main (String [] args) throws

Exception {
char c;
System.out.print ("Enter a character:");
c = (char)System.in.read ();
System.out.println ("ch= " + c);
}
}
The output on the screen:
Enter a character:
If you enter the character K
ch= K
will be outputted on the screen.
Note: Exception is a problem that arises during

the execution of a program.
When an exception occurs, program abnormally

terminates and disrupts -
throws Exception should be written after the

statement public static void main (String [] args) so
that the

exceptions are thrown to the operating system to
handle and the program will be successfully executed
and the output will be displayed on the screen.

Program 2.0
import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
String m;
Scanner in = new Scanner (System.in);
System.out.print ("Enter the word: ");
m = in.nextLine ();
System.out.println (" the word you entered = " +

m);
}
}
The output on the screen:
Enter the word:
If you enter the word dog
the word you entered = dog
will be outputted on the screen.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

133

//--

Note:
If the statement:
m = scan.nextLine ();
is written instead of
m = in.nextLine ();
Then we have to replace the statement:
Scanner in = new Scanner (System.in);
by the statement:
Scanner scan = new Scanner (System.in);
Otherwise compilation error will be displayed

on the screen.
--

--------------------------------------//
What is the mistake in the following program:
public class HelloWorld
{
static public void main (String args []) {
float x;
x = 233;
System.out.println (" cube root of a number = "

+ Math.cbrt (x));
}
}
Answer:
There is no mistake in the above program.
The statement:
public static void main (String [] args) can also

be written as:
static public void main (String args [])
The output on the screen is:
cube root of a number = 6.1534494936636825
Program 2.1
Java program to find the product of two

numbers.
public class HelloWorld{
public static void main (String [] args) {
int a, b, product;
a=1;
b=2;
product = a * b;
System.out.println ("the product of a and b = " +

product);
}
}
The output on the screen:
the sum of a and b = 2
If you want to supply the values for a and b

through the key board, then we have to rewrite the
above program as follows:

import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
int a, b, product;
Scanner scan = new Scanner (System.in);

System.out.print ("Enter any two Numbers: ");
a = scan.nextInt ();
b = scan.nextInt ();
product = a * b;
System.out.println ("the product of a and b = " +

product);
}
}
The output on the screen:
Enter any two Numbers:
If you enter two numbers 6 and 3
the product of a and b = 18
will be outputted on the screen
Note:
If you want to assign the floating point values

for a & b, then the above program should
take the form:

import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
float a, b, product;
Scanner scan = new Scanner (System.in);
System.out.print ("Enter any two Numbers: ");
a = scan.nextFloat ();
b = scan.nextFloat ();
product = a * b;
System.out.println ("the product of a and b = " +

product);
}
}
The output on the screen:
Enter any two Numbers:
If you enter two floating point values 2.9 and

3.6
the product of a and b = 10.44
will be outputted on the screen.
float is used instead of int because a and b are

assigned fractional values (i.e., 2.9 and 3.6) if int is
used instead of float then the result will not be clearly
outputted i.e., instead of 10.44 the computer displays
only 10 (as said earlier).

If the statement:
System.out.println ("the product of a and b = " +

product);
is replaced by the statement:
System.out.println (a + "* " + b + " = " +

product);
Then the output on the screen is:
2.9 * 3.6 = 10.44
Note: The word public in the statement:
public class HelloWorld
implies: that the program or the data within the

program (such as methods, variables etc.) can be
accessed directly by an external java program.

If replace the word public by private i.e.,
private class HelloWorld

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

134

is written instead of
public class HelloWorld -- then the program or

the data within the program (such as methods,
variables etc.) cannot be accessed directly by an
external program.

If you insert a value 2^3 for a and 3^2 for b,
then as said earlier wrong result or compilation error
will be flagged on the screen.

a=2^3
b=3^2; ---> ERROR
a=2* 2*2
b=3*3; ---> Result will be outputted on the

screen i.e.,
the product of a and b = 72
If you want to insert a 10 digit number for a and

b i.e.,
a=1000000000
b=3000000000, then the statement:
int a, b, product;
should be replaced by the statement:
long int a, b, product;
i.e.,
public class HelloWorld{
public static void main (String [] args){
long int a, b, product;
a=1000000000;
b=2000000000;
product = a * b;
System.out.println ("the product of a and b = " +

product);
}
}
The output on the screen:
the product of a and b = 3000000000000000000
What will be the output of the following

program:
public class HelloWorld{
static public void main (String args []) {
float x;
x = 2;
System.out.println (" square of a number = " +

Math.pow ((x), 2));
}
}
Answer:
square of a number = 4
Program 2.2
Java program to find the square of a number
public class HelloWorld{
public static void main (String [] args){
int a, b;
a=2;
b = a * a;
System.out.println ("the square of a = " + b);
}
}

The output on the screen:
the square of a = 4
If you want to supply the value for a through the

key board, then we have to rewrite the above
program as follows:

import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int a, b;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any Number: ");
a = scan.nextInt ();
b = a * a;
System.out.println ("the square of a = " + b);
}
}
The output on the screen:
Enter any number:
If you enter a number 3
the square of a = 9 will be outputted on the

screen.
Note:
If scan.nextint () is written instead of

scan.nextInt ()
public static void main (string [] args); is written

instead of public static void main (String [] args)
system.out.println ("the square of a = " + b); is

written instead of System.out.println ("the square of a
= " + b);

Then the compilation error will be displayed on
the screen.

Program 2.3
Java program to find the greatest of two

numbers using if - else statement
The syntax of if else statement is:
if (this condition is true)
{
print this statement using the println method
}
else
{
print this statement using the println method
}
public class HelloWorld{
public static void main (String [] args){
int a, b;
a=2;
b =3;
if (a>b)
{
System.out.println ("a is greater than b");
}
else
{
System.out.println ("b is greater than a");
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

135

}
}
The output on the screen:
b is greater than a
In the above program:
if the condition (a> b) is true, then the statement
{
System.out.println ("a is greater than b");
}
is executed to print the output:
a is greater than b
else
the statement
{
System.out.println ("b is greater than a");
}
is executed to print the output:
b is greater than a
If you want to supply the values for a and b

through the key board, then the above program
should be rewritten as:

import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args){
int a, b;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any two Numbers: ");
a = scan.nextInt ();
b = scan.nextInt ();
if (a>b)
{
System.out.println ("a is greater than b");
}
else
{
System.out.println ("b is greater than a");
}
}
}
The output on the screen:
Enter any two Numbers:
If you enter two numbers 2 and 3
b is greater than a
will be outputted on the screen.
Note:
Even if the statements:
System.out.println ("a is greater than b");
System.out.println ("b is greater than a");
are not written within the braces { }
i.e.,
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args){
int a, b;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any two Numbers: ");

a = scan.nextInt ();
b = scan.nextInt ();
if (a>b)
System.out.println ("a is greater than b");
if (b>a)
System.out.println ("b is greater than a");
}
}
There will no display of compilation error on

the screen or there will be no change in the output
displayed on the screen (i.e., b is greater than a will
be outputted on the screen).

Program 2.4
Java program to find the greatest of three

numbers using if else if else statement
The syntax of if else if else statement is:
if (this condition is true)
{
print this statement using the method

System.out.println ();
}
else if (this condition is true)
{
print this statement using the method

System.out.println ();
}
else
{
print this statement using the method

System.out.println ();
}
public class HelloWorld{
public static void main (String [] args){
int a, b, c;
a=2;
b =3;
c=4;
if (a>b & & a>c)
{
System.out.println ("a is greater than b and c");
}
else if (b>a & & b>c)
{
System.out.println ("b is greater than a and c");
}
else
{
System.out.println ("c is greater than b and a");
}
}
}
The output on the screen:
c is greater than b and a
Note:
If the statements:
if (a>b & & a>c)

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

136

{
System.out.println ("a is greater than b and c");
}
else if (b>a & & b>c)
{
System.out.println ("b is greater than a and c");
}
else
{
System.out.println ("c is greater than b and a");
}
are replaced by the statements:
if (a>b & & a>c)
{
System.out.println (a + "is greater than" + b +

"and" + c);
}
else if (b>a & & b>c)
{
System.out.println (b + "is greater than" + a +

"and" + c);
}
else
{
System.out.println (c + "is greater than" + b +

"and" + a);
}
Then the output on the screen is:
4 is greater than 3 and 2
Program 2.5
Java program to find the average of 10 numbers
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int N1, N2, N3, N4, N5, N6, N7, N8, N9, N10,

X;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any ten Numbers: ");
N1 = scan.nextInt ();
N2 = scan.nextInt ();
N3 = scan.nextInt ();
N4 = scan.nextInt ();
N5 = scan.nextInt ();
N6 = scan.nextInt ();
N7 = scan.nextInt ();
N8 = scan.nextInt ();
N9 = scan.nextInt ();
N10 = scan.nextInt ();
X = (N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8

+ N9 + N10) /10;
System.out.println ("the average of 10 numbers

= " + X);
}
}
The output on the screen:
Enter any ten Numbers:

If you enter ten numbers 1, 2, 3, 4, 5, 6, 7, 8, 9
and 10

the average of 10 numbers = 5
will be outputted on the screen.
Note: The average of 10 numbers is 5.5, the

output on the screen is 5 because int is used instead
of float.

Program 2.6
Java program to find the simple interest
public class HelloWorld{
public static void main (String [] args) {
int P,T, R, SI;
P = 1000;
T = 2;
R = 3;
SI = P*T*R/100;
System.out.println ("the simple interest = " +

SI);
}
}
The output on the screen:
the simple interest = 60
If you want to supply the values for P, T and R

through the key board, then the above program
should take the form:

import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
int P,T, R, SI;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter principal amount:");
P = scan.nextInt ();
System.out.println ("Enter time:");
T = scan.nextInt ();
System.out.println ("Enter rate of interest:");
R = scan.nextInt ();
SI = P*T*R/100;
System.out.println ("the simple interest = " +

SI);
}
}
The output on the screen:
Enter principal amount:
If you enter the principal amount 1000
Enter time:
If you enter the time 2
Enter rate of interest:
If you enter the rate of interest 3
the simple interest = 60
will be outputted on the screen.
Program 2.7
Java program to find the senior citizen
public class HelloWorld{
public static void main (String [] args){
int age;
age=20;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

137

if (age> = 60)
{
System.out.println ("senior citizen");
}
else
{
System.out.println ("not a senior citizen");
}
}
}
The output on the screen:
not a senior citizen

(age> = 60) implies age greater than or equal to

60
If you want to supply the value for age through

the key board, then the above program should be
rewritten as:

import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args){
int age;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter the age: ");
age = scan.nextInt ();
if (age> = 60)
{
System.out.println ("senior citizen");
}
else
{
System.out.println ("not a senior citizen");
}
}
}
The output on the screen:
Enter the age:
If you enter the age 60
senior citizen
will be outputted on the screen.
Suppose if you enter the age 28
not a senior citizen
will be outputted on the screen.
Program 2.8
Java program to get marks for 3 subjects and

declare the result:
If the marks >= 35 in all the subjects the student

passes else fails.
public class HelloWorld{
public static void main (String [] args){
int M1, M2,M3;
M1 = 38;
M2= 45;
M3 = 67;
if (M1>= 35 & & M2>= 35 &

& M3>= 35)

{
System.out.println ("candidate is passed");
}
else
{
System.out.println ("candidate is failed");
}
}
}
The output on the screen:
candidate is passed
(M1>= 35 & & M2>= 35 &

& M3>= 35) imply M1 is greater than or equal to
35 and M2 is greater than or equal to 35 and M3 is
greater than or equal to 35.

>= imply greater than or equal to.
 & & imply and whereas & imply

address.
(M1>= 35 & & M2>= 35 &

& M3>= 35) is the condition and if the condition:
(M1>= 35 & & M2>= 35 &

& M3>= 35) is true, then the statement
{
System.out.println ("candidate is passed");
}
is executed to print the output:
candidate is passed
else the statement
{
System.out.println ("candidate is failed");
}
is executed to print the output:
candidate is failed
If you want to supply the values for marks M1,

M2 and M3 through the key board, then the above
program should be rewritten as:

import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int age;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any three Numbers:

");
M1= scan.nextInt ();
M2 = scan.nextInt ();
M3 = scan.nextInt ();
if (M1>= 35 & & M2>= 35 &

& M3>= 35)
{
System.out.println ("candidate is passed");
}
else
{
System.out.println ("candidate is failed");
}
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

138

}
The output on the screen:
Enter any three Numbers:
If you enter three numbers 26, 28, 39
candidate is failed
will be outputted on the screen.
Program 2.9
Java program to find profit or loss
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int CP, SP, loss, profit;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter cost price: ");
CP = scan.nextInt ();
System.out.println ("Enter selling price: ");
SP = scan.nextInt ();
if (SP>CP)
{
System.out.println ("profit= " + (SP-CP));
}
else
{
System.out.println ("loss =" +(CP-SP));
}
}
}
The output on the screen:
Enter cost price:
If you enter the cost price 25
Enter selling price:
If you enter the selling price 26
profit = 1
will be outputted on the screen.
If the condition (SP>CP) is true, then the

statement:
{
System.out.println ("profit= " + (SP-CP));
}
is executed to print the output:
profit = (SP-CP) (in this case profit = 26-25 =1)
else the statement:
{
System.out.println ("loss =" + (CP-SP));
}
is executed to print the output:
loss = (CP-SP)
Program 3.0
Java program to find the incremented and

decremented values of two numbers
public class HelloWorld{
public static void main (String [] args){
int a, b, c, d, e, f;
a = 10;
b=12;
c=a+1;

d=b+1;
e=a-1;
f=b-1;
System.out.print ("the incremented value of a =

"+ c);
System.out.print ("the incremented value of b =

"+ d);
System.out.print ("the decremented value of a =

"+ e);
System.out.print ("the decremented value of b =

"+ f);
}
}
The output on the screen:
the incremented value of a = 11 the incremented

value of b = 13 the decremented value of a = 9 the
decremented value of b = 11

If the statements:
System.out.print ("the incremented value of a =

"+ c);
System.out.print ("the incremented value of b =

" + d);
System.out.print ("the decremented value of a =

" + e);
System.out.print ("the decremented value of b =

" + f);
are replaced by the statements:
System.out.print ("\n the incremented value of a

= " + c);
System.out.print ("\n the incremented value of b

= " + d);
System.out.print ("\n the decremented value of a

= " + e);
System.out.print ("\n the decremented value of b

= " + f);
i.e., if the above program is rewritten as:
Then the output on the screen is:
the incremented value of a = 11
the incremented value of b = 13
the decremented value of a = 9
the decremented value of b = 11
i.e., \n make provision for the another result to

print in the new line. If you want to supply the values
for a and b through the key board, then the above
program should take the form:

import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args){
int a, b, c, d, e, f;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any Number: ");
a = scan.nextInt ();
System.out.println ("Enter any Number: ");
b = scan.nextInt ();
c=a+1;
d=b+1;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

139

e=a-1;
f=b-1;
System.out.print ("\n the incremented value of a

= " + c);
System.out.print ("\n the incremented value of b

= " + d);
System.out.print ("\n the decremented value of a

= " + e);
System.out.print ("\n the decremented value of b

= " + f);
}
}
The output on the screen:
Enter any Number:
If you enter the value 2
Enter any Number:
If you enter the value 3
the incremented value of a = 3
the incremented value of b = 4
the decremented value of a = 1
the decremented value of b = 2
will be outputted on the screen.
Note: b++ is same as b + 1 and b-- is same as b -

1.
What will be the output of the following

programs:
A)
import java.util.Scanner;
public class temperature{
public static void main (String [] args) {
float T1, T2, A;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any Number: ");
T1 = scan.nextFloat ();
System.out.println ("Enter any Number: ");
T2 = scan.nextFloat ();
A = (T1 + T2) / 2;
System.out.println ("the average temperature of

the day = " + A);
}
}
Answer:
Enter any Number:
If you enter the number 2
Enter any Number:
If you enter the number 3
the average temperature of the day = 2.5
will be outputted on the screen.
B)
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int P;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter the percentage: ");
P = scan.nextInt ();

if (P >= 60)
{
System.out.println ("first class");
}
else if (P>=50 & & P <60)
{
System.out.println ("second class");
}
else
{
System.out.println ("pass class");
}
if (P<40)
{
System.out.println ("fail");
}
}
}
Answer:
Enter the percentage:
If you enter the number 60
first class
will be outputted on the screen.
Program 3.1
Java program to calculate the discounted price

and the total price after discount
Given:
If purchase value is greater than 1000, 10%

discount
If purchase value is greater than 5000, 20%

discount
If purchase value is greater than 10000, 30%

discount
discounted price
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int PV, dis;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter purchased value: ");
PV = scan.nextInt ();
if (PV<1000)
{
System.out.println ("dis = " + PV* 0.1);
}
else if (PV>5000)
{
System.out.println ("dis = " + PV* 0.2);
}
else
{
System.out.println ("dis= " + PV* 0.3);
}
}
}
The output on the screen:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

140

Enter purchased value:
If you enter the purchased value 6500
dis = 1300
will be outputted on the screen.
(PV>1000), (PV>5000) denote the conditions

and if the condition (PV>1000) is true i.e., purchased
value is greater than 1000, then the statement

{
System.out.println ("dis = " + PV* 0.1);
}
is executed to print the output:
dis= PV* 10% = PV* 10 /100 = PV* 0.1
and if the condition (PV>1000) is false and if

the condition (PV>5000) is true i.e., purchased value
is greater than 5000, then the statement

{
System.out.println ("dis = " + PV* 0.2);
}
is executed to print the output:
dis= PV* 20% = PV* 20 /100 = PV* 0.2
and if the condition (PV>5000) is not true i.e.,

purchased value is less than 5000, then the statement
{
System.out.println ("dis = " + PV* 0.3);
}
is executed to print the output:
dis= PV* 30% = PV* 30 /100 = PV* 0.3
total price
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int PV, total;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter purchased value: ");
PV = scan.nextInt ();
if (PV<1000)
{
System.out.println ("total= " + PV - PV* 0.1);
}
else if (PV>5000)
{
System.out.println ("total = " + PV- PV* 0.2);
}
else
{
System.out.println ("total= " + PV- PV* 0.3);
}
}
}
The output on the screen:
Enter purchased value:
If you enter the purchased value 650
total = 585
will be outputted on the screen.
If the condition (PV>1000) is true i.e.,

purchased value is greater than 1000, then the

statement
{
System.out.println ("total= " + PV - PV* 0.1);
}
is executed to print the output:
total =PV- dis = PV- PV*10% = PV- PV* 10

/100 = PV - PV * 0.1
and if the condition (PV>1000) is false and if

the condition (PV>5000) is true i.e., purchased value
is greater than 5000, then the statement

{
System.out.println ("total= " + PV - PV* 0.2);
}
is executed to print the output:
total =PV- dis = PV- PV*20% = PV- PV* 20

/100 = PV - PV * 0.2

and if the condition (PV> 5000) is not true i.e.,

purchased value is less than 5000, then the statement
{
System.out.println ("total= " + PV - PV* 0.3);
}
is executed to print the output:
total =PV- dis = PV- PV*30% = PV- PV* 30

/100 = PV - PV * 0.3
Note: Combing both the programs (above), we

can write:
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args){
int PV, dis, total;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter purchased value: ");
PV = scan.nextInt ();
if (PV<1000)
{
System.out.println ("dis = " + PV* 0.1);
System.out.println ("total= " + total - dis);
}
else if (PV>5000)
{
System.out.println ("dis = " + PV* 0.2);
System.out.println ("total= " + total - dis);
}
else
{
System.out.println ("dis = " + PV* 0.3);
System.out.println ("total= " + total - dis);
}
}
}
The output on the screen:
Enter purchased value:
If you enter the purchased value 850
dis = 85
total = 765

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

141

will be outputted on the screen.
Program 3.2
Java program to print the first ten natural

numbers using for loop statement
public class HelloWorld{
public static void main (String [] args){
int i;
for (i=1; i<=10; i++)
System.out.println ("value of i = " + i);
}
}
The output on the screen is:
value of i = 1 value of i = 2 value of i= 3 value

of i= 4 value of i= 5 value of i= 6 value of i = 7 value
of i= 8 value of i = 9 value of i = 10

for (i=1; i<=10; i++) denote the
for loop statement and the syntax of the
for loop statement is:
for (initialization; condition; increment)
Here:
i=1 denote initialization (i.e., from where to

start)
i<=10 denote the condition (i.e., stop when 10 is

reached)
i++ imply increment (which tells the value of i

to increase by 1 each time the loop is executed) and
i++ is the same as i+1.

When a for loop executes, the following occurs:
i = 1
Is the condition (i<=10) is true?
Yes because i=1
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 1
Now, the value of i is:
i = 1+1 = 2
Is the condition (i<=10) is true?
Yes because i=2
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 2
Now, the value of i is:
i = 2+1 = 3
Is the condition (i<=10) is true?
Yes because i=3
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 3
Now, the value of i is:
i = 3+1 = 4
Is the condition (i<=10) is true?
Yes because i=4
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 4
Now, the value of i is:

i = 4+1 = 5
Is the condition (i<=10) is true?
Yes because i=5
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 5
Now, the value of i is:
i = 5+1 = 6
Is the condition (i<=10) is true?
Yes because i=6
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 6
Now, the value of i is:
i = 6+1 = 7
Is the condition (i<=10) is true?
Yes because i=7
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 7
Now, the value of i is:
i = 7+1 = 8
Is the condition (i<=10) is true?
Yes because i=8
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 8
Now, the value of i is:
i = 8+1 = 9
Is the condition (i<=10) is true?
Yes because i=9
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 9
Now, the value of i is:
i = 9+1 = 10
Is the condition (i<=10) is true?
Yes because i=10
The statement System.out.println ("value of i =

" + i); is executed to print the output:
value of i = 10
and stop because the condition i<=10 is

achieved.
If the statement:
System.out.println ("value of i = " + i);
is replaced by the statement:
System.out.println ("\nvalue of i = " + i);

Then the output on the screen is:
value of i = 1
value of i = 2
value of i = 3
value of i = 4
value of i = 5
value of i = 6
value of i = 7

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

142

value of i = 8
value of i = 9
value of i = 10
If the
for loop statement:
for (i=2; i<=10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 2 value of i = 3 value of i= 4 value

of i= 5 value of i= 6 value of i = 7 value of i= 8 value
of i = 9 value of i= 10

If the for loop statement:
for (i=1; i<10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 1 value of i = 2 value of i= 3 value

of i= 4 value of i= 5 value of i= 6 value of i = 7 value
of i= 8 value of i = 9

(Note: the condition i<=10 tells to print till
value of i =10 but the condition i<10 tells to print till
value of i=9)

If the statement:
for (i=1; i=10; i++)
is written instead of the statement:
for (i=1; i<=10; i++), then the output on the

screen is:
value of i = 10 value of i = 10 value of i = 10

value of i = 10 value of i= 10 value of i= 10 value of i
= 10 value of i= 10 value of i = 10 value of i = 10
 value of i = 10 value of i = 10 value of i = 10
 value of i = 10 value of i = 10 (continues...).

Note:
If the statement:
System.out.println ("\n value of i = " + i); is

replaced by the statement
System.out.println ("\n " + i);
Then the output on the screen is:
1
2
3
4
5
6
7
8
9
10
What is the mistake in the following program:
public class HelloWorld{
public static void main (String []args) throws

Exception{
System.out.println ("Hello World");
}
}

Answer:
There is no mistake in the above program.

Addition of the statement throws Exception does not
make any change in the output displayed on the
screen or give rise to any compilation error on the
screen.

Program 3.3
What will be the output of the following

program:
public class HelloWorld{
public static void main (String [] args) {
int i;
for (i =1; i<=5; i ++)
System.out.println ("\n Linux is not portable");
}
}
Answer:
Linux is not portable
Linux is not portable
Linux is not portable
Linux is not portable
Linux is not portable
Java program to print the first ten natural

numbers using for while loop statement
The syntax of while loop statement is:
while (this is the condition)
{
execute this statement;
}
public class HelloWorld{
public static void main (String [] args)
{
int i = 1;
while (i<=10)
{
System.out.println ("\n " + i++);
}
}
}
The output on the screen is:
1
2
3
4
5
6
7
8
9
10
(i<=10) is the condition and
The statement
System.out.println ("\n " + i++);
is repeatedly executed as long as a given

condition (i<=10) is true.
If the statement:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

143

int i=1;
is replaced by the statement:
int i;
Then the compilation error will be displayed on

the console screen because initialization is not
defined i.e., from where to start is not declared.

If the statement:
int i = 1;
is replaced by the int i = 0;
Then the output on the screen is:
0
1
2
3
4
5
6
7
8
9
10
Similarly if the statement int i = 0; is replaced

by the int i = 7;
Then the output on the screen is:
7
8
9
10
Java program to print first 10 numbers using do

while loop statement
The syntax of do while loop statement is:
do
{
execute this statement;
}
while (this is the condition);
public class HelloWorld{
public static void main (String [] args)
{
int i =1;
do
{
System.out.println (" \n i= " + i++);
} while (i<=10);
}
}
The output on the screen is:
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

i=10
The statement:
System.out.println (" \n i= " + i++);
is executed and then condition (i<=10) is

checked. If condition (i<=10) is true then
The statement:
System.out.println (" \n i= " + i++);
is executed again. This process repeats until the

given condition (i<=10) becomes false.
Program 3.4
Java program to print the characters from A to Z

using for loop, do while loop and while loop
statement.

Java program to print the characters from A to Z
using for loop statement:

public class HelloWorld{
public static void main (String [] args) {
char a;
for (a='A'; a<='Z'; a++)
System.out.println ("\n " + a);
}
}
The output on the screen:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
W
X
Y
Z
char means the data type is character.
The statement:
char a; imply that we are creating the character

a.
If the statement:
for (a=A; a<=Z; a++) is written instead of the

statement for (a='A'; a<='Z'; a++)
Then the compilation error will be displayed on

the console screen.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

144

Java program to print the characters from A to Z
using while loop statement:

public class HelloWorld{
public static void main (String [] args) {
char a = 'A';
while (a<='Z')
{
System.out.println ("\n " + a++);
}
}
}
Java program to print the characters from A to Z

using do while loop statement:
public class HelloWorld{
public static void main (String [] args) {
char a = 'A';
do
{
System.out.println ("\n " + a++);
} while (a<='Z');
}
}
Program 3.5
Java program to print the given number is even

or odd.
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int a;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a number: ");
a = scan.nextInt ();
if (a%2 = = 0)
{
System.out.println ("the number is even");
}
else
{
System.out.println ("the number is odd");
}
}
}
The output on the screen:
Enter a number:
If you enter the number 4
the number is even
will be outputted on the screen.
(a%2 = = 0) is the condition and this condition

imply: a divided by 2 yields reminder = 0.
For example: if you enter the number 4
Then a = 4
Then 4 divided by 2 yields the remainder = 0
Then the statement:
{
System.out.println ("the number is even");
}

is executed to print the output:
the number is even

(Note: in Java language also = = implies equal

to)
If you enter the number 3
Then a = 3
Then 3 divided by 2 yields the remainder = 1
Then the statement
{
System.out.println ("the number is odd");
}
is executed to print the output:
the number is odd
Program 3.6
Java program to print the remainder of two

numbers
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int a, b, c;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a number: ");
a = scan.nextInt ();
System.out.println ("Enter a number: ");
b = scan.nextInt ();
c = a%b;
System.out.println ("the remainder of a and b =

" + c);
}
}
The output on the screen:
Enter a number:
If you enter the number 3
Enter a number:
If you enter the number 2
the remainder of a and b = 1
will be outputted on the screen.
Since (a =3 and b =2). Therefore:
3 divided by 2 (i.e., a divided by b) yields the

remainder equal to 1.
Program 3.7
Java program to check equivalence of two

numbers.
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int x, y;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a number: ");
x = scan.nextInt ();
System.out.println ("Enter a number: ");
y = scan.nextInt ();
if (x-y==0)
{
System.out.println ("the two numbers are

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

145

equivalent");
}
else
{
System.out.println ("the number are not

equivalent");
}
}
The output on the screen:
Enter a number:
If you enter the number 2
Enter a number:
If you enter the number 2
the two numbers are equivalent
will be outputted on the screen.
Since 2-2 is equal to 0 (i.e., x-y = = 0).

Therefore: the statement
{
System.out.println ("the two numbers are

equivalent");
}
is executed to print the output:
two numbers are equivalent
If you enter the integers 3 and 2
The output on the screen is:
the two numbers are not equivalent
Since 3-2 is not equal to 0 (i.e., x-y!= 0).

Therefore: the statement
{
System.out.println ("the two numbers are not

equivalent");
}
is executed to print the output:
two numbers are not equivalent
(Note: Like in C & C++, in Java language

also!= implies not equal to)
Program 3.8
Java program to print the leap year or not
public class HelloWorld{
public static void main (String [] args) {
int year;
year =1996;
if (year%4==0)
{
System.out.println ("leap year");
}
else
{
System.out.println ("not a leap year");
}
}
}
The other logic for finding the leap year.
import java.util.Scanner;
public class Check_Leap_Year {
public static void main (String args []) {

Scanner s = new Scanner (System.in);
System.out.print ("Enter any year:");
int year = s.nextInt ();
boolean flag = false;
if (year % 400 == 0) {
flag = true;
} else if (year % 100 == 0) {
flag = false;
} else if (year % 4 == 0) {
flag = true;
} else {
flag = false;
}
if (flag) {
System.out.println ("Year "+year+" is a Leap

Year");
}
else {
System.out.println ("Year "+year+" is not a

Leap Year");
}
}
}
The output on the screen:
leap year
Since year =1996. Therefore:
1996 divided by 4 (i.e., year divided by 4)

yields the remainder equal to 0.
The statement
{
System.out.println ("leap year");
}
is executed to print the output:
leap year
If the year is = 1995. Then
1995 divided by 4 (i.e., year divided by 4)

yields the remainder not equal to 0.
The statement
{
System.out.println ("not a leap year");
}
is executed to print the output:
not a leap year
What will be the output on the screen:
public class HelloWorld{
int a =5;
public static void main (String [] args){
int a =2;
System.out.println (" value of a = " + a);
}
}
Answer:
value of a = 2
If the statement:
System.out.println (" value of a = " + a); is

replaced by the statement

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

146

System.out.println (" value of a = " +::a);
(where:: denote scope resolution operator)

i.e.,
public class HelloWorld{
int a =5;
public static void main (String [] args){
int a =2;
System.out.println (" value of a = " +::a);
}
}
Then the compilation error will be displayed on

the screen because like C++ -- java does not hold /
support the resolution operator.

Program 3.9
Java program to print whether the given number

is positive or negative
public class HelloWorld{
public static void main (String [] args){
int a;
a = -35;
if (a>0)
{
System.out.println ("number is positive");
}
else
{
System.out.println (" number entered is

negative");
}
}
}
The output on the screen:
number entered is negative
Since a = -35. Therefore:
a is less than 0 i.e., a<0
The statement
{
System.out.println ("number is negative");
}
is executed to print the output:
number entered is negative
Program 4.0
Java program to print the sum of the first 10

digits using for loop statement:
public class HelloWorld{
public static void main (String [] args) {
int i, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
System.out.println ("sum of the first 10 digits =

" + sum);
}
}
The output on the screen:
sum of the first 10 digits = 55
How the sum of the first 10 digits = 55 is

outputted on the screen through the for Loop
statement?

i=1 (sum = 0 because the sum is initialized to 0
in the statement int i, sum = 0;)

Is i<=10 true?
Yes, do this
sum = sum + i = 0 +1 =1
Now,
i=2 (sum = 1)
Is i<=10 true?
Yes, do this
sum = sum + i = 1 +2 =3
Now,
i=3 (sum = 3)
Is i<=10 true?
Yes, do this
sum = sum + i = 3 +3 = 6
Now,
i=4 (sum = 6)
Is i<=10 true?
Yes, do this
sum = sum + i = 6 + 4= 10
Now,
i=5 (sum = 10)
Is i<=10 true?
Yes, do this
sum = sum + i = 10 + 5= 15
Now,
i=6 (sum = 15)
Is i<=10 true?
Yes, do this
sum = sum + i = 15 + 6 = 21
Now,
i=7 (sum = 21)
Is i<=10 true?
Yes, do this
sum = sum + i = 21 + 7 = 28
Now,
i=8 (sum = 28)
Is i<=10 true?
Yes, do this
sum = sum + i = 28 + 8 = 36
Now,
i=9 (sum = 36)
Is i<=10 true?
Yes, do this
sum = sum + i = 36 + 9 = 45
Now,
i=10 (sum = 45)
Is i<=10 true?
Yes, do this
sum = sum + i = 45 + 10 = 55
stops because the condition i<=10 is achieved
The statement:
System.out.println ("sum of the first 10 digits =

" + sum); is executed to display the output:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

147

sum of the first 10 digits = 55
on the screen.
The statement:
System.out.println ("sum of the first 10 digits =

" + sum);
is executed to print the output:
sum of the first 10 digits = 55

If the statement:
int i, sum = 0;
is replaced by int i, sum = 1;
Then the output on the screen is:
sum of the first10 digits = 56
What will be the output if the for loop statement

for (i =1; i<=10; i++) is replaced by the statement for
(i =2; i<10; i++)?

Answer: sum of 10 digits = 44
If the statement int i, sum, sum = 0; is written

instead of int i, sum = 0;
Then the compilation error message will be

displayed on the screen (stating that sum is twice
declared).

If the for loop is ended with a semicolon i.e.,
for (i=1; i<=10; i++);
Then the compilation error will be displayed on

the console screen.
Program 4.1
Java program to print the average of the first 10

numbers using for loop statement
public class HelloWorld{
public static void main (String [] args){
int i, avg, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
avg = sum/10;
System.out.println ("sum of the first 10 numbers

= " + sum);
System.out.println ("average of the first 10

numbers = " + avg);
}
}
The output on the screen:
sum of the first 10 numbers = 55
average of the first 10 numbers = 5
The average of the first 10 numbers = 55/10 =

5.5 not 5. But the output on the screen is:
average of the first 10 numbers = 5
because int is used instead of float.
If the data type float is used i.e.,
public class HelloWorld{
public static void main (String [] args) {
float i, avg, sum = 0;
for (i=1; i<=10; i++)
sum = sum + i;
avg = sum/10;
System.out.println ("sum of the first 10 numbers

= " + sum);
System.out.println ("average of the first 10

numbers = " + avg);
}
}
The output on the screen:
sum of the first 10 numbers = 55
average of the first 10 numbers = 5.5
Program 4.2
Java program to print the product of the first 10

digits using for loop statement
public class HelloWorld{
public static void main (String [] args) {
int i, product = 1;
for (i=1; i<=10; i++)
product = product * i;
System.out.println ("the product of the first 10

digits = " + product);
}
}
The output on the screen:
the product of the first 10 digits = 3628800

How the product of the first 10 digits = 3628800

is outputted on the screen through the for Loop
statement?

i=1 (product = 1 because the product is
initialized to 1 in the statement int i, product = 1;)

Is i<=10 true?
Yes, do this
product = product * i = 1 * 1 =1
Now,
i=2 (product = 1)
Is i<=10 true?
Yes, do this
product = product * i = 1 * 2 = 2
Now,
i=3 (product = 2)
Is i<=10 true?
Yes, do this
product = product * i = 2 * 3 = 6
Now,
i=4 (product = 6)
Is i<=10 true?
Yes, do this
product = product * i = 6 * 4 = 24
Now,
i=5 (product =24)
Is i<=10 true?
Yes, do this
product = product * i = 24 * 5 =120
Now,
i=6 (product =120)
Is i<=10 true?
Yes, do this
product = product * i = 120 * 6 = 720

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

148

Now,
i=7 (product =720)
Is i<=10 true?
Yes, do this
product = product * i = 720 * 7 = 5040
Now,
i=8 (product =5040)
Is i<=10 true?
Yes, do this
product = product * i = 5040 * 8 = 40320
Now,
i=9 (product = 40320)
Is i<=10 true?
Yes, do this
product = product * i = 40320 * 9 = 362880
Now,
i=10 (product = 362880)
Is i<=10 true?
Yes, do this
product = product * i = 362880 * 10 = 3628800
stops because the condition i<=10 is achieved.
The statement:
System.out.println ("the product of the first10

digits = " + product); is executed to display the
output:

the product of the first 10 digits = 3628800
If the statement int i, product = 1; is replaced by

int i, product = 0;
Then the output on the screen is:
the product of the first 10 digits = 0
If the statement for (i=1; i<=10; i++) is replaced

by for (i=5; i<=8; i++)
Then the output on the screen is:
the product of the first 10 digits = 1680

Program 4.3
Java Program to print the table of a number

using the for loop statement
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args){
int n, i;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a number: ");
n = scan.nextInt ();
for (i=1; i<=5; i++)
System.out.println (\n n + " * " + i + " = " + n

* i);
}
}
Output on the screen:
Enter any number:
If you enter the number 2 (i.e., n=2)
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6

2 * 4 = 8
2 * 5 = 10
will be outputted on the screen.
How the execution takes its Way through the for

Loop statement
Since you entered the number 2, therefore: n=2.
i=1
Is i<=5 true?
Yes, print this
2 * 1 = 2
using the statement System.out.println (\n n + "

* " + i + " = " + n * i);
Now,
i=2
Is i<=5 true?
Yes, print this
2 * 2 = 4
using the statement System.out.println (\n n + "

* " + i + " = " + n * i);
Now,
i=3
Is i<=5 true?
Yes, print this
2 * 3 = 6
using the statement System.out.println (\n n + "

* " + i + " = " + n * i);
Now,
i=4
Is i<=5 true?
Yes, print this
2 * 4 = 8
using the statement System.out.println (\n n + "

* " + i + " = " + n * i);
Now,
i=5
Is i<=5 true?
Yes, print this
2 * 5 = 10
using the statement System.out.println (\n n + "

* " + i + " = " + n * i);
stop Now because the condition i <=5 is

achieved.
If the symbol * is replaced by +
i.e.,
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args){
int n, i;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a number: ");
n = scan.nextInt ();
for (i=1; i<=5; i++)
System.out.println (\n n + " + " + i + " = " + n

+ i);
}
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

149

Then the output on the screen is:
Enter any number:
If you enter the number 2 (i.e., n=2)
2 + 1 = 3
2 + 2 = 4
2 + 3 = 5
2 + 4 = 6
2 + 5 = 7
will be outputted on the screen.
Program 4.4
Java program to print the first 10 numbers

starting from one together with their squares
public class HelloWorld{
public static void main (String [] args){
int i;
for (i=1; i<=10; i++)
System.out.println (" number = " + i + " its

square = " + i*i);
}
}
The output on the screen:
number = 1 its square=1number = 2 its

square=4number = 3 its square=9number = 4 its
square=16number = 5 its square=25number = 6 its
square=36number = 7 its square=49number = 8 its
square=64number = 9 its square=81number= 10 its
square=100

If the statement:
System.out.println (" number = " + i + " its

square = " + i*i); is replaced by the statement
System.out.println (" \n number = " + i + " its

square = " + i*i);
i.e., if the above program is rewritten as:
public class HelloWorld{
public static void main (String [] args){
int i;
for (i=1; i<=10; i++)
System.out.println (" \n number = " + i + " its

square = " + i*i);
}
}
Then the output on the screen is:
number = 1 its square=1
number = 2 its square=4
number = 3 its square=9
number = 4 its square=16
number = 5 its square=25
number = 6 its square=36
number = 7 its square=49
number = 8 its square=64
number = 9 its square=81
number= 10 its square=100
If the statement:
System.out.println (" \n number = " + i + " its

square = " + i*i); is replaced by the statement:
System.out.println (" \n number = " + i + " \t its

square = " + i*i);
i.e., if the above program is rewritten as:
public class HelloWorld{
public static void main (String [] args){
int i;
for (i=1; i<=10; i++)
System.out.println (" \n number = " + i + " \t its

square = " + i*i);
}
}
Then the output on the screen is:
number=1 its square=1
number=2 its square=4
number=3 its square=9
number=4 its square=16
number=5 its square=25
number=6 its square=36
number=7 its square=49
number=8 its square=64
number=9 its square=81
number=10 its square=100

tab /t is included because to leave space between
number =1 and its square=1
If the statement:
System.out.println (" \n number = " + i + " \t its

square = " + i*i); is replaced by the statement:
System.out.println (" \n number = " + i + " \n its

square = " + i*i);
i.e., if the above program is rewritten as:
public class HelloWorld{
public static void main (String [] args){
int i;
for (i=1; i<=10; i++)
System.out.println (" \n number = " + i + " \n its

square = " + i*i);
}
}
Then the output on the screen is:
number = 1
its square=1
number = 2
its square=4
number = 3
its square=9
number = 4
its square=16
number = 5
its square=25
number = 6
its square=36
number = 7
its square=49
number = 8
its square=64
number = 9
its square=81

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

150

number= 10
its square=100
Write a program to print the first 10 numbers

starting from one together with their squares and
cubes:

Answer:
public class HelloWorld{
public static void main (String [] args) throws

Exception{
int i;
for (i=1; i<=10; i++)
System.out.println (" \n number = " + i + " its

square = " + i*i + " its cube = " + i*i*i);
}
}
Program 4.5
Java program to print the sum of two numbers

using method
public class HelloWorld{
public static void main (String [] args){
int a, b, c;
a = 11;
b = 6;
c = add (a, b);
System.out.println (" sum of two numbers = " +

c);
}
public static int add (int a, int b) {
return (a+b);
}
}
The output on the screen:
sum of two numbers = 17
There are 2 methods in the above program:
public static void main (String [] args)
public static int add (int a, int b)
public static void main (String [] args) imply:

main method and
{
} imply the body of the main method with in

which the program statements:
int a, b, c;
a = 11;
b = 6;
c = add (a, b);
System.out.println (" sum of two numbers = " +

c); are written.
Like in C ++ (the function declaration is not

made) and unlike in C ((the function declaration is
made) -- there is no need for method declaration in
Java (i.e., without the method declaration the
program will be successfully executed and the result
will be outputted on the screen)

public static int add (int a, int b) imply: the
method to add two integers x and y and

{

return (a+b);
}
} imply the body of the method public static int

add (int a, int b)
main method:
public static void main (String [] args)
and the method:
public static int add (int a, int b)
should be written inside the body of the public

class HelloWorld.
The statement int a, b, c; imply that we creating

the integer variables a, b and c.
The statements:
a = 11;
b = 6;
c = add (a, b);
imply that we are assigning the values to the

created variables.
The statement:
c = add (x, y); imply method call (i.e., we are

calling the method public static int add (int a, int b) to
add the values (i.e., 11 and 6) and return the result
(i.e., 17) to the statement System.out.println (" sum of
two numbers = " + c); to make provision to display
the output of the sum of two entered numbers as 17
on the screen.

Java program to print the product of two
numbers using method

public class HelloWorld{
public static void main (String [] args) {
int a, b, c;
a = 2;
b = 3;
c = mult (a, b);
System.out.println (" product of two numbers =

" + c);
}
public static int mult (int a, int b){
return (a*b);
}
}
The output on the screen:
product of two numbers = 6
will be outputted on the screen.
Java program to print the greatest of two

numbers using method
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int a, b;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any two numbers: ");
a = scan.nextInt ();
b = scan.nextInt ();
System.out.println (" largest of two numbers = "

+ max (a, b));

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

151

}
public static int max (int a, int b) {
if (a>b)
return a;
else
return b;
}
}
The output on the screen:
Enter any two numbers:
If you enter two numbers 5 and 2
largest of two numbers= 5
will be outputted on the screen.
Java program to print the greatest of three

numbers using method
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int a, b, c;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any three numbers:

");
a = scan.nextInt ();
b = scan.nextInt ();
c= scan.nextInt ();
System.out.println (" largest of two numbers = "

+ max (a, b, c));
}
public static int max (int a, int b, int c) {
if (a>b & & a>c)
return a;
else if (b>c & & b>a)
return b;
else
return c;
}
}
The output on the screen:
Enter any three numbers:
If you enter three numbers 3, 5 and 10
largest of three numbers = 10
will be outputted on the screen.
Java program to print the square of the number

using method
import java.util.Scanner;
public class HelloWorld{
public static void main (String [] args) {
int x;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter any number: ");
x = scan.nextInt ();
System.out.println ("square of the number = " +

square (x));
}
public static int square (int x){
return x*x;

}
}
The output on the screen is:
Enter any number:
If you enter the number 5
square of the number = 25
will be outputted on the screen.
Program 4.6
Switch (case) allows to make decision from the

number of choices i.e., from the number of cases
For example:
public class HelloWorld{
public static void main (String [] args)throws

Exception{
char ch;
System.out.print ("Enter a character:");
ch = (char)System.in.read ();
switch (ch)
{
case 'R':
System.out.print ("Red");
break;
case 'W':
System.out.print ("White");
break;
case 'Y':
System.out.print ("Yellow");
break;
case 'G':
System.out.print ("Green");
break;
default:
System.out.print ("Error");
break;
}
}
}
The output on the screen is:
Enter a character:
If you enter a character R
Red
will be outputted on the screen.
switch (ch) allow to make decision from the

number of choices i.e., from the number of cases
case 'R':
case 'W':
case 'Y':
case 'G':
Since we have entered the character R (which

corresponds to case 'R':)
The statement:
System.out.print ("Red");
is executed to display the output:
Red
on the screen.
Suppose you enter a character K

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

152

The output on the screen is:
Error
(Entered character K does not correspond to any

of the cases
case 'R':
case 'W':
case 'Y':
case 'G':
Therefore the statements:
default:
System.out.print ("Error");
are executed to display the output:
Error
on the screen).
If the statements:
{
case 'R':
System.out.print ("Red");
break;
case 'W':
System.out.print ("White");
break;
case 'Y':
System.out.print ("Yellow");
break;
case 'G':
System.out.print ("Green");
break;
default:
System.out.print ("Error");
break;
}
are replaced by the statements:
{
case 'R':
System.out.print ("Red");
case 'W':
System.out.print ("White");
case 'Y':
System.out.print ("Yellow");
break;
case 'G':
System.out.print ("Green");
break;
default:
System.out.print ("Error");
break;
}
Then the output on the screen is:
Red
White
Yellow
i.e., the output is printed till yellow even though

you have entered the character R.
Note: C and C++ supports pointers and

structures whereas Java does not i.e., Java do not

support structures and pointers because JVM (Java
virtual machine a core component of java) do not
support structures and pointers.

Program 4.7
Java program to print the output
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
using arrays:
public class HelloWorld{
public static void main (String [] args){
int i;
int [] num = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
System.out.println ("Element [" + i + "] = " +

num [i]);
}
}
The output on the screen:
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
Ends because of the condition i<5.
Note:
//--

--//-
Array declaration in C:
int num [5] = {16, 18, 20, 25, 36};
or
int num [] = {16, 18, 20, 25, 36};
Array declaration in C++:
int num [5] = {16, 18, 20, 25, 36};
or
int num [] = {16, 18, 20, 25, 36};
But array declaration in java:
int [] num = {16, 18, 20, 25, 36};
//--

--//
The statement:
int [] num = {16, 18, 20, 25, 36}; imply that we

are creating an integer array (and the name of array is
num) consisting of 5 values (i.e., 16, 18, 20, 25, 36)
of the same data type int.

With the declaration int [] num = {16, 18, 20, 25,
36}; -- computer creates 5 memory cells (because
there are 5 elements within the braces {}) with name
num [0], num [1], num [2], num [3], num [4]. And
since

int [] num = {16, 18, 20, 25, 36};
the values 16, 18, 20, 25, 36 are stored in num

[0], num [1], num [2], num [3], num [4] respectively.
How the execution takes its way through the for

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

153

loop statement
i=0
Is i<5 true?
Yes, print this
Element [0] = 16
using the statement:
System.out.println ("Element [" + i + "] = " +

num [i]);
Now,
i=1
Is i<5 true?
Yes, print this
Element [1] = 18
using the statement:
System.out.println ("Element [" + i + "] = " +

num [i]);
Now,
i=2
Is i<5 true?
Yes, print this
Element [2] = 20
using the statement:
System.out.println ("Element [" + i + "] = " +

num [i]);
Now,
i=3
Is i<5 true?
Yes, print this
Element [3] = 25
using the statement:
System.out.println ("Element [" + i + "] = " +

num [i]);
Now,
i=4
Is i<5 true?
Yes, print this
Element [4] = 36
using the statement:
System.out.println ("Element [" + i + "] = " +

num [i]);
Stop because the condition is i<5.
If i<=5 i.e., if the for loop statement was
for (i=0; i<=5; i++)
Then the output on the screen is:
Element [0] = 16
Element [1] = 18
Element [2] = 20
Element [3] = 25
Element [4] = 36
Element [5] = 365
365 is the number stored in the memory i.e., any

number stored in the memory will be displayed.
If the statement int [] num = {16, 18, 20, 25,

36}; is replaced by the statement:
int [5] num = {16, 18, 20, 25, 36};
or by the statement:

int num [i] = {16, 18, 20, 25, 36};
Then the compilation error will be displayed on

the screen.
Suppose the statement:
System.out.println ("Element [" + i + "] = " +

num [i]); is replaced by the statement:
System.out.println ("Element [" + i + "] = " +

num [0]);
Then the output on the screen is:
Element [0] = 16
Element [1] = 16
Element [2] = 16
Element [3] = 16
Element [4] = 16
Suppose the statement:
System.out.println ("Element [" + i + "] = " +

num [i]); is replaced by the statement:
System.out.println ("Element [" + i + "] = " +

num [1]);
Then the output on the screen is:
Element [0] = 18
Element [1] = 18
Element [2] = 18
Element [3] = 18
Element [4] = 18
Suppose the statement:
System.out.println ("Element [" + i + "] = " +

num [i]); is replaced by the statement:
System.out.println ("Element [" + i + "] = " +

num [2]);
Then the output on the screen is:
Element [0] = 20
Element [1] = 20
Element [2] = 20
Element [3] = 20
Element [4] = 20
Suppose the statement:
System.out.println ("Element [" + i + "] = " +

num [i]); is replaced by the statement:
System.out.println ("Element [" + i + "] = " +

num [3]);
Then the output on the screen is:
Element [0] = 25
Element [1] = 25
Element [2] = 25
Element [3] = 25
Element [4] = 25
Suppose the statement System.out.println

("Element [" + i + "] = " + num [i]); is replaced by
the statement

System.out.println ("Element [" + i + "] = " +
num [4]);

Then the output on the screen is:
Element [0] = 36
Element [1] = 36
Element [2] = 36

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

154

Element [3] = 36
Element [4] = 36
Java program to print the sum of the elements in

array.
public class HelloWorld{
public static void main (String [] args){
int i, sum = 0;
int [] num = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
sum = sum + num [i];
System.out.println ("Sum of the Elements in the

array = " + sum);
}
}
The output on the screen:
Sum of the Elements in the array = 115
i.e., 16 + 18 + 20 + 25 + 36 = 115
How the Execution takes its way through the for

loop statement
i=0 (sum = 0)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [0] = 0 +16

=16
Now,
i=1 (sum = 16)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [1] = 16 +18

=34
Now,
i=2 (sum = 34)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [2] = 34 +20

=54
Now,
i=3 (sum = 54)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [3] = 54 +25

=79
Now,
i=5 (sum = 79)
Is i<5 true?
Yes, do this
sum = sum + num [i] = sum + num [5] = 79 +

36 =115
stop because the condition i<5 is achieved
The statement:
System.out.println ("Sum of the Elements in the

array = " + sum); is executed to display the output:
Sum of the Elements in the array = 115
on the screen.
If the statement:
int i, sum = 0;

is replaced by int i, sum = 1;
Then The output on the screen:
Sum of the Elements in the array = 116
Java program to print the average of the

elements in the array
public class HelloWorld{
public static void main (String [] args){
int i, avg, sum = 0;
int [] num = {16, 18, 20, 25, 36};
for (i=0; i<5; i++)
sum = sum + num [i];
avg = sum/5;
System.out.println ("Sum of the Elements in the

array = " + sum);
System.out.println ("average of the Elements in

the array = " + avg);
}
}
The output on the screen:
Sum of the Elements in the array = 115
average of the elements in the array = 23
Write a program to print
Einstein [0] = E
Einstein [1] = I
Einstein [2] = N
Einstein [3] = S
Einstein [4] = T
Einstein [5] = E
Einstein [6] = I
Einstein [7] = N
using arrays
Answer:
public class HelloWorld{
public static void main (String [] args) throws

Exception{
int i;
char [] num = {'E', 'I', 'N', 'S', 'T', 'E', 'I', 'N'};
for (i=0; i<8; i++)
System.out.println ("Einstein [" + i + "] = " +

num [i]);
}
}
What will be the output of the following

programs?
i)
public class HelloWorld{
public static void main (String [] args) throws

Exception{
int i;
int [] name = {'E', 'I', 'N', 'S', 'T ', 'E', 'I', 'N'};
for (i=0; i<8; i++)
System.out.println ("Einstein [" + i + "] = " +

name [i]);
}
}
Answer:

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

155

Einstein [0] = 69
Einstein [1] = 73
Einstein [2] = 78
Einstein [3] = 83
Einstein [4] = 84
Einstein [5] = 69
Einstein [6] = 73
Einstein [7] = 78
ii)
public class HelloWorld{
public static void main (String [] args) throws

Exception{
int i;
char [] body = {'b', 'o', 'd', 'y'};
for (i=0; i<4; i++)
System.out.println ("body [" + body [i] + "] = "

+ body [i]);
}
}
Answer:
body [b] = b
body [o] = o
body [d] = d
body [y] = y
Note:
//--

--

import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
int x, y;
Scanner scan = new Scanner (System.in);
System.out.print ("Enter any Number: ");
x = scan.nextFloat ();
System.out.print ("Enter any Number: ");
y = scan.nextInt ();
System.out.println (" square root of x = " +

Math.sqrt (x));
System.out.println (" square root of y = " +

Math.sqrt (y));
}
}
The output on the screen:
Enter any Number:
If you enter the number 9
square root of x = 3
will be outputted on the screen.
Enter any Number:
If you enter the number 4
square root of y = 2
will be outputted on the screen.
If
/*
*/
is introduced i.e., if the above program is

rewritten as:
import java.util.Scanner;
public class HelloWorld {
public static void main (String [] args) {
int x, y;
Scanner scan = new Scanner (System.in);
System.out.print ("Enter any Number: ");
x = scan.nextInt ();
/*
System.out.print ("Enter any Number: ");
y = scan.nextInt ();
*/
System.out.println (" square root of x = " +

Math.sqrt (x));
/*
System.out.println (" square root of y = " +

Math.sqrt (y));
*/
}
}
Then the output on the screen is:
Enter any Number:
If you enter the number 9
square root of x = 3
will be outputted on the screen.
--

--
--------------//

What is the mistake in the following program:
public class HelloWorld {
public static void main (String [] args) {
long float x;
Scanner scan = new Scanner (System.in);
System.out.print ("Enter any Number: ");
x = scan.nextFloat ();
System.out.println (" square root of x = " +

Math.cbrt (x));
}
Answer:
long float x; should not be used -- only float x

should be used because Java do not support the data
type such as long int, long float etc.

Program 4.8
continue and break statements:
A)
public class HelloWorld{
public static void main (String []args){
int i;
for (i=1; i<=5; i++){
if (i==3){
continue;
}
System.out.println ("" + i);
}
}
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

156

Output on the screen:
1
2
4
5
B)
public class HelloWorld {
public static void main (String []args){
int i;
for (i=1; i<=5; i++){
if (i==3){
break;
}
System.out.println ("" + i);
}
}
}
Output on the screen:
1
2
What will be the output of the following

program:
public class HelloWorld {
public static void main (String args []){
System.out.println (Math.max (1269, 1356));
}
}
Output on the screen:
1356
Note:
//--

--

Abstraction hiding implementation details from

the user by providing interface
Encapsulation hiding data
In the statement:
"1 + 2"
"1" and "2" imply the operands and the plus

symbol imply the operator.
Polymorphism
Suppose if you are in class room that time you

behave like a student, when you are in shopping mall
at that time you behave like a customer, when you at
your home at that time you behave like a son or
daughter. Your ability to present in different-different
behaviors is known as polymorphism.

In the example:
public class HelloWorld
{
public static void main (String [] args)
{
int a, b, sum;
a=1;
b=2;

sum = a + b;
System.out.println ("the sum of a and b = " +

sum);
}
}
Plus symbol ("+") act as an arithmetic operator

in the statement:
sum = a+b;
and it act as the concatenation operator in the

statement:
System.out.println ("the sum of a and b = " +

sum);
The ability of plus symbol to behave both as

arithmetic operator and concatenation operator is
known as polymorphism.

Inheritance
public class game {
}
public class player extends game{
}
Here public class player extends game implies:
class player is public and it is the sub class of

the class game.
Since class player is the subclass of class game

-- class player automatically takes on all the behavior
and attributes of its parent class "game" i.e., methods
or fields within the class game will be automatically
be included in the class player.

Note:
The statements:
public class player extends game
public class game extends ball
implies: that class player is not only a subclass

of class game but also it is a subclass of class ball.
Encapsulation
public class Account {
 private decimal accountBalance =

500.00;
 public decimal CheckBalance () {
 return accountBalance;
 }
 }
 /* accountBalance can be checked via

public "CheckBalance" method provided by the
"Account" class

but its value cannot be manipulated because
data variable accountBalance is declared private */

Encapsulation is the technique of bringing the
data variables and methods in single frame and
declaring data variable private (so it cannot be
accessed by anyone outside the class, thereby hiding /
encapsulating the data variable (String name) within
the public class Student) and providing indirect
access to the data variable via public methods.

--

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

157

--
---------------//

Comparison of C, C++ and Java
C & C++ support pointers and structures

while Java do not.
The code of C and C++ are directly converted

into machine level language and it is executed while
the code of Java is converted into Java byte codes
and then it is converted into machine level language
and it is executed.

C uses scanf as input function to read the
character or integer entered through the keyboard and
printf as output function to print the output on the
screen.

C++ uses cin as input function to read the
character or integer entered through the keyboard and
cout as output function to print the output on the
screen.

But Java uses scan.nextInt () or scan.nextFloat ()
as input method to read the variable entered through
the keyboard and System.out.println as output
method to print the output on the screen.

Functions are in C & C++ whereas methods
are in Java.

C & C++ are platform dependent whereas
Java is platform independent (Code written in Java
can be taken from one computer to the other without
having to worry about system configuration details).

In C & C++, program instruction codes
are written and executed within the body of main
function main () where as in Java -- program
instruction codes are written and executed within the
body of main method public static void main (String []
args).

data types like int float, char are same in C, C++
 & Java.

C is structured language whereas C++ &
 Java is object oriented language (i.e., C++
& Java has the extensive power and immense
extensibility to write large scale complex programs).

Operators such as %d, %f & %c are
used in C whereas no operators are used in C++
& Java.

A program written in Java usually requires more
memory space than the same program written in C
& C++ and it is fast, reliable, and secure.
According to Oracle, the company that owns Java,
Java runs on 3 billion devices worldwide.

Java provides both high speed and high
performance and reliability, flexibility and seamless
integration with other frameworks and technologies
-- compared to C & C++.

Java is a popular general-purpose programming
language and computing platform that supports
multithreading (a process of executing several codes

concurrently) while C & C++ do not.
One of the reasons why Java is widely used is

because of the availability of huge standard library
that consists hundreds of classes and methods under
different packages to help software developers.

For example:
java.lang for advanced features of strings, arrays

etc.
java.util for data structures, regular expressions,

date and time functions etc.
java.io for file i/o, exception handling etc.
The object oriented programming in Java
The Java programming came in the midst of

several programming languages which had object
oriented features in their arsenal. Their were
programming languages like smalltalk and C++
which were handling the object oriented
programming. But, the idea was make programming
easier, which could only be done by mounting up the
piles of libraries of classes and function which could
be used to solve complex programming problems.

The idea behind building a programming
language was that every tool in the language has to
be an object. As objects can be reliably used as
different instances of the program adding up to the
reuse of code and portability.

The Object class is the base class of all the
classes in Java. Lets go through some example of
exception handling and files before diving into
oriented programming in Java.

The java.io package contains nearly every class
you might ever need to perform input and output (I/O)
in Java. All these streams represent an input source
and an output destination. The stream in the java.io
package supports many data such as primitives,
object, localized characters, etc.

Stream
A stream can be defined as a sequence of data.

There are two kinds of Streams
InPutStream The InputStream is used to read

data from a source.
OutPutStream The OutputStream is used for

writing data to a destination.

Java provides strong but flexible support for I/O

related to files and networks but this tutorial covers
very basic functionality related to streams and I/O.
We will see the most commonly used examples one
by one

Byte Streams
Java byte streams are used to perform input and

output of 8-bit bytes. Though there are many classes
related to byte streams but the most frequently used
classes are, FileInputStream and FileOutputStream.
Following is an example which makes use of these

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

158

two classes to copy an input file into an output file
import java.io.*; // This library is required to

execute I/O operations on files.
publicclassCopyFile{
publicstaticvoid main (String args

[])throwsIOException{
FileInputStreamin=null;
FileOutputStreamout=null;
try{
in=newFileInputStream ("input.txt");
out=newFileOutputStream ("output.txt");
int c;
while ((c =in.read ())!=-1){
out.write (c);
}
}finally{
if (in!=null){
in.close ();
}
if (out!=null){
out.close ();
}
}
}
}
Now let's have a file input.txtwith the following

content
This is test for copy file.
As a next step, compile the above program and

execute it, which will result in creating output.txt file
with the same content as we have in input.txt. So let's
put the above code in CopyFile.java file and do the
following

$javac CopyFile.java
$java CopyFile
Character Streams
JavaBytestreams are used to perform input and

output of 8-bit bytes, whereas JavaCharacterstreams
are used to perform input and output for 16-bit
unicode. Though there are many classes related to
character streams but the most frequently used
classes are, FileReaderand FileWriter. Though
internally FileReader uses FileInputStream and
FileWriter uses FileOutputStream but here the major
difference is that FileReader reads two bytes at a time
and FileWriter writes two bytes at a time.

We can re-write the above example, which
makes the use of these two classes to copy an input
file (having unicode characters) into an output file

Example
import java.io.*;
publicclassCopyFile{
publicstaticvoid main (String args

[])throwsIOException{
FileReaderin=null;
FileWriterout=null;

try{
in=newFileReader ("input.txt");
out=newFileWriter ("output.txt");
int c;
while ((c =in.read ())!=-1){
out.write (c);
}
}finally{
if (in!=null){
in.close ();
}
if (out!=null){
out.close ();
}
}
}
}
Now let's have a file input.txtwith the following

content
This is test for copy file.
As a next step, compile the above program and

execute it, which will result in creating output.txt file
with the same content as we have in input.txt. So let's
put the above code in CopyFile.java file and do the
following

$javac CopyFile.java
$java CopyFile
Standard Streams
All the programming languages provide support

for standard I/O where the user's program can take
input from a keyboard and then produce an output on
the computer screen. If you are aware of C or C++
programming languages, then you must be aware of
three standard devices STDIN, STDOUT and
STDERR. Similarly, Java provides the following
three standard streams

Standard Input This is used to feed the data to
user's program and usually a keyboard is used as
standard input stream and represented as System.in.

Standard Output This is used to output the data
produced by the user's program and usually a
computer screen is used for standard output stream
and represented as System.out.

Standard Error This is used to output the error
data produced by the user's program and usually a
computer screen is used for standard error stream and
represented as System.err.

Following is a simple program, which creates
InputStreamReaderto read standard input stream until
the user types a "q"

Example
import java.io.*;
publicclassReadConsole{
publicstaticvoid main (String args

[])throwsIOException{
InputStreamReader cin =null;

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

159

try{
cin =newInputStreamReader (System.in);
System.out.println ("Enter characters, 'q' to

quit.");
char c;
do{
c =(char) cin.read ();
System.out.print (c);
}while (c!='q');
}finally{
if (cin!=null){
cin.close ();
}
}
}
}
Let's keep the above code in ReadConsole.java

file and try to compile and execute it as shown in the
following program. This program continues to read
and output the same character until we press 'q'

$javac ReadConsole.java
$java ReadConsole
Enter characters, 'q' to quit.
1
1
e
e
q
q
Reading and Writing Files
As described earlier, a stream can be defined as

a sequence of data. The InputStream is used to read
data from a source and the OutputStream is used for
writing data to a destination.

Here is a hierarchy of classes to deal with Input
and Output streams.

The two important streams

areFileInputStreamandFileOutputStream, which
would be discussed in this tutorial.

FileInputStream
This stream is used for reading data from the

files. Objects can be created using the
keywordnewand there are several types of
constructors available.

Following constructor takes a file name as a
string to create an input stream object to read the file

InputStream f = new FileInputStream
("C:/java/hello");

Following constructor takes a file object to
create an input stream object to read the file. First we
create a file object using File () method as follows

File f = new File ("C:/java/hello");
InputStream f = new FileInputStream (f);
Once you haveInputStreamobject in hand, then

there is a list of helper methods which can be used to
read to stream or to do other operations on the
stream.

There are other important input streams

available, for more detail you can refer to the
following links

ByteArrayInputStream
DataInputStream
FileOutputStream
FileOutputStream is used to create a file and

write data into it. The stream would create a file, if it
doesn't already exist, before opening it for output.

Here are two constructors which can be used to
create a FileOutputStream object.

Following constructor takes a file name as a
string to create an input stream object to write the file

OutputStream f = new FileOutputStream
("C:/java/hello")

Following constructor takes a file object to
create an output stream object to write the file. First,
we create a file object using File () method as follows

File f = new File ("C:/java/hello");
OutputStream f = new FileOutputStream (f);

Sr.No. Method & Description

1

public void close () throws IOException{} This
method closes the file output stream. Releases
any system resources associated with the file.
Throws an IOException.

2

protected void finalize ()throws IOException {}
This method cleans up the connection to the file.
Ensures that the close method of this file output
stream is called when there are no more
references to this stream. Throws an IOException.

3

public int read (int r)throws IOException{} This
method reads the specified byte of data from the
InputStream. Returns an int. Returns the next byte
of data and -1 will be returned if it's the end of the
file.

4

public int read (byte [] r) throws IOException{}
This method reads r.length bytes from the input
stream into an array. Returns the total number of
bytes read. If it is the end of the file, -1 will be
returned.

5
public int available () throws IOException{}
Gives the number of bytes that can be read from
this file input stream. Returns an int.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

160

Once you haveOutputStreamobject in hand,
then there is a list of helper methods, which can be
used to write to stream or to do other operations on
the stream.

Sr.No. Method & Description

1

public void close () throws IOException{} This
method closes the file output stream. Releases
any system resources associated with the file.
Throws an IOException.

2

protected void finalize ()throws IOException {}
This method cleans up the connection to the file.
Ensures that the close method of this file output
stream is called when there are no more
references to this stream. Throws an IOException.

3
public void write (int w)throws IOException{}
This methods writes the specified byte to the
output stream.

4
public void write (byte [] w) Writes w.length
bytes from the mentioned byte array to the
OutputStream.

There are other important output streams

available, for more detail you can refer to the
following links

ByteArrayOutputStream
DataOutputStream
Example
Following is the example to demonstrate

InputStream and OutputStream
import java.io.*;
publicclass fileStreamTest {
publicstaticvoid main (String args []){
try{
byte bWrite []={11,21,3,40,5};
OutputStream os =newFileOutputStream

("test.txt");
for (int x =0; x < bWrite.length; x++){
os.write (bWrite [x]);// writes the bytes
}
os.close ();
InputStreamis=newFileInputStream ("test.txt");
int size =is.available ();
for (int i =0; i < size; i++){
System.out.print ((char)is.read ()+"");
}
is.close ();
}catch (IOException e){
System.out.print ("Exception");
}
}
}
The above code would create file test.txt and

would write given numbers in binary format. Same
would be the output on the stdout screen.

File Navigation and I/O
There are several other classes that we would be

going through to get to know the basics of File

Navigation and I/O.
Java - File Class
Java File class represents the files and directory

pathnames in an abstract manner. This class is used
for creation of files and directories, file searching,
file deletion, etc.

The File object represents the actual
file/directory on the disk. Following is the list of
constructors to create a File object.

Sr.No. Method & Description

1
File (File parent, String child) This constructor
creates a new File instance from a parent abstract
pathname and a child pathname string.

2
File (String pathname) This constructor creates a
new File instance by converting the given
pathname string into an abstract pathname.

3
File (String parent, String child) This constructor
creates a new File instance from a parent
pathname string and a child pathname string.

4
File (URI uri) This constructor creates a new File
instance by converting the given file: URI into an
abstract pathname.

Once you haveFileobject in hand, then there is a

list of helper methods which can be used to
manipulate the files.

Sr.No. Method & Description

1
public String getName () Returns the name of the
file or directory denoted by this abstract pathname.

2
public String getParent () Returns the pathname
string of this abstract pathname's parent, or null if
this pathname does not name a parent directory.

3
public File getParentFile () Returns the abstract
pathname of this abstract pathname's parent, or null
if this pathname does not name a parent directory.

4
public String getPath () Converts this abstract
pathname into a pathname string.

5
public boolean isAbsolute () Tests whether this
abstract pathname is absolute. Returns true if this
abstract pathname is absolute, false otherwise.

6
public String getAbsolutePath () Returns the
absolute pathname string of this abstract pathname.

7

public boolean canRead () Tests whether the
application can read the file denoted by this abstract
pathname. Returns true if and only if the file
specified by this abstract pathname exists and can be
read by the application; false otherwise.

8

public boolean canWrite () Tests whether the
application can modify to the file denoted by this
abstract pathname. Returns true if and only if the file
system actually contains a file denoted by this
abstract pathname and the application is allowed to
write to the file; false otherwise.

9

public boolean exists () Tests whether the file or
directory denoted by this abstract pathname exists.
Returns true if and only if the file or directory
denoted by this abstract pathname exists; false
otherwise.

10
public boolean isDirectory () Tests whether the file
denoted by this abstract pathname is a directory.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

161

Returns true if and only if the file denoted by this
abstract pathname exists and is a directory; false
otherwise.

11

public boolean isFile () Tests whether the file
denoted by this abstract pathname is a normal file. A
file is normal if it is not a directory and, in addition,
satisfies other system-dependent criteria. Any
non-directory file created by a Java application is
guaranteed to be a normal file. Returns true if and
only if the file denoted by this abstract pathname
exists and is a normal file; false otherwise.

12

public long lastModified () Returns the time that the
file denoted by this abstract pathname was last
modified. Returns a long value representing the time
the file was last modified, measured in milliseconds
since the epoch (00:00:00 GMT, January 1, 1970), or
0L if the file does not exist or if an I/O error occurs.

13
public long length () Returns the length of the file
denoted by this abstract pathname. The return value
is unspecified if this pathname denotes a directory.

14

public boolean createNewFile () throws IOException
Atomically creates a new, empty file named by this
abstract pathname if and only if a file with this name
does not yet exist. Returns true if the named file does
not exist and was successfully created; false if the
named file already exists.

15

public boolean delete () Deletes the file or directory
denoted by this abstract pathname. If this pathname
denotes a directory, then the directory must be empty
in order to be deleted. Returns true if and only if the
file or directory is successfully deleted; false
otherwise.

16
public void deleteOnExit () Requests that the file or
directory denoted by this abstract pathname be
deleted when the virtual machine terminates.

17
public String [] list () Returns an array of strings
naming the files and directories in the directory
denoted by this abstract pathname.

18

public String [] list (FilenameFilter filter) Returns an
array of strings naming the files and directories in
the directory denoted by this abstract pathname that
satisfy the specified filter.

20
public File [] listFiles () Returns an array of abstract
pathnames denoting the files in the directory denoted
by this abstract pathname.

21

public File [] listFiles (FileFilter filter) Returns an
array of abstract pathnames denoting the files and
directories in the directory denoted by this abstract
pathname that satisfy the specified filter.

22
public boolean mkdir () Creates the directory named
by this abstract pathname. Returns true if and only if
the directory was created; false otherwise.

23

public boolean mkdirs () Creates the directory
named by this abstract pathname, including any
necessary but nonexistent parent directories. Returns
true if and only if the directory was created, along
with all necessary parent directories; false otherwise.

24

public boolean renameTo (File dest) Renames the
file denoted by this abstract pathname. Returns true
if and only if the renaming succeeded; false
otherwise.

25

public boolean setLastModified (long time) Sets the
last-modified time of the file or directory named by
this abstract pathname. Returns true if and only if the
operation succeeded; false otherwise.

26

public boolean setReadOnly () Marks the file or
directory named by this abstract pathname so that
only read operations are allowed. Returns true if and
only if the operation succeeded; false otherwise.

27

public static File createTempFile (String prefix,
String suffix, File directory) throws IOException
Creates a new empty file in the specified directory,
using the given prefix and suffix strings to generate
its name. Returns an abstract pathname denoting a
newly-created empty file.

28

public static File createTempFile (String prefix,
String suffix) throws IOException Creates an empty
file in the default temporary-file directory, using the
given prefix and suffix to generate its name.
Invoking this method is equivalent to invoking
createTempFile (prefix, suffix, null). Returns
abstract pathname denoting a newly-created empty
file.

29

public int compareTo (File pathname) Compares two
abstract pathnames lexicographically. Returns zero if
the argument is equal to this abstract pathname, a
value less than zero if this abstract pathname is
lexicographically less than the argument, or a value
greater than zero if this abstract pathname is
lexicographically greater than the argument.

30

public int compareTo (Object o) Compares this
abstract pathname to another object. Returns zero if
the argument is equal to this abstract pathname, a
value less than zero if this abstract pathname is
lexicographically less than the argument, or a value
greater than zero if this abstract pathname is
lexicographically greater than the argument.

31

public boolean equals (Object obj) Tests this abstract
pathname for equality with the given object. Returns
true if and only if the argument is not null and is an
abstract pathname that denotes the same file or
directory as this abstract pathname.

32
public String toString () Returns the pathname string
of this abstract pathname. This is just the string
returned by the getPath () method.

Example
Following is an example to demonstrate File

object
import java.io.File;
publicclassFileDemo{
publicstaticvoid main (String [] args){
File f =null;
String [] strs ={"test1.txt","test2.txt"};
try{
// for each string in string array
for (String s:strs){
// create new file
f =newFile (s);
// true if the file is executable
booleanbool= f.canExecute ();
// find the absolute path
String a = f.getAbsolutePath ();
// prints absolute path
System.out.print (a);
// prints
System.out.println (" is executable: "+bool);

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

162

}
}catch (Exception e){
// if any I/O error occurs
e.printStackTrace ();
}
}
}
Consider there is an executable file test1.txt and

another file test2.txt is non executable in the current
directory. Let us compile and run the above program,
This will produce the following result

Output
/home/cg/root/2880380/test1.txt is executable:

false
/home/cg/root/2880380/test2.txt is executable:

false
Java - FileReader Class
This class inherits from the InputStreamReader

class. FileReader is used for reading streams of
characters.

This class has several constructors to create
required objects. Following is the list of constructors
provided by the FileReader class.

Sr.No. Constructor & Description

1
FileReader (File file) This constructor creates a
new FileReader, given the File to read from.

2
FileReader (FileDescriptor fd) This constructor
creates a new FileReader, given the
FileDescriptor to read from.

3
FileReader (String fileName) This constructor
creates a new FileReader, given the name of the
file to read from.

Once you have FileReader object in hand then

there is a list of helper methods which can be used to
manipulate the files.

Sr.No. Method & Description

1
public int read () throws IOException Reads a
single character. Returns an int, which represents
the character read.

2
public int read (char [] c, int offset, int len) Reads
characters into an array. Returns the number of
characters read.

Example
Following is an example to demonstrate class
import java.io.*;
publicclassFileRead{
publicstaticvoid main (String args

[])throwsIOException{
File file =newFile ("Hello1.txt");
// creates the file
file.createNewFile ();
// creates a FileWriter Object
FileWriter writer =newFileWriter (file);

// Writes the content to the file
writer.write ("This\n is\n an\n example\n");
writer.flush ();
writer.close ();
// Creates a FileReader Object
FileReader fr =newFileReader (file);
char [] a =newchar [50];
fr.read (a);// reads the content to the array
for (char c: a)
System.out.print (c);// prints the characters one

by one
fr.close ();
}
}
This will produce the following result
Output
This
is
an
example
Java - FileWriter Class
This class inherits from the OutputStreamWriter

class. The class is used for writing streams of
characters.

This class has several constructors to create
required objects. Following is a list.

Once you haveFileWriterobject in hand, then
there is a list of helper methods, which can be used to
manipulate the files.

Sr.No. Constructor & Description

1
FileWriter (File file) This constructor creates a
FileWriter object given a File object.

2

FileWriter (File file, boolean append) This
constructor creates a FileWriter object given a
File object with a boolean indicating whether or
not to append the data written.

3
FileWriter (FileDescriptor fd) This constructor
creates a FileWriter object associated with the
given file descriptor.

4
FileWriter (String fileName) This constructor
creates a FileWriter object, given a file name.

5

FileWriter (String fileName, boolean append)
This constructor creates a FileWriter object given
a file name with a boolean indicating whether or
not to append the data written.

Sr.No. Method & Description

1
public void write (int c) throws IOException
Writes a single character.

2
public void write (char [] c, int offset, int len)
Writes a portion of an array of characters starting
from offset and with a length of len.

3
public void write (String s, int offset, int len)
Write a portion of a String starting from offset
and with a length of len.

Example

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

163

Following is an example to demonstrate class
import java.io.*;
publicclassFileRead{
publicstaticvoid main (String args

[])throwsIOException{
File file =newFile ("Hello1.txt");
// creates the file
file.createNewFile ();
// creates a FileWriter Object
FileWriter writer =newFileWriter (file);
// Writes the content to the file
writer.write ("This\n is\n an\n example\n");
writer.flush ();
writer.close ();
// Creates a FileReader Object
FileReader fr =newFileReader (file);
char [] a =newchar [50];
fr.read (a);// reads the content to the array
for (char c: a)
System.out.print (c);// prints the characters one

by one
fr.close ();
}
}
This will produce the following result
Output
This
is
an
example
Java Exceptions
An exception (or exceptional event) is a

problem that arises during the execution of a program.
When anExceptionoccurs the normal flow of the
program is disrupted and the program/Application
terminates abnormally, which is not recommended,
therefore, these exceptions are to be handled.

An exception can occur for many different
reasons. Following are some scenarios where an
exception occurs.

A user has entered an invalid data.
A file that needs to be opened cannot be found.
A network connection has been lost in the

middle of communications or the JVM has run out of
memory.

Some of these exceptions are caused by user
error, others by programmer error, and others by
physical resources that have failed in some manner.

Based on these, we have three categories of
Exceptions. You need to understand them to know
how exception handling works in Java.

Checked exceptions A checked exception is an
exception that occurs at the compile time, these are
also called as compile time exceptions. These
exceptions cannot simply be ignored at the time of
compilation, the programmer should take care of

(handle) these exceptions.
For example, if you use FileReader class in your

program to read data from a file, if the file specified
in its constructor doesn't exist, then a
FileNotFoundException occurs, and the compiler
prompts the programmer to handle the exception.

Example
import java.io.File;
import java.io.FileReader;
publicclassFilenotFound_Demo{
publicstaticvoid main (String args []){
File file =newFile ("E://file.txt");
FileReader fr =newFileReader (file);
}
}
If you try to compile the above program, you

will get the following exceptions.
Output
C:\>javac FilenotFound_Demo.java
FilenotFound_Demo.java:8: error: unreported

exception FileNotFoundException; must be caught or
declared to be thrown

FileReader fr = new FileReader (file);
^
1 error
Note Since the methods read () and close () of

FileReader class throws IOException, you can
observe that the compiler notifies to handle
IOException, along with FileNotFoundException.

Unchecked exceptions An unchecked exception
is an exception that occurs at the time of execution.
These are also called as Runtime Exceptions. These
include programming bugs, such as logic errors or
improper use of an API. Runtime exceptions are
ignored at the time of compilation.

For example, if you have declared an array of
size 5 in your program, and trying to call the 6th
element of the array then an
ArrayIndexOutOfBoundsExceptionexception occurs.

Example
publicclassUnchecked_Demo{
publicstaticvoid main (String args []){
int num []={1,2,3,4};
System.out.println (num [5]);
}
}
If you compile and execute the above program,

you will get the following exception.
Output
Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 5
at Exceptions.Unchecked_Demo.main

(Unchecked_Demo.java:8)
Errors These are not exceptions at all, but

problems that arise beyond the control of the user or
the programmer. Errors are typically ignored in your

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

164

code because you can rarely do anything about an
error. For example, if a stack overflow occurs, an
error will arise. They are also ignored at the time of
compilation.

Exception Hierarchy
All exception classes are subtypes of the

java.lang.Exception class. The exception class is a
subclass of the Throwable class. Other than the
exception class there is another subclass called Error
which is derived from the Throwable class.

Errors are abnormal conditions that happen in
case of severe failures, these are not handled by the
Java programs. Errors are generated to indicate errors
generated by the runtime environment. Example:
JVM is out of memory. Normally, programs cannot
recover from errors.

The Exception class has two main subclasses:
IOException class and RuntimeException Class.

Following is a list of most common checked and

uncheckedJava's Built-in Exceptions.
Exceptions Methods
Following is the list of important methods

available in the Throwable class.

Sr.No. Method & Description

1
public String getMessage () Returns a detailed
message about the exception that has occurred. This
message is initialized in the Throwable constructor.

2
public Throwable getCause () Returns the cause of
the exception as represented by a Throwable object.

3
public String toString () Returns the name of the
class concatenated with the result of getMessage ().

4
public void printStackTrace () Prints the result of
toString () along with the stack trace to System.err,
the error output stream.

5

public StackTraceElement [] getStackTrace ()
Returns an array containing each element on the
stack trace. The element at index 0 represents the top
of the call stack, and the last element in the array
represents the method at the bottom of the call stack.

6

public Throwable fillInStackTrace () Fills the stack
trace of this Throwable object with the current stack
trace, adding to any previous information in the
stack trace.

Catching Exceptions
A method catches an exception using a

combination of the try and catch keywords. A

try/catch block is placed around the code that might
generate an exception. Code within a try/catch block
is referred to as protected code, and the syntax for
using try/catch looks like the following

Syntax
try {
// Protected code
} catch (ExceptionName e1) {
// Catch block
}
The code which is prone to exceptions is placed

in the try block. When an exception occurs, that
exception occurred is handled by catch block
associated with it. Every try block should be
immediately followed either by a catch block or
finally block.

A catch statement involves declaring the type of
exception you are trying to catch. If an exception
occurs in protected code, the catch block (or blocks)
that follows the try is checked. If the type of
exception that occurred is listed in a catch block, the
exception is passed to the catch block much as an
argument is passed into a method parameter.

Example
The following is an array declared with 2

elements. Then the code tries to access the 3rd
element of the array which throws an exception.

// File Name: ExcepTest.java
import java.io.*;
publicclassExcepTest{
publicstaticvoid main (String args []){
try{
int a []=newint [2];
System.out.println ("Access element three:"+ a

[3]);
}catch (ArrayIndexOutOfBoundsException e){
System.out.println ("Exception thrown:"+ e);
}
System.out.println ("Out of the block");
}
}
This will produce the following result
Output
Exception

thrown:java.lang.ArrayIndexOutOfBoundsException:
3

Out of the block
Multiple Catch Blocks
A try block can be followed by multiple catch

blocks. The syntax for multiple catch blocks looks
like the following

Syntax
try {
// Protected code
} catch (ExceptionType1 e1) {
// Catch block

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

165

} catch (ExceptionType2 e2) {
// Catch block
} catch (ExceptionType3 e3) {
// Catch block
}
The previous statements demonstrate three catch

blocks, but you can have any number of them after a
single try. If an exception occurs in the protected
code, the exception is thrown to the first catch block
in the list. If the data type of the exception thrown
matches ExceptionType1, it gets caught there. If not,
the exception passes down to the second catch
statement. This continues until the exception either is
caught or falls through all catches, in which case the
current method stops execution and the exception is
thrown down to the previous method on the call
stack.

Example
Here is code segment showing how to use

multiple try/catch statements.
try{
file =newFileInputStream (fileName);
x =(byte) file.read ();
}catch (IOException i){
i.printStackTrace ();
return-1;
}catch (FileNotFoundException f)// Not valid! {
f.printStackTrace ();
return-1;
}
Catching Multiple Type of Exceptions
Since Java 7, you can handle more than one

exception using a single catch block, this feature
simplifies the code. Here is how you would do it

catch (IOException|FileNotFoundException ex)
{

logger.log (ex);
throw ex;
The Throws/Throw Keywords
If a method does not handle a checked

exception, the method must declare it using
thethrowskeyword. The throws keyword appears at
the end of a method's signature.

You can throw an exception, either a newly
instantiated one or an exception that you just caught,
by using thethrowkeyword.

Try to understand the difference between throws
and throw keywords,throwsis used to postpone the
handling of a checked exception andthrowis used to
invoke an exception explicitly.

The following method declares that it throws a
RemoteException

Example
import java.io.*;
publicclass className {
publicvoid deposit (double

amount)throwsRemoteException{
// Method implementation
thrownewRemoteException ();
}
// Remainder of class definition
}
A method can declare that it throws more than

one exception, in which case the exceptions are
declared in a list separated by commas. For example,
the following method declares that it throws a
RemoteException and an InsufficientFundsException

Example
import java.io.*;
publicclass className {
publicvoid withdraw (double

amount)throwsRemoteException,
InsufficientFundsException{
// Method implementation
}
// Remainder of class definition
}
The Finally Block
The finally block follows a try block or a catch

block. A finally block of code always executes,
irrespective of occurrence of an Exception.

Using a finally block allows you to run any
cleanup-type statements that you want to execute, no
matter what happens in the protected code.

A finally block appears at the end of the catch
blocks and has the following syntax

Syntax
try {
// Protected code
} catch (ExceptionType1 e1) {
// Catch block
} catch (ExceptionType2 e2) {
// Catch block
} catch (ExceptionType3 e3) {
// Catch block
}finally {
// The finally block always executes.
}
Example
publicclassExcepTest{
publicstaticvoid main (String args []){
int a []=newint [2];
try{
System.out.println ("Access element three:"+ a

[3]);
}catch (ArrayIndexOutOfBoundsException e){
System.out.println ("Exception thrown:"+ e);
}finally{
a [0]=6;
System.out.println ("First element value: "+ a

[0]);
System.out.println ("The finally statement is

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

166

executed");
}
}
}
This will produce the following result
Output
Exception

thrown:java.lang.ArrayIndexOutOfBoundsException:
3

First element value: 6
The finally statement is executed
Note the following
A catch clause cannot exist without a try

statement.
It is not compulsory to have finally clauses

whenever a try/catch block is present.
The try block cannot be present without either

catch clause or finally clause.
Any code cannot be present in between the try,

catch, finally blocks.
The try-with-resources
Generally, when we use any resources like

streams, connections, etc. we have to close them
explicitly using finally block. In the following
program, we are reading data from a file
usingFileReaderand we are closing it using finally
block.

Example
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
publicclassReadData_Demo{
publicstaticvoid main (String args []){
FileReader fr =null;
try{
File file =newFile ("file.txt");
fr =newFileReader (file);char [] a =newchar

[50];
fr.read (a);// reads the content to the array
for (char c: a)
System.out.print (c);// prints the characters one

by one
}catch (IOException e){
e.printStackTrace ();
}finally{
try{
fr.close ();
}catch (IOException ex){
ex.printStackTrace ();
}
}
}
}
try-with-resources, also referred asautomatic

resource management, is a new exception handling
mechanism that was introduced in Java 7, which

automatically closes the resources used within the try
catch block.

To use this statement, you simply need to
declare the required resources within the parenthesis,
and the created resource will be closed automatically
at the end of the block. Following is the syntax of
try-with-resources statement.

Syntax
try (FileReader fr = new FileReader ("file path"))

{
// use the resource
} catch () {
// body of catch
}
}
Following is the program that reads the data in a

file using try-with-resources statement.
Example
import java.io.FileReader;
import java.io.IOException;
publicclassTry_withDemo{
publicstaticvoid main (String args []){
try (FileReader fr =newFileReader

("E://file.txt")){
char [] a =newchar [50];
fr.read (a);// reads the contentto the array
for (char c: a)
System.out.print (c);// prints the characters one

by one
}catch (IOException e){
e.printStackTrace ();
}
}
}
Following points are to be kept in mind while

working with try-with-resources statement.
To use a class with try-with-resources statement

it should implementAutoCloseableinterface and
theclose ()method of it gets invoked automatically at
runtime.

You can declare more than one class in
try-with-resources statement.

While you declare multiple classes in the try
block of try-with-resources statement these classes
are closed in reverse order.

Except the declaration of resources within the
parenthesis everything is the same as normal
try/catch block of a try block.

The resource declared in try gets instantiated
just before the start of the try-block.

The resource declared at the try block is
implicitly declared as final.

User-defined Exceptions
You can create your own exceptions in Java.

Keep the following points in mind when writing your
own exception classes

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

167

All exceptions must be a child of Throwable.
If you want to write a checked exception that is

automatically enforced by the Handle or Declare
Rule, you need to extend the Exception class.

If you want to write a runtime exception, you
need to extend the RuntimeException class.

We can define our own Exception class as
below

class MyException extends Exception {
}
You just need to extend the

predefinedExceptionclass to create your own
Exception. These are considered to be checked
exceptions. The
followingInsufficientFundsExceptionclass is a
user-defined exception that extends the Exception
class, making it a checked exception. An exception
class is like any other class, containing useful fields
and methods.

Example
// File Name InsufficientFundsException.java
import java.io.*;
publicclassInsufficientFundsExceptionextendsE

xception{
privatedouble amount;
publicInsufficientFundsException (double

amount){
this.amount = amount;
}
publicdouble getAmount (){
return amount;
}
}
To demonstrate using our user-defined

exception, the following CheckingAccount class
contains a withdraw () method that throws an
InsufficientFundsException.

// File Name CheckingAccount.java
import java.io.*;
publicclassCheckingAccount{
privatedouble balance;
privateint number;
publicCheckingAccount (int number){
this.number = number;
}
publicvoid deposit (double amount){
balance += amount;
}
publicvoid withdraw (double

amount)throwsInsufficientFundsException{
if (amount <= balance){
balance -= amount;
}else{
double needs = amount - balance;
thrownewInsufficientFundsException (needs);
}

}
publicdouble getBalance (){
return balance;
}
publicint getNumber (){
return number;
}
}
The following BankDemo program

demonstrates invoking the deposit () and withdraw ()
methods of CheckingAccount.

// File Name BankDemo.java
publicclassBankDemo{
publicstaticvoid main (String [] args){
CheckingAccount c =newCheckingAccount

(101);
System.out.println ("Depositing $500...");
c.deposit (500.00);
try{
System.out.println ("\nWithdrawing $100...");
c.withdraw (100.00);
System.out.println ("\nWithdrawing $600...");
c.withdraw (600.00);
}catch (InsufficientFundsException e){
System.out.println ("Sorry, but you are short

$"+ e.getAmount ());
e.printStackTrace ();
}
}
}
Compile all the above three files and run

BankDemo. This will produce the following result
Output
Depositing $500...
Withdrawing $100...
Withdrawing $600...
Sorry, but you are short $200.0
InsufficientFundsException
at CheckingAccount.withdraw

(CheckingAccount.java:25)
at BankDemo.main (BankDemo.java:13)
Common Exceptions
In Java, it is possible to define two catergories

of Exceptions and Errors.
JVM Exceptions These are exceptions/errors

that are exclusively or logically thrown by the JVM.
Examples: NullPointerException,
ArrayIndexOutOfBoundsException,
ClassCastException.

Programmatic Exceptions These exceptions are
thrown explicitly by the application or the API
programmers. Examples: IllegalArgumentException,
IllegalStateException.

Java - Inner classes
In this chapter, we will discuss inner classes of

Java.

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

168

Nested Classes
In Java, just like methods, variables of a class

too can have another class as its member. Writing a
class within another is allowed in Java. The class
written within is called thenested class, and the class
that holds the inner class is called theouter class.

Syntax
Following is the syntax to write a nested class.

Here, the classOuter_Demois the outer class and the
classInner_Demois the nested class.

class Outer_Demo {
class Nested_Demo {
}
}
Nested classes are divided into two types
Non-static nested classes These are the

non-static members of a class.
Static nested classes These are the static

members of a class.

Inner Classes (Non-static Nested Classes)
Inner classes are a security mechanism in Java.

We know a class cannot be associated with the access
modifierprivate, but if we have the class as a member
of other class, then the inner class can be made
private. And this is also used to access the private
members of a class.

Inner classes are of three types depending on
how and where you define them. They are

Inner Class
Method-local Inner Class
Anonymous Inner Class
Inner Class
Creating an inner class is quite simple. You just

need to write a class within a class. Unlike a class, an
inner class can be private and once you declare an
inner class private, it cannot be accessed from an
object outside the class.

Following is the program to create an inner
class and access it. In the given example, we make
the inner class private and access the class through a
method.

Example
classOuter_Demo{
int num;

// inner class
privateclassInner_Demo{
publicvoidprint (){
System.out.println ("This is an inner class");
}
}
// Accessing he inner class from the method

within
void display_Inner (){
Inner_Demo inner =newInner_Demo ();
inner.print ();
}
}
publicclassMy_class{
publicstaticvoid main (String args []){
// Instantiating the outer class
Outer_Demo outer =newOuter_Demo ();
// Accessing the display_Inner () method.
outer.display_Inner ();
}
}
Here you can observe thatOuter_Demois the

outer class,Inner_Demois the inner
class,display_Inner ()is the method inside which we
are instantiating the inner class, and this method is
invoked from themainmethod.

If you compile and execute the above program,
you will get the following result

Output
This is an inner class.
Accessing the Private Members
As mentioned earlier, inner classes are also used

to access the private members of a class. Suppose, a
class is having private members to access them.
Write an inner class in it, return the private members
from a method within the inner class, say,getValue (),
and finally from another class (from which you want
to access the private members) call the getValue ()
method of the inner class.

To instantiate the inner class, initially you have
to instantiate the outer class. Thereafter, using the
object of the outer class, following is the way in
which you can instantiate the inner class.

Outer_Demo outer = new Outer_Demo ();
Outer_Demo.Inner_Demo inner = outer.new

Inner_Demo ();
The following program shows how to access the

private members of a class using inner class.
Example
classOuter_Demo{
// private variable of the outer class
privateint num =175;
// inner class
publicclassInner_Demo{
publicint getNum (){
System.out.println ("This is the getnum method

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

169

of the inner class");
return num;
}
}
}
publicclassMy_class2{
publicstaticvoid main (String args []){
// Instantiating the outer class
Outer_Demo outer =newOuter_Demo ();
// Instantiating the inner class
Outer_Demo.Inner_Demo inner =

outer.newInner_Demo ();
System.out.println (inner.getNum ());
}
}
If you compile and execute the above program,

you will get the following result
Output
This is the getnum method of the inner class:

175
Method-local Inner Class
In Java, we can write a class within a method

and this will be a local type. Like local variables, the
scope of the inner class is restricted within the
method.

A method-local inner class can be instantiated
only within the method where the inner class is
defined. The following program shows how to use a
method-local inner class.

Example
publicclassOuterclass{
// instance method of the outer class
void my_Method (){
int num =23;
// method-local inner class
classMethodInner_Demo{
publicvoidprint (){
System.out.println ("This is method inner class

"+num);
}
}// end of inner class
// Accessing the inner class
MethodInner_Demo inner

=newMethodInner_Demo ();
inner.print ();
}
publicstaticvoid main (String args []){
Outerclass outer =newOuterclass ();
outer.my_Method ();
}
}
If you compile and execute the above program,

you will get the following result
Output
This is method inner class 23
Anonymous Inner Class

An inner class declared without a class name is
known as ananonymous inner class. In case of
anonymous inner classes, we declare and instantiate
them at the same time. Generally, they are used
whenever you need to override the method of a class
or an interface. The syntax of an anonymous inner
class is as follows

Syntax
AnonymousInner an_inner = new

AnonymousInner () {
public void my_method () {
........
........
}
};
The following program shows how to override

the method of a class using anonymous inner class.
Example
abstractclassAnonymousInner{
publicabstractvoid mymethod ();
}
publicclassOuter_class{
publicstaticvoid main (String args []){
AnonymousInner inner =newAnonymousInner

(){
publicvoid mymethod (){
System.out.println ("This is an example of

anonymous inner class");
}
};
inner.mymethod ();
}
}
If you compile and execute the above program,

you will get the following result
Output
This is an example of anonymous inner class
In the same way, you can override the methods

of the concrete class as well as the interface using an
anonymous inner class.

Anonymous Inner Class as Argument
Generally, if a method accepts an object of an

interface, an abstract class, or a concrete class, then
we can implement the interface, extend the abstract
class, and pass the object to the method. If it is a class,
then we can directly pass it to the method.

But in all the three cases, you can pass an
anonymous inner class to the method. Here is the
syntax of passing an anonymous inner class as a
method argument

obj.my_Method (new My_Class () {
public void Do () {
.....
.....
}
});

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

170

The following program shows how to pass an
anonymous inner class as a method argument.

Example
// interface
interfaceMessage{
String greet ();
}
publicclassMy_class{
// method which accepts the object of interface

Message
publicvoid displayMessage (Message m){
System.out.println (m.greet ()+
", This is an example of anonymous inner class

as an argument");
}
publicstaticvoid main (String args []){
// Instantiating the class
My_class obj =newMy_class ();
// Passing an anonymous inner class as an

argument
obj.displayMessage (newMessage (){
publicString greet (){
return"Hello";
}
});
}
}
If you compile and execute the above program,

it gives you the following result
Output
Hello, This is an example of anonymous inner

class as an argument
Static Nested Class
A static inner class is a nested class which is a

static member of the outer class. It can be accessed
without instantiating the outer class, using other static
members. Just like static members, a static nested
class does not have access to the instance variables
and methods of the outer class. The syntax of static
nested class is as follows

Syntax
class MyOuter {
static class Nested_Demo {
}
}
Instantiating a static nested class is a bit

different from instantiating an inner class. The
following program shows how to use a static nested
class.

Example
publicclassOuter{
staticclassNested_Demo{
publicvoid my_method (){
System.out.println ("This is my nested class");
}
}

publicstaticvoid main (String args []){
Outer.Nested_Demo nested

=newOuter.Nested_Demo ();
nested.my_method ();
}
}
If you compile and execute the above program,

you will get the following result
Output
This is my nested class
Java Inheritance
Inheritance can be defined as the process where

one class acquires the properties (methods and fields)
of another. With the use of inheritance the
information is made manageable in a hierarchical
order.

The class which inherits the properties of other
is known as subclass (derived class, child class) and
the class whose properties are inherited is known as
superclass (base class, parent class).

extends Keyword
extendsis the keyword used to inherit the

properties of a class. Following is the syntax of
extends keyword.

Syntax
class Super {
.....
.....
}
class Sub extends Super {
.....
.....
}
Sample Code
Following is an example demonstrating Java

inheritance. In this example, you can observe two
classes namely Calculation and My_Calculation.

Using extends keyword, the My_Calculation
inherits the methods addition () and Subtraction () of
Calculation class.

Copy and paste the following program in a file
with name My_Calculation.java

Example
classCalculation{
int z;
publicvoid addition (int x,int y){
z = x + y;
System.out.println ("The sum of the given

numbers:"+z);
}
publicvoidSubtraction (int x,int y){
z = x - y;
System.out.println ("The difference between the

given numbers:"+z);
}
}

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

171

publicclassMy_CalculationextendsCalculation{
publicvoid multiplication (int x,int y){
z = x * y;
System.out.println ("The product of the given

numbers:"+z);
}
publicstaticvoid main (String args []){
int a =20, b =10;
My_Calculation demo =newMy_Calculation ();
demo.addition (a, b);
demo.Subtraction (a, b);
demo.multiplication (a, b);
}
}
Compile and execute the above code as shown

below.
javac My_Calculation.java
java My_Calculation
After executing the program, it will produce the

following result
Output
The sum of the given numbers:30
The difference between the given numbers:10
The product of the given numbers:200
In the given program, when an object

toMy_Calculationclass is created, a copy of the
contents of the superclass is made within it. That is
why, using the object of the subclass you can access
the members of a superclass.

The Superclass reference variable can hold the

subclass object, but using that variable you can
access only the members of the superclass, so to
access the members of both classes it is
recommended to always create reference variable to
the subclass.

If you consider the above program, you can
instantiate the class as given below. But using the
superclass reference variable (calin this case) you
cannot call the methodmultiplication (), which
belongs to the subclass My_Calculation.

Calculation cal =newMy_Calculation ();
demo.addition (a, b);
demo.Subtraction (a, b);
Note A subclass inherits all the members (fields,

methods, and nested classes) from its superclass.
Constructors are not members, so they are not
inherited by subclasses, but the constructor of the

superclass can be invoked from the subclass.
The super keyword
Thesuperkeyword is similar tothiskeyword.

Following are the scenarios where the super keyword
is used.

It is used todifferentiate the membersof
superclass from the members of subclass, if they have
same names.

It is used toinvoke the superclassconstructor
from subclass.

Differentiating the Members
If a class is inheriting the properties of another

class. And if the members of the superclass have the
names same as the sub class, to differentiate these
variables we use super keyword as shown below.

super.variable
super.method ();
Sample Code
This section provides you a program that

demonstrates the usage of thesuperkeyword.
In the given program, you have two classes

namelySub_classandSuper_class, both have a method
named display () with different implementations, and
a variable named num with different values. We are
invoking display () method of both classes and
printing the value of the variable num of both classes.
Here you can observe that we have used super
keyword to differentiate the members of superclass
from subclass.

Copy and paste the program in a file with name
Sub_class.java.

Example
classSuper_class{
int num =20;
// display method of superclass
publicvoid display (){
System.out.println ("This is the display method

of superclass");
}
}
publicclassSub_classextendsSuper_class{
int num =10;
// display method of sub class
publicvoid display (){
System.out.println ("This is the display method

of subclass");
}
publicvoid my_method (){
// Instantiating subclass
Sub_classsub=newSub_class ();
// Invoking the display () method of sub class
sub.display ();
// Invoking the display () method of superclass
super.display ();
// printing the value of variable num of subclass
System.out.println ("value of the variable

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

172

named num in sub class:"+sub.num);
// printing the value of variable num of

superclass
System.out.println ("value of the variable

named num in super class:"+super.num);
}
publicstaticvoid main (String args []){
Sub_class obj =newSub_class ();
obj.my_method ();
}
}
Compile and execute the above code using the

following syntax.
javac Super_Demo
java Super
On executing the program, you will get the

following result
Output
This is the display method of subclass
This is the display method of superclass
value of the variable named num in sub class:10
value of the variable named num in super

class:20
Invoking Superclass Constructor
If a class is inheriting the properties of another

class, the subclass automatically acquires the default
constructor of the superclass. But if you want to call a
parameterized constructor of the superclass, you need
to use the super keyword as shown below.

super (values);
Sample Code
The program given in this section demonstrates

how to use the super keyword to invoke the
parametrized constructor of the superclass. This
program contains a superclass and a subclass, where
the superclass contains a parameterized constructor
which accepts a string value, and we used the super
keyword to invoke the parameterized constructor of
the superclass.

Copy and paste the following program in a file
with the name Subclass.java

Example
classSuperclass{
int age;
Superclass (int age){
this.age = age;
}
publicvoid getAge (){
System.out.println ("The value of the variable

named age in super class is: "+age);
}
}
publicclassSubclassextendsSuperclass{
Subclass (int age){
super (age);
}

publicstaticvoid main (String argd []){
Subclass s =newSubclass (24);
s.getAge ();
}
}
Compile and execute the above code using the

following syntax.
javac Subclass
java Subclass
On executing the program, you will get the

following result
Output
The value of the variable named age in super

class is: 24
IS-A Relationship
IS-A is a way of saying: This object is a type of

that object. Let us see how theextendskeyword is
used to achieve inheritance.

publicclassAnimal{
}
publicclassMammalextendsAnimal{
}
publicclassReptileextendsAnimal{
}
publicclassDogextendsMammal{
}
Now, based on the above example, in

Object-Oriented terms, the following are true
Animal is the superclass of Mammal class.
Animal is the superclass of Reptile class.
Mammal and Reptile are subclasses of Animal

class.
Dog is the subclass of both Mammal and

Animal classes.
Now, if we consider the IS-A relationship, we

can say
Mammal IS-A Animal
Reptile IS-A Animal
Dog IS-A Mammal
Hence: Dog IS-A Animal as well
With the use of the extends keyword, the

subclasses will be able to inherit all the properties of
the superclass except for the private properties of the
superclass.

We can assure that Mammal is actually an
Animal with the use of the instance operator.

Example
classAnimal{
}
classMammalextendsAnimal{
}
classReptileextendsAnimal{
}
publicclassDogextendsMammal{
publicstaticvoid main (String args []){
Animal a =newAnimal ();

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

173

Mammal m =newMammal ();
Dog d =newDog ();
System.out.println (m instanceofAnimal);
System.out.println (d instanceofMammal);
System.out.println (d instanceofAnimal);
}
}
This will produce the following result
Output
true
true
true
Since we have a good understanding of

theextendskeyword, let us look into how
theimplementskeyword is used to get the IS-A
relationship.

Generally, theimplementskeyword is used with
classes to inherit the properties of an interface.
Interfaces can never be extended by a class.

Example
publicinterfaceAnimal{
}
publicclassMammalimplementsAnimal{
}
publicclassDogextendsMammal{
}
The instanceof Keyword
Let us use theinstanceofoperator to check

determine whether Mammal is actually an Animal,
and dog is actually an Animal.

Example
interfaceAnimal{}
classMammalimplementsAnimal{}
publicclassDogextendsMammal{
publicstaticvoid main (String args []){
Mammal m =newMammal ();
Dog d =newDog ();
System.out.println (m instanceofAnimal);
System.out.println (d instanceofMammal);
System.out.println (d instanceofAnimal);
}
}
This will produce the following result
Output
true
true
true
HAS-A relationship
These relationships are mainly based on the

usage. This determines whether a certain
classHAS-Acertain thing. This relationship helps to
reduce duplication of code as well as bugs.

Lets look into an example
Example
publicclassVehicle{}
publicclassSpeed{}

publicclassVanextendsVehicle{
privateSpeed sp;
}
This shows that class Van HAS-A Speed. By

having a separate class for Speed, we do not have to
put the entire code that belongs to speed inside the
Van class, which makes it possible to reuse the Speed
class in multiple applications.

In Object-Oriented feature, the users do not
need to bother about which object is doing the real
work. To achieve this, the Van class hides the
implementation details from the users of the Van
class. So, basically what happens is the users would
ask the Van class to do a certain action and the Van
class will either do the work by itself or ask another
class to perform the action.

Types of Inheritance
There are various types of inheritance as

demonstrated below.
Java Overriding
In the previous chapter, we talked about

superclasses and subclasses. If a class inherits a
method from its superclass, then there is a chance to
override the method provided that it is not marked
final.

The benefit of overriding is: ability to define a
behavior that's specific to the subclass type, which
means a subclass can implement a parent class
method based on its requirement.

In object-oriented terms, overriding means to
override the functionality of an existing method.

Example
Let us look at an example.
classAnimal{
publicvoid move (){
System.out.println ("Animals can move");
}
}
classDogextendsAnimal{
publicvoid move (){
System.out.println ("Dogs can walk and run");
}
}
publicclassTestDog{
publicstaticvoid main (String args []){
Animal a =newAnimal ();// Animal reference

and object
Animal b =newDog ();// Animal reference but

Dog object
a.move ();// runs the method in Animal class
b.move ();// runs the method in Dog class
}
}
This will produce the following result
Output
Animals can move

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

174

Dogs can walk and run
In the above example, you can see that even

thoughbis a type of Animal it runs the move method
in the Dog class. The reason for this is: In compile
time, the check is made on the reference type.
However, in the runtime, JVM figures out the object
type and would run the method that belongs to that

particular object.
Therefore, in the above example, the program

will compile properly since Animal class has the
method move. Then, at the runtime, it runs the
method specific for that object.

Consider the following example
Example

A very important fact to remember is that Java
does not support multiple inheritance. This means that
a class cannot extend more than one class. Therefore
following is illegal

Example
publicclassextendsAnimal,Mammal{}
However, a class can implement one or more

interfaces, which has helped Java get rid of the
impossibility of multiple inheritance.

classAnimal{
publicvoid move (){
System.out.println ("Animals can move");
}
}
classDogextendsAnimal{
publicvoid move (){
System.out.println ("Dogs can walk and run");
}
publicvoid bark (){
System.out.println ("Dogs can bark");

}
}
publicclassTestDog{
publicstaticvoid main (String args []){
Animal a =newAnimal ();// Animal reference and

object
Animal b =newDog ();// Animal reference but

Dog object
a.move ();// runs the method in Animal class
b.move ();// runs the method in Dog class
b.bark ();
}
}
This will produce the following result
Output
TestDog.java:26: error: cannot find symbol
b.bark ();
^
symbol: method bark ()
location: variable b of type Animal

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

175

1 error
This program will throw a compile time error

since b's reference type Animal doesn't have a method
by the name of bark.

Rules for Method Overriding
The argument list should be exactly the same as

that of the overridden method.
The return type should be the same or a subtype

of the return type declared in the original overridden
method in the superclass.

The access level cannot be more restrictive than
the overridden method's access level. For example: If
the superclass method is declared public then the
overridding method in the sub class cannot be either
private or protected.

Instance methods can be overridden only if they
are inherited by the subclass.

A method declared final cannot be overridden.
A method declared static cannot be overridden

but can be re-declared.
If a method cannot be inherited, then it cannot be

overridden.
A subclass within the same package as the

instance's superclass can override any superclass
method that is not declared private or final.

A subclass in a different package can only
override the non-final methods declared public or
protected.

An overriding method can throw any uncheck
exceptions, regardless of whether the overridden
method throws exceptions or not. However, the
overriding method should not throw checked
exceptions that are new or broader than the ones
declared by the overridden method. The overriding
method can throw narrower or fewer exceptions than
the overridden method.

Constructors cannot be overridden.
Using the super Keyword
When invoking a superclass version of an

overridden method thesuperkeyword is used.
Example
classAnimal{
publicvoid move (){
System.out.println ("Animals can move");
}
}
classDogextendsAnimal{
publicvoid move (){
super.move ();// invokes the super class method
System.out.println ("Dogs can walk and run");
}
}
publicclassTestDog{
publicstaticvoid main (String args []){
Animal b =newDog ();// Animal reference but

Dog object

b.move ();// runs the method in Dog class
}
}
This will produce the following result
Output
Animals can move
Dogs can walk and run
Java Polymorphism
Polymorphism is the ability of an object to take

on many forms. The most common use of
polymorphism in OOP occurs when a parent class
reference is used to refer to a child class object.

Any Java object that can pass more than one
IS-A test is considered to be polymorphic. In Java, all
Java objects are polymorphic since any object will
pass the IS-A test for their own type and for the class
Object.

It is important to know that the only possible way
to access an object is through a reference variable. A
reference variable can be of only one type. Once
declared, the type of a reference variable cannot be
changed.

The reference variable can be reassigned to other
objects provided that it is not declared final. The type
of the reference variable would determine the methods
that it can invoke on the object.

A reference variable can refer to any object of its
declared type or any subtype of its declared type. A
reference variable can be declared as a class or
interface type.

Example
Let us look at an example.
publicinterfaceVegetarian{}
publicclassAnimal{}
publicclassDeerextendsAnimalimplementsVegeta

rian{}
Now, the Deer class is considered to be

polymorphic since this has multiple inheritance.
Following are true for the above examples

A Deer IS-A Animal
A Deer IS-A Vegetarian
A Deer IS-A Deer
A Deer IS-A Object
When we apply the reference variable facts to a

Deer object reference, the following declarations are
legal

Example
Deer d =newDeer ();
Animal a = d;
Vegetarian v = d;
Object o = d;
All the reference variables d, a, v, o refer to the

same Deer object in the heap.
Virtual Methods
In this section, I will show you how the behavior

of overridden methods in Java allows you to take

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

176

advantage of polymorphism when designing your
classes.

We already have discussed method overriding,
where a child class can override a method in its parent.
An overridden method is essentially hidden in the
parent class, and is not invoked unless the child class
uses the super keyword within the overriding method.

Example
/* File name: Employee.java */
publicclassEmployee{
privateString name;
privateString address;
privateint number;
publicEmployee (String name,String address,int

number){
System.out.println ("Constructing an

Employee");
this.name = name;
this.address = address;
this.number = number;
}
publicvoid mailCheck (){
System.out.println ("Mailing a check to

"+this.name +""+this.address);
}
publicString toString (){
return name +""+ address +""+ number;
}
publicString getName (){
return name;
}
publicString getAddress (){
return address;
}
publicvoid setAddress (String newAddress){
address = newAddress;
}
publicint getNumber (){
return number;
}
}
Now suppose we extend Employee class as

follows
/* File name: Salary.java */
publicclassSalaryextendsEmployee{
privatedouble salary;// Annual salary
publicSalary (String name,String address,int

number,double salary){
super (name, address, number);
setSalary (salary);
}
publicvoid mailCheck (){
System.out.println ("Within mailCheck of Salary

class ");
System.out.println ("Mailing check to "+

getName ()

+" with salary "+ salary);
}
publicdouble getSalary (){
return salary;
}
publicvoid setSalary (double newSalary){
if (newSalary >=0.0){
salary = newSalary;
}
}
publicdouble computePay (){
System.out.println ("Computing salary pay for "+

getName ());
return salary/52;
}
}
Now, you study the following program carefully

and try to determine its output
/* File name: VirtualDemo.java */
publicclassVirtualDemo{
publicstaticvoid main (String [] args){
Salary s =newSalary ("Mohd

Mohtashim","Ambehta, UP",3,3600.00);
Employee e =newSalary ("John Adams","Boston,

MA",2,2400.00);
System.out.println ("Call mailCheck using Salary

reference --");
s.mailCheck ();
System.out.println ("\n Call mailCheck using

Employee reference--");
e.mailCheck ();
}
}
This will produce the following result
Output
Constructing an Employee
Constructing an Employee
Call mailCheck using Salary reference --
Within mailCheck of Salary class
ailing check to Mohd Mohtashim with salary

3600.0
Call mailCheck using Employee reference--
Within mailCheck of Salary class
ailing check to John Adams with salary 2400.0
Here, we instantiate two Salary objects. One

using a Salary references, and the other using an
Employee referencee.

While invokings.mailCheck (), the compiler sees
mailCheck () in the Salary class at compile time, and
the JVM invokes mailCheck () in the Salary class at
run time.

mailCheck () oneis quite different becauseeis an
Employee reference. When the compiler
seese.mailCheck (), the compiler sees the mailCheck ()
method in the Employee class.

Here, at compile time, the compiler used

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

177

mailCheck () in Employee to validate this statement.
At run time, however, the JVM invokes mailCheck ()
in the Salary class.

This behavior is referred to as virtual method
invocation, and these methods are referred to as virtual
methods. An overridden method is invoked at run time,
no matter what data type the reference is that was used
in the source code at compile time.

Java Abstraction
As per dictionary,abstractionis the quality of

dealing with ideas rather than events. For example,
when you consider the case of e-mail, complex details
such as what happens as soon as you send an e-mail,
the protocol your e-mail server uses are hidden from
the user. Therefore, to send an e-mail you just need to
type the content, mention the address of the receiver,
and click send.

Likewise in Object-oriented programming,
abstraction is a process of hiding the implementation
details from the user, only the functionality will be
provided to the user. In other words, the user will have
the information on what the object does instead of how
it does it.

In Java, abstraction is achieved using Abstract
classes and interfaces.

Abstract Class
A class which contains theabstractkeyword in its

declaration is known as abstract class.
Abstract classes may or may not containabstract

methods, i.e., methods without body (public void get
();)

But, if a class has at least one abstract method,
then the classmustbe declared abstract.

If a class is declared abstract, it cannot be
instantiated.

To use an abstract class, you have to inherit it
from another class, provide implementations to the
abstract methods in it.

If you inherit an abstract class, you have to
provide implementations to all the abstract methods in
it.

Example
This section provides you an example of the

abstract class. To create an abstract class, just use
theabstractkeyword before the class keyword, in the
class declaration.

/* File name: Employee.java */
publicabstractclassEmployee{
privateString name;
privateString address;
privateint number;
publicEmployee (String name,String address,int

number){
System.out.println ("Constructing an

Employee");
this.name = name;

this.address = address;
this.number = number;
}
publicdouble computePay (){
System.out.println ("Inside Employee

computePay");
return0.0;
}
publicvoid mailCheck (){
System.out.println ("Mailing a check to

"+this.name +""+this.address);
}
publicString toString (){
return name +""+ address +""+ number;
}
publicString getName (){
return name;
}
publicString getAddress (){
return address;
}
publicvoid setAddress (String newAddress){
address = newAddress;
}
publicint getNumber (){
return number;
}
}
You can observe that except abstract methods the

Employee class is same as normal class in Java. The
class is now abstract, but it still has three fields, seven
methods, and one constructor.

Now you can try to instantiate the Employee
class in the following way

/* File name: AbstractDemo.java */
publicclassAbstractDemo{
publicstaticvoid main (String [] args){
/* Following is not allowed and would raise error

*/
Employee e =newEmployee ("George

W.","Houston, TX",43);
System.out.println ("\n Call mailCheck using

Employee reference--");
e.mailCheck ();
}
}
When you compile the above class, it gives you

the following error
Employee.java:46: Employee is abstract; cannot

be instantiated
Employee e = new Employee ("George W.",

"Houston, TX", 43);
^
1 error
Inheriting the Abstract Class
We can inherit the properties of Employee class

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

178

just like concrete class in the following way
Example
/* File name: Salary.java */
publicclassSalaryextendsEmployee{
privatedouble salary;// Annual salary
publicSalary (String name,String address,int

number,double salary){
super (name, address, number);
setSalary (salary);
}
publicvoid mailCheck (){
System.out.println ("Within mailCheck of Salary

class ");
System.out.println ("Mailing check to "+

getName ()+" with salary "+ salary);
}
publicdouble getSalary (){
return salary;
}
publicvoid setSalary (double newSalary){
if (newSalary >=0.0){
salary = newSalary;
}
}
publicdouble computePay (){
System.out.println ("Computing salary pay for "+

getName ());
return salary/52;
}
}
Here, you cannot instantiate the Employee class,

but you can instantiate the Salary Class, and using this
instance you can access all the three fields and seven
methods of Employee class as shown below.

/* File name: AbstractDemo.java */
publicclassAbstractDemo{
publicstaticvoid main (String [] args){
Salary s =newSalary ("Mohd

Mohtashim","Ambehta, UP",3,3600.00);
Employee e =newSalary ("John Adams","Boston,

MA",2,2400.00);
System.out.println ("Call mailCheck using Salary

reference --");
s.mailCheck ();
System.out.println ("\n Call mailCheck using

Employee reference--");
e.mailCheck ();
}
}
This produces the following result
Output
Constructing an Employee
Constructing an Employee
Call mailCheck using Salary reference --
Within mailCheck of Salary class
Mailing check to Mohd Mohtashim with salary

3600.0
Call mailCheck using Employee reference--
Within mailCheck of Salary class
Mailing check to John Adams with salary 2400.0
Abstract Methods
If you want a class to contain a particular method

but you want the actual implementation of that method
to be determined by child classes, you can declare the
method in the parent class as an abstract.

abstractkeyword is used to declare the method as
abstract.

You have to place theabstractkeyword before the
method name in the method declaration.

An abstract method contains a method signature,
but no method body.

Instead of curly braces, an abstract method will
have a semoi colon (;) at the end.

Following is an example of the abstract method.
Example
publicabstractclassEmployee{
privateString name;
privateString address;
privateint number;
publicabstractdouble computePay ();
// Remainder of class definition
}
Declaring a method as abstract has two

consequences
The class containing it must be declared as

abstract.
Any class inheriting the current class must either

override the abstract method or declare itself as
abstract.

Note Eventually, a descendant class has to
implement the abstract method; otherwise, you would
have a hierarchy of abstract classes that cannot be
instantiated.

Suppose Salary class inherits the Employee class,
then it should implement thecomputePay ()method as
shown below

/* File name: Salary.java */
publicclassSalaryextendsEmployee{
privatedouble salary;// Annual salary
publicdouble computePay (){
System.out.println ("Computing salary pay for "+

getName ());
return salary/52;
}
// Remainder of class definition
}
Java - Encapsulation
Encapsulationis one of the four fundamental

OOP concepts. The other three are inheritance,
polymorphism, and abstraction.

Encapsulation in Java is a mechanism of
wrapping the data (variables) and code acting on the

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

179

data (methods) together as a single unit. In
encapsulation, the variables of a class will be hidden
from other classes, and can be accessed only through
the methods of their current class. Therefore, it is also
known asdata hiding.

To achieve encapsulation in Java
Declare the variables of a class as private.
Provide public setter and getter methods to

modify and view the variables values.
Example
Following is an example that demonstrates how

to achieve Encapsulation in Java
/* File name: EncapTest.java */
publicclassEncapTest{
privateString name;
privateString idNum;
privateint age;
publicint getAge (){
return age;
}
publicString getName (){
return name;
}
publicString getIdNum (){
return idNum;
}
publicvoid setAge (int newAge){
age = newAge;
}
publicvoid setName (String newName){
name = newName;
}
publicvoid setIdNum (String newId){
idNum = newId;
}
}
The public setXXX () and getXXX () methods

are the access points of the instance variables of the
EncapTest class. Normally, these methods are referred
as getters and setters. Therefore, any class that wants
to access the variables should access them through
these getters and setters.

The variables of the EncapTest class can be
accessed using the following program

/* File name: RunEncap.java */
publicclassRunEncap{
publicstaticvoid main (String args []){
EncapTest encap =newEncapTest ();
encap.setName ("James");
encap.setAge (20);
encap.setIdNum ("12343ms");
System.out.print ("Name: "+ encap.getName ()+"

Age: "+ encap.getAge ());
}
}
This will produce the following result

Output
Name: James Age: 20
Benefits of Encapsulation
The fields of a class can be made read-only or

write-only.
A class can have total control over what is stored

in its fields.
Java Interfaces
An interface is a reference type in Java. It is

similar to class. It is a collection of abstract methods.
A class implements an interface, thereby inheriting the
abstract methods of the interface.

Along with abstract methods, an interface may
also contain constants, default methods, static methods,
and nested types. Method bodies exist only for default
methods and static methods.

Writing an interface is similar to writing a class.
But a class describes the attributes and behaviors of an
object. And an interface contains behaviors that a class
implements.

Unless the class that implements the interface is
abstract, all the methods of the interface need to be
defined in the class.

An interface is similar to a class in the following
ways

An interface can contain any number of methods.
An interface is written in a file with

a.javaextension, with the name of the interface
matching the name of the file.

The byte code of an interface appears in
a.classfile.

Interfaces appear in packages, and their
corresponding bytecode file must be in a directory
structure that matches the package name.

However, an interface is different from a class in
several ways, including

You cannot instantiate an interface.
An interface does not contain any constructors.
All of the methods in an interface are abstract.
An interface cannot contain instance fields. The

only fields that can appear in an interface must be
declared both static and final.

An interface is not extended by a class; it is
implemented by a class.

An interface can extend multiple interfaces.
Declaring Interfaces
Theinterfacekeyword is used to declare an

interface. Here is a simple example to declare an
interface

Example
Following is an example of an interface
/* File name: NameOfInterface.java */
import java.lang.*;
// Any number of import statements
publicinterfaceNameOfInterface{
// Any number of final, static fields

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

180

// Any number of abstract method declarations\
}
Interfaces have the following properties
An interface is implicitly abstract. You do not

need to use theabstractkeyword while declaring an
interface.

Each method in an interface is also implicitly
abstract, so the abstract keyword is not needed.

Methods in an interface are implicitly public.
Example
/* File name: Animal.java */
interfaceAnimal{
publicvoid eat ();
publicvoid travel ();
}
Implementing Interfaces
When a class implements an interface, you can

think of the class as signing a contract, agreeing to
perform the specific behaviors of the interface. If a
class does not perform all the behaviors of the
interface, the class must declare itself as abstract.

A class uses theimplementskeyword to
implement an interface. The implements keyword
appears in the class declaration following the extends
portion of the declaration.

Example
/* File name: MammalInt.java */
publicclassMammalIntimplementsAnimal{
publicvoid eat (){
System.out.println ("Mammal eats");
}
publicvoid travel (){
System.out.println ("Mammal travels");
}
publicint noOfLegs (){
return0;
}
publicstaticvoid main (String args []){
MammalInt m =newMammalInt ();
m.eat ();
m.travel ();
}
}
This will produce the following result
Output
Mammal eats
Mammal travels
When overriding methods defined in interfaces,

there are several rules to be followed
Checked exceptions should not be declared on

implementation methods other than the ones declared
by the interface method or subclasses of those declared
by the interface method.

The signature of the interface method and the
same return type or subtype should be maintained
when overriding the methods.

An implementation class itself can be abstract
and if so, interface methods need not be implemented.

When implementation interfaces, there are
several rules

A class can implement more than one interface at
a time.

A class can extend only one class, but implement
many interfaces.

An interface can extend another interface, in a
similar way as a class can extend another class.

Extending Interfaces
An interface can extend another interface in the

same way that a class can extend another class.
Theextendskeyword is used to extend an interface, and
the child interface inherits the methods of the parent
interface.

The following Sports interface is extended by
Hockey and Football interfaces.

Example
// Filename: Sports.java
publicinterfaceSports{
publicvoid setHomeTeam (String name);
publicvoid setVisitingTeam (String name);
}
// Filename: Football.java
publicinterfaceFootballextendsSports{
publicvoid homeTeamScored (int points);
publicvoid visitingTeamScored (int points);
publicvoid endOfQuarter (int quarter);
}
// Filename: Hockey.java
publicinterfaceHockeyextendsSports{
publicvoid homeGoalScored ();
publicvoid visitingGoalScored ();
publicvoid endOfPeriod (int period);
publicvoid overtimePeriod (int ot);
}
The Hockey interface has four methods, but it

inherits two from Sports; thus, a class that implements
Hockey needs to implement all six methods. Similarly,
a class that implements Football needs to define the
three methods from Football and the two methods
from Sports.

Extending Multiple Interfaces
A Java class can only extend one parent class.

Multiple inheritance is not allowed. Interfaces are not
classes, however, and an interface can extend more
than one parent interface.

The extends keyword is used once, and the parent
interfaces are declared in a comma-separated list.

For example, if the Hockey interface extended
both Sports and Event, it would be declared as

Example
publicinterfaceHockeyextendsSports,Event
Tagging Interfaces
The most common use of extending interfaces

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

181

occurs when the parent interface does not contain any
methods. For example, the MouseListener interface in
the java.awt.event package extended
java.util.EventListener, which is defined as

Example
package java.util;
publicinterfaceEventListener
{}
An interface with no methods in it is referred to

as atagginginterface. There are two basic design
purposes of tagging interfaces

Creates a common parent As with the
EventListener interface, which is extended by dozens
of other interfaces in the Java API, you can use a
tagging interface to create a common parent among a
group of interfaces. For example, when an interface
extends EventListener, the JVM knows that this
particular interface is going to be used in an event
delegation scenario.

Adds a data type to a class This situation is where
the term, tagging comes from. A class that implements
a tagging interface does not need to define any
methods (since the interface does not have any), but
the class becomes an interface type through
polymorphism.

Java - Packages
Packages are used in Java in order to prevent

naming conflicts, to control access, to make
searching/locating and usage of classes, interfaces,
enumerations and annotations easier, etc.

APackagecan be defined as a grouping of related
types (classes, interfaces, enumerations and
annotations) providing access protection and
namespace management.

Some of the existing packages in Java are
java.lang bundles the fundamental classes
java.io classes for input, output functions are

bundled in this package
Programmers can define their own packages to

bundle group of classes/interfaces, etc. It is a good
practice to group related classes implemented by you
so that a programmer can easily determine that the
classes, interfaces, enumerations, and annotations are
related.

Since the package creates a new namespace there
won't be any name conflicts with names in other
packages. Using packages, it is easier to provide
access control and it is also easier to locate the related
classes.

Creating a Package
While creating a package, you should choose a

name for the package and include apackagestatement
along with that name at the top of every source file
that contains the classes, interfaces, enumerations, and
annotation types that you want to include in the
package.

The package statement should be the first line in
the source file. There can be only one package
statement in each source file, and it applies to all types
in the file.

If a package statement is not used then the class,
interfaces, enumerations, and annotation types will be
placed in the current default package.

To compile the Java programs with package
statements, you have to use -d option as shown below.

javac -d Destination_folder file_name.java
Then a folder with the given package name is

created in the specified destination, and the compiled
class files will be placed in that folder.

Example
Let us look at an example that creates a package

calledanimals. It is a good practice to use names of
packages with lower case letters to avoid any conflicts
with the names of classes and interfaces.

Following package example contains interface
namedanimals

/* File name: Animal.java */
package animals;
interfaceAnimal{
publicvoid eat ();
publicvoid travel ();
}
Now, let us implement the above interface in the

same packageanimals
package animals;
/* File name: MammalInt.java */
publicclassMammalIntimplementsAnimal{
publicvoid eat (){
System.out.println ("Mammal eats");
}
publicvoid travel (){
System.out.println ("Mammal travels");
}
publicint noOfLegs (){
return0;
}
publicstaticvoid main (String args []){
MammalInt m =newMammalInt ();
m.eat ();
m.travel ();
}
}
Now compile the java files as shown below
$ javac -d. Animal.java
$ javac -d. MammalInt.java
Now a package/folder with the nameanimalswill

be created in the current directory and these class files
will be placed in it as shown below.

You can execute the class file within the package
and get the result as shown below.

Mammal eats
Mammal travels

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

182

The import Keyword
If a class wants to use another class in the same

package, the package name need not be used. Classes
in the same package find each other without any
special syntax.

Example
Here, a class named Boss is added to the payroll

package that already contains Employee. The Boss can
then refer to the Employee class without using the
payroll prefix, as demonstrated by the following Boss
class.

package payroll;
publicclassBoss{
publicvoid payEmployee (Employee e){
e.mailCheck ();
}
}

What happens if the Employee class is not in the

payroll package? The Boss class must then use one of
the following techniques for referring to a class in a
different package.

The fully qualified name of the class can be used.
For example

payroll.Employee
The package can be imported using the import

keyword and the wild card (*). For example
import payroll.*;
The class itself can be imported using the import

keyword. For example
import payroll.Employee;
Note A class file can contain any number of

import statements. The import statements must appear
after the package statement and before the class
declaration.

The Directory Structure of Packages
Two major results occur when a class is placed in

a package
The name of the package becomes a part of the

name of the class, as we just discussed in the previous
section.

The name of the package must match the
directory structure where the corresponding bytecode
resides.

Here is simple way of managing your files in
Java

Put the source code for a class, interface,
enumeration, or annotation type in a text file whose
name is the simple name of the type and whose
extension is.java.

For example
// File Name: Car.java
package vehicle;
publicclassCar{
// Class implementation.
}
Now, put the source file in a directory whose

name reflects the name of the package to which the
class belongs

....\vehicle\Car.java
Now, the qualified class name and pathname

would be as follows
Class name vehicle.Car
Path name vehicle\Car.java (in windows)
In general, a company uses its reversed Internet

domain name for its package names.
Example A company's Internet domain name is

apple.com, then all its package names would start with
com.apple. Each component of the package name
corresponds to a subdirectory.

Example The company had a
com.apple.computers package that contained a
Dell.java source file, it would be contained in a series
of subdirectories like this

....\com\apple\computers\Dell.java
At the time of compilation, the compiler creates a

different output file for each class, interface and
enumeration defined in it. The base name of the output
file is the name of the type, and its extension is.class.

For example
// File Name: Dell.java
package com.apple.computers;
publicclassDell{
}
classUps{
}
Now, compile this file as follows using -d option
$javac -d. Dell.java
The files will be compiled as follows
.\com\apple\computers\Dell.class
.\com\apple\computers\Ups.class
You can import all the classes or interfaces

defined in\com\apple\computers\as follows
import com.apple.computers.*;
Like the.java source files, the compiled.class files

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

183

should be in a series of directories that reflect the
package name. However, the path to the.class files
does not have to be the same as the path to the.java
source files. You can arrange your source and class
directories separately, as

<path-one>\sources\com\apple\computers\Dell.ja
va

<path-two>\classes\com\apple\computers\Dell.cl
ass

By doing this, it is possible to give access to the
classes directory to other programmers without
revealing your sources. You also need to manage
source and class files in this manner so that the
compiler and the Java Virtual Machine (JVM) can find
all the types your program uses.

The full path to the classes directory,
<path-two>\classes, is called the class path, and is set
with the CLASSPATH system variable. Both the
compiler and the JVM construct the path to your.class
files by adding the package name to the class path.

Say <path-two>\classes is the class path, and the
package name is com.apple.computers, then the
compiler and JVM will look for.class files in
<path-two>\classes\com\apple\computers.

A class path may include several paths. Multiple
paths should be separated by a semicolon (Windows)
or colon (Unix). By default, the compiler and the JVM
search the current directory and the JAR file
containing the Java platform classes so that these
directories are automatically in the class path.

Set CLASSPATH System Variable
To display the current CLASSPATH variable,

use the following commands in Windows and UNIX
(Bourne shell)

In Windows C:\> set CLASSPATH
In UNIX % echo $CLASSPATH
To delete the current contents of the

CLASSPATH variable, use
In Windows C:\> set CLASSPATH =
In UNIX % unset CLASSPATH; export

CLASSPATH
To set the CLASSPATH variable
In Windows set CLASSPATH =

C:\users\jack\java\classes
In UNIX % CLASSPATH =

/home/jack/java/classes; export CLASSPATH
Note: You can dig deeper from here if you want

to know more about Java.
https://www.tutorialspoint.com/java/java_data_st

ructures.htm
Structured Query Language
SQL: Structured Query Language -- a computer

language developed by American computer scientists
Donald D. Chamberlin and Raymond F. Boyce at IBM
in 1974 to create database, store, manipulate, delete
and retrieve data stored in database.

How to create database in MySQL

First you have to open MySQL terminal and then

you have to enter the command:
create database data;
or
CREATE DATABASE data;

And press enter. Then
Query OK, 1 row affected (0.01 sec)

will be displayed on the console screen indicating

that database named data is created. And if you enter
the command:

show databases;
And press enter. Then
Database
CodingGround
data
information_schema
mysql
performance_schema
will be displayed on the console screen. And if

you want to create a table in the database "data", then
you have to enter the command:

use data;
And press enter. Then
Database changed
will be displayed on the console screen stating

that your active database is now "data". And if you
want to create a table named "states" with three fields:
id, state, and population:

 id state population

in your active database named "data", then you

have to enter the command:
CREATE TABLE states (id INT NOT NULL

PRIMARY KEY AUTO_INCREMENT, state CHAR
(25), population INT (9));

And press enter. Then
Query OK, 0 rows affected (0.07 sec)
will be displayed on the console screen stating

that the above table is created.
Note:
The INT command will make the id field contain

only numbers (i.e., integers).
The NOT NULL command makes sure that the id

field cannot be left blank / empty.
The PRIMARY KEY designates the id field as

the key field in the table.
The AUTO_INCREMENT command will

automatically assign increasing values into the id field,
essentially automatically numbering each entry.

The CHAR (characters) and INT (integers)

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

184

commands designate the types of data allowed in those
fields. The number next to the commands CHAR and
INT indicate how many characters or integers can fit
in the field.

Now it's time to start entering your information.
Use the following command:

INSERT INTO states (id, state, population)
VALUES (NULL, 'Karnataka', 256666);

INSERT INTO states (id, state, population)
VALUES (NULL, 'Assam', 2568585);

INSERT INTO states (id, state, population)
VALUES (NULL, 'Kashmir', 2569);

to input your entry. Then
Query OK, 1 row affected (0.03 sec)
Query OK, 1 row affected (0.01 sec)
Query OK, 1 row affected (0.00 sec)
will be displayed on the console screen stating

that you have inputted your entry. And if you enter the
following command:

select*from states;
Then, your created table named "states" will be

displayed on the screen as follows:

id state population
1 Karnataka 256666
2 Assam 2568585
3 Kashmir 2569

And if you wish to create the following table:

id state population language
1 Karnataka 256666 Kannada
2 Assam 2569 Assami

You have to use the following command:
CREATE TABLE states (id INT NOT NULL

PRIMARY KEY AUTO_INCREMENT, state CHAR
(25), population INT (9), language CHAR (25));

And press enter and
Query OK, 0 rows affected (0.03 sec)
will be displayed on the console screen and then

you should enter the following command:
INSERT INTO states (id, state, population,

language) VALUES (NULL, 'Karnataka', 256666,
'Kannada');

INSERT INTO states (id, state, population,
language) VALUES (NULL,'Assam',2569,'Assami');

And press enter and
Query OK, 1 row affected (0.01 sec)
Query OK, 1 row affected (0.00 sec)
will be displayed on the console screen and if

you enter the command:
select*from states;
Then the above table will be displayed on the

screen.
If you enter the command:
select state, population from states;
Then

state population
Karnataka 256666
Assam 2569

will be displayed on the console screen. And if

you enter the command:
select state from states;
Then

state
Karnataka
Assam

will be displayed on the console screen.
If you enter the command:
select*from states where language ='kannada';
Then

id state population language
1 Karnataka 256666 Kannada

will be displayed on the console screen. Similarly,

if you enter the command:
select * from states where id =2;
Then

id state population language
2 Assam 2569 Assami

will be displayed on the console screen.
SQL and & or Command:
If you enter the command:
select*from states where population =256666 and

language ='kannada';
or
select*from states where population = 226666 or

language = 'kannada';
Then

id state population language
1 Karnataka 256666 Kannada

will be displayed on the console screen.
If you enter the command:
select *from states where population = 256666 or

language ='assami';

id state population language
1 Karnataka 256666 Kannada
2 Assam 2569 Assami

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

185

How to insert information into the table

If you enter the command:
INSERT INTO states (id, state, population,

language) VALUES (NULL, 'tamil nadu', 288,'tamil');
Then

id state population language
1 Karnataka 256666 Kannada
2 Assam 2569 Assami
3 tamil nadu 288 tamil

will be displayed on the console screen.
UPDATE INFORMATION:
If you enter the command:
update states set language = 'telagu', id = 1 where

state = 'Karnataka';
Then
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0
will be displayed on the console screen. And if

you enter the command:
select * from states;
Then

id state population language
1 Karnataka 256666 telagu
2 Assam 2569 Assami
3 tamil nadu 288 tamil

will be displayed on the console screen.
DELETE information:
If you enter the command:
delete from states where language ='assami' and

state ='assam';
Then
Query OK, 1 row affected (0.00 sec)
will be displayed on the console screen. And if

you enter the command:
select * from states;
Then

id state population language
1 Karnataka 256666 telagu
3 tamil nadu 288 tamil

will be displayed on the console screen.
How to delete database in MySQL:
Note: If want to delete database "dbtest" from

MySQL. Then you have to enter the command:
drop database dbtest;
Then
Query OK, 1 row affected (0.00 sec)
will be displayed on the console screen stating

that database "dbtest" is deleted from MySQL.
If want to delete table "states" from database

"dbtest." Then you have to enter the command:
drop table states;
Then
Query OK, 1 row affected (0.00 sec)
will be displayed on the console screen stating

that table "states" is deleted from database "dbtest".
Limit Data Selection From MySQL Database:
If enter the command:
select*from states limit 1;
Then

id state population language
1 Karnataka 256666 Kannada

will be displayed on the console screen.
If enter the command:
select*from states limit 2;
Then

id state population language
1 Karnataka 256666 Kannada
2 Assam 2569 Assami

will be displayed on the console screen. If you

enter the command: truncate states; Then Query OK, 0
rows affected (0.06 sec) will be displayed on the
console screen stating that all the rows are removed
from the table "states". And you can confirm it by
entering the command: select*from states; Then:
Empty set (0.01 sec) will be displayed on the console
screen. Python Python is a popular, very powerful
high-level language (like C, C++, Perl, and Java and
its name is derived from "Monty Python's Flying
Circus" a British television series), object-oriented
programming scripting language designed by Dutch
programmer "Guido van Rossum" in the early 1990s
(often referred to as a "glue" language, meaning that it
is capable to work in mixed-language environment)
which is easy to understand, easy to use, write, modify
and debug and flexible and easy to implement and run
on open source operating systems like Linux,
Windows, Macintosh, Solaris, FreeBSD, OS/2, Amiga,
AROS, AS/400 and is employed to perform automated
testing of applications (i.e., to execute tests of
applications, report outcomes and compare results with
earlier test runs) and to increase the effectiveness and
speed of software testing and its other commercial
uses include financial applications, educational
software, games, production of special effects for such
movies as The Phantom Menace and The Mummy
Returns, and business software. And python might not
be the best choice for building the following types of
applications and systems: Graphics-intensive
applications, such as action games -- where

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

186

performance is important (because it is true that
CODE WRITTEN IN Python, c# and visual basic etc.
is far slower than the same code write in C++. Hence,
C++ is necessarily preferred). And its support for
Matlab-like array manipulation and plotting is a major
reason to prefer it over other high level programming
languages such as Perl and Ruby. You should be very
careful while working on python code. Indentation in
python takes the center-stage. You cannot write a loop
or a conditional statement without using indentation.
There is a popular saying that code in python should
be as guido indented it not how he intended it. A
simple python program to print the word "Hello
World!" on screen: # Hello World program in Python
print"Hello World!\n" Output on the screen: Hello
World! print "Hello World!\n" implies the statement
that make provision to print: Hello World! on the
screen. # Hello World program in Python the
statement that implies: comment What will be the
output on the screen: (a) print "Hello World!\n" print
"Hello World!\n" Answer: Hello World! Hello World!
(b) print "Hello World!" print "Hello World!" Answer:
Hello World! Hello World! What is the mistake in the
following program: Hello World program in Python
print "Hello World!\n" Answer: # is not added to the
statement: Hello World program in Python
//--

#Hello World program in Python print "Hello
World!\n"
--
--//
Program 1.1 Python program to add two numbers:
number1=2 number2=3 print "The sum of {0} and {1}
is {2}".format (number1, number2, float (number1) +
float (number2)) Output on the screen: The sum of 2
and 3 is 5.0 print "The sum of {0} and {1} is
{2}".format (number1, number2, float (number1) +
float (number2)) implies the statement that make
provision to print the output: The sum of 2 and 3 is 5.0
on the screen. Note: If you replace the statement: print
"The sum of {0} and {1} is {2}".format (number1,
number2, float (number1) + float (number2)) by the
statement: print "The sum of {1} and {2} is
{3}".format (number1, number2, float (number1) +
float (number2)) Then Runtime error or IndexError:
tuple index out of range will be displayed on the
screen. Note: Dot notation (.) in the statement: print
"The sum of {0} and {1} is {2}".format (number1,
number2, float (number1) + float (number2)) connects
the two statements: "The sum of {0} and {1} is {2}"
format (number1, number2, float (number1) + float
(number2)) And if you forget to write dot notation in
the statement: print "The difference of {0} and {1} is
{2}".format (number1, number2, float (number1) -
float (number2)) i.e., print "The difference of {0} and

{1} is {2}" format (number1, number2, float (number1)
- float (number2)) Then Syntax error will be displayed
on the console screen. In the statement: print "The sum
of {0} and {1} is {2}".format (number1, number2,
float (number1) + float (number2)) {0} act as a
placeholder for number1 in the format method {1} act
as a placeholder for number2 in the format method {2}
act as a placeholder for float (number1) + float
(number2) in the format method If you want to enter
the values for number1 and number2 through keyboard,
then you need to replace the statements: number1 = 2
number2 = 3 by the statements: number1=input ("
Please Enter the First Number: ") number2=input ("
Please Enter the Second Number: ") i.e., the above
program should be rewritten as: number1=input ("
Please Enter the First Number: ") number2=input ("
Please Enter the Second Number: ") print "The sum of
{0} and {1} is {2}".format (number1, number2, float
(number1) + float (number2)) Output on the screen:
Please Enter the First Number: If you enter 1 Please
Enter the Second Number: If you enter 2 The sum of 1
and 2 is 3.0 will be displayed on the screen.
Statements: number1 = input (" Please Enter the First
Number: ") number2 = input (" Please Enter the
Second Number: ") ask the user to enter two integer
numbers and stores the user entered values in variables
number 1 and number 2. Program 1.2 Python program
to subtract two numbers: number1=input (" Please
Enter the First Number: ") number2=input (" Please
Enter the Second Number: ") print "The difference of
{0} and {1} is {2}".format (number1, number2, float
(number1) - float (number2)) Output on the screen:
Please Enter the First Number: If you enter 6 Please
Enter the Second Number: If you enter 4 The
difference of 6 and 4 is 2.0 will be displayed on the
screen. Program 1.3 Python program to divide two
numbers: number1=input (" Please Enter the First
Number: ") number2=input (" Please Enter the Second
Number: ") print "The division of {0} by {1} yields
{2}".format (number1, number2, float (number1) /
float (number2)) Output on the screen: Please Enter
the First Number: If you enter 6 Please Enter the
Second Number: If you enter 2 The division of 6 by 2
is 3.0 will be displayed on the screen. Program 1.4
Python program to multiply two numbers:
number1=input (" Please Enter the First Number: ")
number2=input (" Please Enter the Second Number: ")
print "The product of {0} and {1} is {2}".format
(number1, number2, float (number1) * float (number2))
Output on the screen: Please Enter the First Number: If
you enter 6 Please Enter the Second Number: If you
enter 2 The product of 6 and 2 is 12.0 will be
displayed on the screen. Program 1.5 Python program
to find the area of a circle: number1=input (" Please
Enter the radius: ") print "The area of the circle is
{0}".format (4*3.14* number1* number1) Output on

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

187

the screen: Please Enter the radius: If you enter 2 The
area of the circle is 50.24 will be displayed on the
screen. Program 1.6 Python program to find the square
root of a number: number1=input (" Please Enter the
number: ") print "The square root of the entered
number is {0}".format (number1 ** 0.5) Output on the
screen: Please Enter the number: If you enter 4 The
square root of the entered number is 2.0 will be
displayed on the screen. 1/2=0.5 ** implies: exponent
operator number1 ** 0.5 implies: number1 ** 1/2
(which implies number1 to the power of 1/2) Program
1.7 Python program to find the square of a number
number1 = input (" Please Enter the number: ") print
"The square of the entered number is {0}".format
(number1 * number1) Output on the screen: Please
Enter the number: If you enter 4 The square of the
entered number is 16.0 will be displayed on the screen.
Program 1.8 Python program to find the incremented
and decremented values of the entered number:
number1 = input (" Please Enter the number: ") print
"The increment of the entered number is {0}".format
(number1 +1) print "The decrement of the entered
number is {0}".format (number1 - 1) Output on the
screen: Please Enter the number: If you enter 6 The
increment of the entered number is 7 The decrement of
the entered number is 5 will be displayed on the screen
What will be the output of the following programs: (a)
x = 13 if x < 10: print ("Good morning") elif x<12:
print ("Soon time for lunch") elif x<18: print ("Good
day") elif x<22: print ("Good evening") else: print
("Good night") Answer: Good day (b) n1 = [0 for i in
range (15)] print (n1) Answer: [0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0] If you replace the statement: n1 = [0 for
i in range (15)] by the statement: n1 = ["computer" for
i in range (15)] Then the output on the screen is:
['computer', 'computer', 'computer', 'computer',
'computer', 'computer', 'computer', 'computer',
'computer', 'computer', 'computer', 'computer',
'computer', 'computer', 'computer'] (c) for k in range
(1,10): print (k) Answer: 1 2 3 4 5 6 7 8 9 If the
statement: for k in range (1,10): by the statement: for k
in range (0,10): Then the output on the screen is: 0 1 2
3 4 5 6 7 8 9 If the statement: print (k) is replaced by
the statement: print ("computer") i.e., for k in range
(0,10): print ("computer") Then the output on the
screen is: computer computer computer computer
computer computer computer computer computer
computer (d) for day in
["Sunday","Monday","Tuesday","Wednesday","Thurs
day", "Friday","Saturday"]: print (day) Answer:
Sunday Monday Tuesday Wednesday Thursday Friday
Saturday (e) n = 10 sum = 0 for i in range (1,n):
 sum = sum + i print sum Answer: 45 range (1,n)
means: generate integers starting from 1 up to, but not
including, n. How the execution takes place? i=1 (sum
= 0 because the sum is initialized to 0 in the statement

sum = 0) Is i in range (1,n) true? Yes, do this sum =
sum + i = 0 +1 =1 Now i=2 (now the sum = 1) Is i in
range (1,n) true? Yes, do this sum = sum + i = 1 +2 =3
Now i=3 (now the sum = 3) Is i in range (1,n) true?
Yes, do this sum = sum + i = 3 +3 = 6 Now i=4 (now
the sum = 6) Is i in range (1,n) true? Yes, do this sum
= sum + i = 6 + 4= 10 Now i=5 (now the sum = 10) Is
i in range (1,n) true? Yes, do this sum = sum + i = 10 +
5= 15 Now i=6 (now the sum = 15) Is i in range (1,n)
true? Yes, do this sum = sum + i = 15 + 6 = 21 Now
i=7 (now the sum = 21) Is i in range (1,n) true? Yes,
do this sum = sum + i = 21 + 7 = 28 Now i=8 (now the
sum = 28) Is i in range (1,n) true? Yes, do this sum =
sum + i = 28 + 8 = 36 Now i=9 (now the sum = 36) Is i
in range (1,n) true? Yes, do this sum = sum + i = 36 +
9 = 45 stops because range (1,n) means: generate
integers starting from i=1 up to, but not including,
i=10. If you want to enter the value for n through the
keyboard, then the above program should take the
form: n =input (" Please Enter the number: ") sum = 0
for i in range (1,n): sum = sum + i print sum Output on
the screen: Please Enter the number: If you enter 10
Then 45 will be outputted on the console screen. (f) for
k in range (1,11): print ("5 x {0} = {1}".format (k,
5*k)) Answer: 5 x 1 = 5 5 x 2 = 10 5 x 3 = 15
 5 x 4 = 20 5 x 5 = 25 5 x 6 = 30 5
x 7 = 35 5 x 8 = 40 5 x 9 = 45 5 x 10 = 50
If you replace the statement: for k in range (1,11): by
the statement: for k in range (0,11): Then the output on
the screen is: 5 x 0 = 0 5 x 1 = 5 5 x 2 = 10 5 x 3 = 15
5 x 4 = 20 5 x 5 = 25 5 x 6 = 30 5 x 7 = 35 5 x 8 = 40 5
x 9 = 45 5 x 10 = 50 The Advanced
Python Linux Introduction Every desktop computer
uses an operating system. The most popular operating
systems in use today are: Windows, Mac OS, and
LINUX. Linux is the best-known notoriously reliable
and highly secure open source portable operating
system -- very much like UNIX -- that has become
very popular over the last several years -- originally
created as a labor of love by Linus Torvalds --
computer science student at the University of Helsinki
in Finland -- in the early 1990s and later developed by
more than a thousand people around the world. Linux
is fast, free and easy to use, that sits underneath all of
the other software on a computer -- runs your
computer -- handling all interactions between you and
the hardware i.e., whether you're typing a letter,
calculating a money budget, or managing your food
recipes on your computer, the Linux operating system
(similar to other Operating Systems, such as Windows
XP, Windows 7, Windows 8, and Mac OS X) provides
the essential air that your computer breathes. Linux is
the most important technology advancement of the
twenty-first century and Licensed under the General
Public License (GPL) that Linux uses ensures that the
software will always be open to anyone and whose

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

188

source code is open and available for any user to
review, which makes it easier to identify and repair
vulnerabilities and it power the laptops, development
machines and servers at Google, Facebook, Twitter,
NASA, and New York Stock Exchange, just to name a
few. Linux has many more features to amaze its users
such as: Live CD/USB, Graphical user interface (X
Window System) etc. Why LINUX? Although
Microsoft Windows (which is the most likely to be the
victim of viruses and malware) has made great
improvements in reliability in recent years, it is
considered less reliable than Linux. Linux is
notoriously reliable and secure and it is free from
constant battling viruses and malware (which may
affect your desktops, laptops, and servers by
corrupting files, causing slow downs, crashes, costly
repairs and taking over basic functions of your
operating system) and it keep yourself free from
licensing fees i.e., zero cost of entry... as in free. You
can install Linux on as many reliable computer
ecosystems on the planet as you like without paying a
cent for software or server licensing. While Microsoft
Windows usually costs between $99.00 and $199.00
USD for each licensed copy and fear of losing data.
Below are some examples of where Linux is used
today: Android phones and tablets Servers TV,
Cameras, DVD players, etc. Amazon Google U.S.
Postal service New York Stock Exchange Basic
LINUX COMMANDS $date display date and time
$cal display calendar $date & cal display date,
time and calendar $cal 8 2016 display August month
2016 year calendar $clear clear the screen $exit exit
and get to login page $free displays information about
RAM and swap space usage, showing the total and the
used amount in both categories $free -b displays the
output in bytes $free -k displays the output in kilobytes
$free -m displays the output in megabytes $passwd
change password $uname display the name of the
current operating system $echo "Hello World" print
the word Hello World $hostname display the Kernel
version $echo " my username is $USER " print the
output: my username is root $shutdown shutdown the
operating system $logname display the username
$whoami display the username The
commands:$logname and$whoami display the
username $echo 'a =20; b =64; print (a+b)' | python
print the output: 84 $echo 'a =56; b =2; print (a / b)' |
python print the output: 28 $echo 'a =6; b =2; print (a *
b)' | python print the output: 12 $echo 'a =6; b =2; print
(a - b)' | python print the output: 4 $echo 'a =5; print
(pow (a,2))' | python print the output: 25 $echo 'a =4;
print (format (a**0.5)) ' | python print the output: 2.0
(find square root) $date -- set 1998-11-02 to set current
date as 02 Nov 1988 $date -- set 12:11:02 to set
current time as 12:11:02 IST $printf "hi computer"
print the output: hi computer $du display the

information of disk usage of files and directories $who
display the user details $ifconfig view and change the
configuration of the network interfaces on your system
$pwd display the present working directory $uname -a
display the system architecture information $hostname
-i display the IP address of the hostname $ls display
the list of files $ps display the process information
$uptime display the system running information
$netstat -a display all ports (both TCP and UDP)
$netstat -at display only TCP (Transmission Control
Protocol) port connections $netstat -au display only
UDP (User Datagram Protocol) port connections
$netstat -I display all active listening ports connections
$netstat -It display all active listening TCP ports
$netstat -lu display all active listening UDP ports
$netstat -lx display all active UNIX listening ports
$ifconfig display all the active interfaces details
$ifconfig -a display information of all network
interfaces $df displays information about the total disk
space, the disk space currently in use, and the free
space on all the mounted drives $df -H display the
number of occupied blocks in gigabytes, megabytes, or
kilobytes $du -a displays the size of each individual
file $du -s displays only the calculated total size $top
provides a quick overview of the currently running
processes $shutdown -h now shutdown the system and
turn the power off immediately $shutdown -h +10
shutdown the system after 10 minutes While lots of
organizations, corporations, and individuals have
already been convinced for 20 years now that this is
the way to go -- private users, training companies,
universities, research centers, and commercial vendors
needed applications like the Internet to make them
realize they can profit from Open Source. Now Linux
(successfully being used by several millions of users
worldwide) has grown past the stage where it was
almost exclusively an academic system, useful only to
a handful of people with a technical background. It
provides more than the operating system: there is an
entire infrastructure supporting the chain of effort of
creating an operating system, of making and testing
programs for it, of bringing everything to the users, of
supplying maintenance, updates and support and
customizations, runs on numerous different platforms
including the Intel and Alpha platform. Today, Linux
is ready to accept the challenge of a fast-changing
world to do various types of operations, call
application programs etc. PHP (Hypertext
Preprocessor) PHP / Hypertext Preprocessor (designed
by an Greenlandic-Danish programmer "Rasmus
Lerdorf" in 1994 as an efficient alternative to other
scripting languages like Ruby, Perl and Microsofts
ASP) is an relatively free (not licensed by a major
corporation) popular efficient server side programming
language (and relatively easy one to master and quick
to learn) that carries out common website duties like

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

189

accepting passwords, authenticating users, and
managing forum posts and guest books. A simple PHP
program to print the word "Hello World!" on screen:
<?php echo "Hello World!";?> In the above example:
<?php and?>denote: opening and closing tags within
which the execution of php codes takes place. echo
"Hello World!"; denote: the statement that makes
provision to print the output: Hello World! on the
screen. Even If you replace the statement: echo "Hello
World!"; by the statement: print "Hello World!"; i.e.,
<?php print "Hello World!";?> There will be no
change in the output on the screen (i.e., echo and print
are more or less the same. They are both used to
output data to the console screen). If replace the
opening tag <?php by <? Then the output on the screen
is: <? print "Hello World!"; ?> i.e., the entire
program will be reflected on the console screen. Even
if you write the statement: print ("Hello World!");
instead of the statement: print "Hello World!"; There
will be no change in the output on the screen. Note:
Even if youomitthe closing tag?> in the above
program. There will be no change in the output on the
screen. But sometimes it reflects error. So omission
of?>is discouraged. Program 1.1 a) <?php echo "Hello
World!"; echo "Hello World!";?> Output on the screen:
Hello World!Hello World! b) <?php echo "\n Hello
World!"; echo "\n Hello World!";?> Output on the
screen: Hello World! Hello World! c) <?php
echo "Hello World!"; echo "\t Hello World!";?>
Output on the screen: Hello World! Hello World!
Program 1.2 PHP program to add two numbers: <?php
$num1 =1; $num2=5; $sum = $num1 + $num2; echo
"Sum of the two numbers is: $sum";?> Output on the
screen: Sum of the two numbers is: 6 Equal sign
implies: storage operator. The statements: $num1 =1;
$num2=5; $sum = $num1 + $num2; imply: that we are
creating the variables $num1, $num2 and $sum and
storing the values for created variables (i.e., 1 for
$num1, 5 for $num1 and $sum for $num1 + $num2).
The statement: echo "Sum of the two numbers is:
$sum"; make provision to print the output: Sum of the
two numbers is: 6 (which is 1+5) on the screen. Note:
Suppose if you omit the $ symbol before a variable
name (whose purpose is to make it clear that the word
following the symbol $ is a variable the symbol
$ distinguishes variables from other things) in the
above program i.e., if you rewrite the above program
as: <?php num1 = 1; num2=5; sum = num1 + num2;
echo "Sum of the two numbers is: sum";?> Then PHP
Parse error: syntax error, unexpected '=' will be
displayed on the console screen. If you want to supply
the integer values for $num1 and $num2 through the
key board, then the statements: $num1 =1; $num2=5;
should be replaced by the statements: echo "Please
enter the first number: "; fscanf (STDIN, %d\n,
$num1); echo "Please enter the second number: ";

fscanf (STDIN, %d\n, $num2); i.e., <?php echo
"Please enter the first number: "; fscanf (STDIN,
"%d\n", $num1); echo "Please enter the second
number: "; fscanf (STDIN, "%d\n", $num2); $sum =
$num1 + $num2; echo "Sum of the two numbers is:
$sum";?> Output on the screen: Please enter the first
number: If you enter 5 Please enter the second number:
If you enter 6 Sum of the two numbers is: 11 will be
outputted on the screen. fscanf (STDIN, "%d\n",
$num1); denote: the statement that make provision to
enter a integer value for $num1 through the keyboard.
fscanf (STDIN, "%d\n", $num2); denote: the statement
that make provision to enter a integer value for $num2
through the keyboard. Format string %d in the
statement: fscanf (STDIN, "%d\n", $num1); or in the
statement: fscanf (STDIN, "%d\n", $num2); tells the
input function fscanf () to read the number entered
through the keyboard (which is a integer) and STDIN
(which stands for Standard input) means feed the
number entered through the keyboard into the program.
If you want to enter the floating values (say 1.6
& 1.9) for $num1 and $num2, then your program
should take the form: <?php echo "Please enter the
first number: "; fscanf (STDIN, "%f\n", $num1); echo
"Please enter the second number: "; fscanf (STDIN,
"%f\n", $num2); $sum = $num1 + $num2; echo "Sum
of the two numbers is: $sum";?> Output on the screen:
Please enter the first number: If you enter 1.6 Please
enter the second number: If you enter 1.9 Sum of the
two numbers is: 3.5 will be outputted on the screen.
Program 1.3 PHP program to subtract two numbers:
<?php $num1 =5; $num2=1; $sub = $num1 - $num2;
echo "difference of the two numbers is: $sub";?>
Output on the screen: difference of the two numbers is:
4 Program 1.4 PHP program to divide two numbers:
<?php $num1 =6; $num2=2; $div = $num1 / $num2;
echo "the division of two numbers is: $div";?> Output
on the screen: the division of two numbers is: 3
Program 1.5 PHP program to multiply two numbers:
<?php $num1 = 6; $num2 = 2; $mult = $num1 *
$num2; echo "the product of two numbers is:
$mult";?> Output on the screen: the product of
two numbers is: 12 Program 1.6 PHP program to find
the area of a circle: <?php $radius = 2.0; $pi = 3.14159;
$area = $pi * $radius * $radius; echo ("\n radius =
$radius centimeter"); echo ("\n area = $area centimeter
square");?> Output on the screen: radius = 2
centimeter area = 12.56636 centimeter square Program
1.7 PHP program to find the square root of a number
<?php $num1 = 4.0; $num2 = sqrt ($num1); echo
("The square root of a number = $num2");?> Output
on the screen: The square root of a number = 2
Program 1.8 PHP program to find the square of a
number <?php $num1 = 2.0; $num2 = $num1 * $num1;
echo ("\n the square of a number = $num2");?> Output
on the screen: the square of a number = 4 If the

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

190

statement: $num2 = $num1 * $num1; is replaced by:
$num2 = pow (($num1), 2); i.e., if the above program
is rewritten as: <?php $num1 = 2.0; $num2 = pow
(($num1), 2); echo ("\n the square of a number =
$num2");?> Then there will be no change in the output
on the screen i.e., the square of a number = 4 will be
outputted on the screen. Which means: $num2 = pow
(($num1), 2); is the same as $num2 = $num1 * $num1;
Program 1.9 PHP program to find the cube root of a
number <?php $num1 = 6.0; $num2 = pow (($num1),
1/3); echo ("\n the cube root of a number =
$num2");?> Output on the screen: the cube root of a
number = 1.8171205928321 Program 2.0 PHP
program to round off a number <?php $num1 = 4.5;
$num2 = round ($num1); echo ("\n the round off of a
number = $num2");?> Output on the screen: the round
off of a number = 5 Program 2.1 PHP program to find
the incremented and decremented values of two
numbers. <?php $num1 =2; $num2=3; $num3 =
$num1 +1; $num4 = $num1 - 1; $num5 = $num2 +1;
$num6 = $num2 - 1; echo ("\n The incremented value
of $num1 = $num3 "); echo ("\n The decremented
value of $num1 = $num4 "); echo ("\n The
incremented value of $num2 = $num5 "); echo ("\n
The decremented value of $num2 = $num6 ");?>
Output on the screen: The incremented value of 2 = 3
The decremented value of 2 = 1 The incremented
value of 3 = 4 The decremented value of 3 = 2
Program 2.2 PHP program to find the greatest of two
numbers using if else statement The syntax of if else
statement is: if (this condition is true) { print this
statement; } else { print this statement; } <?php $x =
4.5; $y=5; if ($x>$y){ echo (" x is greater than y"); }
else { echo (" y is greater than x"); }?> Output on the
screen: y is greater than x Note: if the above program
is rewritten as: <?php $x = 4.5; $y=5; if ($x>$y){ echo
(" $x is greater than $y"); } else { echo (" $y is greater
than $x"); }?> Then the output on the screen: 5 is
greater than 4.5 Program 2.3 PHP program to find the
greatest of three numbers using if else if else statement
The syntax of if else if else statement is: if (this
condition is true) { print this statement; } else if (this
condition is true) { print this statement; } else { print
this statement; } <?php $x = 4.5; $y = 5; $z = 6; if
($x > $y & & $x > z){ echo (" $x is greater than
$y and $z"); } else if ($y>$z & & $y>x){ echo
(" $y is greater than $x and $z"); } else { echo (" $z is
greater than $x and $y"); }?> Output on the screen: 6
is greater than 4.5 and 5 Program 2.4 PHP program to
print the first ten natural numbers using for loop
statement <?php for ($i=1; $i<=10; $i++) echo (" \n
$i");?> Output on the screen: 1 2 3 4 5 6 7 8 9 10 for
($i=1; $i<=10; $i++) denote the for loop statement for
PHP and the syntax of the for loop statement is: for
(initialization; condition; increment) Here: $i=1 denote
initialization (i.e., from where to start) $i<=10 denote

the condition (i.e., stop when the number 10 is reached)
$i++ imply increment (which tells the value of $i to
increase by 1 each time the loop is executed) and $i++
is the same as $i+1. Since the initialization i.e., $i=1
The statement: echo (" \n $i"); make provision to print
the output: 1 on the screen. After this, the following
execution takes place: Now, $i= 1 Is the condition
($i<=10) is true? Yes because $i=1 Do this $i= 1+1 =
2 The statement echo (" \n $i"); make provision to
print the output: 2 Now, $i= 2 Is the condition ($i<=10)
is true? Yes because $i=2 Do this $i= 2+1 = 3 The
statement echo (" \n $i"); make provision to print the
output: 3 Now, $i= 3 Is the condition ($i<=10) is true?
Yes because $i=3 Do this $i= 3+1 = 4 The statement
echo (" \n $i"); make provision to print the output: 4
Now, $i= 4 Is the condition ($i<=10) is true? Yes
because $i=4 Do this $i= 4+1 = 5 The statement echo
(" \n $i"); make provision to print the output: 5 Now,
$i= 5 Is the condition ($i<=10) is true? Yes because
$i=5 Do this $i= 5+1 = 6 The statement echo (" \n $i");
make provision to print the output: 6 Now, $i= 6 Is the
condition ($i<=10) is true? Yes because $i=6 Do this
$i= 6+1 = 7 The statement echo (" \n $i"); make
provision to print the output: 7 Now, $i= 7 Is the
condition ($i<=10) is true? Yes because $i=7 Do this
$i= 7+1 = 8 The statement echo (" \n $i"); make
provision to print the output: 8 Now, $i= 8 Is the
condition ($i<=10) is true? Yes because $i=8 Do this
$i= 8+1 = 9 The statement echo (" \n $i"); make
provision to print the output: 9 Now, $i= 9 Is the
condition ($i<=10) is true? Yes because $i=9 Do this
$i= 9+1 = 10 The statement echo (" \n $i"); make
provision to print the output: 10 stop because the
condition $i<=10 is achieved. If you replace the
statement for ($i=1; $i<=10; $i++) by the statement
for ($i=1; $i==10; $i++) Then there will be no display
of output on the screen. If the statement for ($i=1;
$i<=10; $i++) is replaced by the statement for ($i=1;
$i=10; $i++) Then the output on the screen is: 10 10
10 10 10 10 10 10 10 10 10 10 10 continues Program
2.5 PHP program to print the first ten natural numbers
using while loop statement The syntax of while loop
statement is: while (this is the condition) { execute this
statement; } <?php $i = 1; while ($i <= 10) { echo "\n
$i "; $i++; }?> Output on the screen: 1 2 3 4 5 6 7 8 9
10 Program 2.6 PHP program to print the first nine
natural numbers using do while loop statement The
syntax of do while loop statement is: do { execute this
statement; } while (this is the condition); <?php $i = 1;
do { echo "\n $i "; $i++; } while ($i <= 9);?> Output
on the screen: 1 2 3 4 5 6 7 8 9 Program 2.7 PHP
program to print the average of the first10 numbers
using for loop statement <?php $i; $avg; $sum = 0; for
($i=1; $i<=10; $i++) $sum = $sum + $i; $avg =
$sum/10; echo "\n sum of the first 10 numbers = $sum
"; echo"\n average of the first 10 numbers = $avg ";?>

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

191

Output on the screen: sum of the first 10 numbers = 55
average of the first 10 numbers = 5.5 Program 2.8
Switch case method a) <?php $ch ='3'; switch ($ch)
{ case '1': echo "Red"; break; case '2': echo "White";
break; case '3': echo "Yellow"; break; case '4': echo
"Green"; break; default: echo "Error"; break; }?>
Output on the screen: Yellow b) <?php $ch ='birds';
switch ($ch) { case 'animal': echo "elephant"; break;
case 'reptiles': echo "crocodile"; break; case 'birds':
echo "parrot"; break; case 'mammals': echo "cow";
break; default: echo "Error"; break; }?> Output on the
screen: parrot Program 2.9 Addition of two numbers
using PHP function <?php function addition ($a, $b)
{ return $a + $b; } $sum = addition (4, 3); echo "the
sum of two numbers = $sum ";?> Output on the screen:
the sum of two numbers = 7 JavaScript JavaScript /
Jscript (designed by an American technologist
andco-founder of the Mozilla project, the Mozilla
Foundation, and the Mozilla Corporation "Brendan
Eich" and it was developed under the name Mocha, the
language was officially called LiveScript when it first
shipped in beta releases of Netscape Navigator 2.0 in
September 1995, but it was renamed JavaScript) is an
relatively popular object-oriented scripting interpreted
programming language embedded in high level
programming language of Hypertext Markup
Language (the language that websites are rendered in
and basically, everything you and your readers see on
the "front-end" is HTML), commonly abbreviated as
HTML pages primarily used to design interactive
websites with dynamic content and perform functions
that the HTML cannot do, because of its reliability,
simplicity and easy to understand, easy to use, write,
modify and debug and quick to learn. A Simple
JavaScript program to print the word "Hello World!"
on screen: <!DOCTYPE html> <html> <body>
<script> document.write ("Hello World!"); </script>
</body> </html> In the above example: <!DOCTYPE
html> <html> <body> </body> </html> denote:
HTML document and <script> document.write ("Hello
World!"); </script> denote JavaScript code to print out
the string Hello World! on the screen. In the above
example, document.write () denote function or method
which print out the string Hello World! on the console
screen. If you fail to include the tag <script>
</script>in the above example i.e., <!DOCTYPE
html> <html> <body> document.write ("Hello
World!"); </body> </html> Then document.write
("Hello World!"); will be outputted on the screen
instead of Hello World!. If you replace the text within
the double quotation marks by the word hello i.e.,
<!DOCTYPE html> <html> <body> document.write
("hello"); </body> </html> Then the output on the
screen is: hello Note: Even if you write <SCRIPT>
</SCRIPT> instead of <script> </script>. There will
be no change in the output on the screen. But if you

write Document.write ("hello"); instead of
document.write ("hello"); There will be no display of
the output on the screen. Even if you replace the tag:
<script> by: <script type="text/javascript"> i.e.,
<!DOCTYPE html> <html> <body> <script
type="text/javascript"> document.write ("Hello
World!"); </script> </body> </html> There will be no
change in the output on the screen i.e., Hello World
will be displayed on the console screen. Program 1.1 a)
<!DOCTYPE html> <html> <body> <script>
document.write ("Hello World!"); document.write
("Hello World!"); </script> </body> </html> Output
on the screen: Hello World!Hello World! b)
<!DOCTYPE html> <html> <body> <script>
document.write ("\n Hello World!"); document.write
("\n Hello World!"); </script> </body> </html>
Output on the screen: Hello World! Hello World! c)
<!DOCTYPE html> <html> <body> <script>
document.write ("
Hello World!</br>");
document.write ("Hello World!"); </script> </body>
</html> Output on the screen: Hello World! Hello
World! d) <!DOCTYPE html> <html> <body>
<script> document.write ("
Hello World!</br>");
document.write ("
Hello World!</br>"); </script>
</body> </html> Output on the screen: Hello World!
Hello World! e) <!DOCTYPE html> <html> <body>
<script> document.write ("
Hello
World!</br>"); document.write ("
Hello
World!</br>"); </script> </body> </html> Output on
the screen: Hello World! Hello World! f)
<!DOCTYPE html> <html> <body> <script>
document.write ("<i>
Hello
World!</br></i>"); document.write ("
Hello
World!</br>"); </script> </body> </html> Output on
the screen: Hello World! Hello World! Program 1.2
JavaScript program to add two numbers: <!DOCTYPE
html> <html> <body> <p>A typical addition
operation adds two numbers and produces a new
number.</p> <script> var x; var y; var z; x =100; y =
200; z = x+ y; document.write (" The sum of two
numbers is: " + z); </script> </body> </html>
Output on the screen: A typical arithmetic operation
takes two numbers and produces a new number. The
sum of two numbers is: 300 The statements: var x; var
y; var z; imply: that we are creating the variables x, y
 & z. Equal sign implies: storage operator The
statements: x=100; y = 200; z = x+ y; imply: that we
are storing the values to the created variables (i.e., we
are storing the value 100 for x and 100 for y and x + y
for z). The statement: document.write (" The sum of
two numbers is: " + z); make provision to print the
output: The sum of two numbers is: 200 on the screen.
In the statement: document.write (" The sum of two
numbers is: " + z); There are two strings: The sum
of two numbers is: z plus operator (+) functions as the
concatenation operator (concatenation means

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

192

connecting two statements to produce a single
statement) which (here) concatenates the string: "The
sum of two numbers is: " and the string: "z (which is
100+ 100 =200) " -- producing a String statement The
sum of two numbers is: 200, which is displayed on the
screen as the result. The statement: <p>A typical
addition operation adds two numbers and produces a
new number.</p> make provision to print the output:
A typical arithmetic operation takes two numbers and
produces a new number. on the screen. Note: If the
statement: <p>A typical addition operation adds two
numbers and produces a new number.</p> is replaced
by the statement: <h1>A typical addition operation
adds two numbers and produces a new number.</h1>
Then the output on the screen is: A typical arithmetic
operation takes two numbers and produces a new
number. The sum of two numbers is: 200 Program 1.3
JavaScript program to subtract two numbers:
<!DOCTYPE html> <html> <body> <h1>A typical
subtraction operation subtracts two numbers and
produces a new number.</h1> <script> var x; var y;
var z; x=300; y = 200; z = x- y; document.write (" The
difference of two numbers is: " + z); </script>
</body> </html> Output on the screen: A typical
subtraction operation subtracts two numbers and
produces a new number. The difference of two
numbers is: 100 Program 1.4 JavaScript program to
divide two numbers: <!DOCTYPE html> <html>
<body> <p>A typical division operation divides two
numbers and produces a new number.</p> <script>
var x; var y; var z; x=300; y = 200; z = x/ y;
document.write (" The division of two numbers is: "
+ z); </script> </body> </html> Output on the screen:
A typical division operation divides two numbers and
produces a new number. The division of two numbers
is: 1.5 Program 1.5 JavaScript program to multiply
two numbers: <!DOCTYPE html> <html> <body>
<p>A typical multiplication operation multiplies two
numbers and produces a new number.</p> <script>
var x; var y; var z; x=300; y = 200; z = x* y;
document.write (" The multiplication of two numbers
is: " + z); </script> </body> </html> Output on the
screen: A typical multiplication operation multiplies
two numbers and produces a new number. The
multiplication of two numbers is: 60000 Program 1.6
JavaScript program to find the area of a circle
<!DOCTYPE html> <html> <body> <script> var r;
var area; r=3; area = 4*3.14* r* r; document.write ("
The area of the circle is: " + area +"\n centimeter
square"); </script> </body> </html> Output on the
screen: The area of the circle is: 113.03999999999999
centimeter square Program 1.7 JavaScript program to
find the square root of a number <!DOCTYPE html>
<html> <body> <script> var x; var z; x=4; z =
Math.sqrt (x); document.write (" The square root of a
number z is: " + z); </script> </body> </html> Output

on the screen: The square root of a number z is: 2
Program 1.8 JavaScript program to find the square of a
number <!DOCTYPE html> <html> <body> <script>
var x; var z; x=4; z = x*x; document.write (" The
square of a number z is: " + z); </script> </body>
</html> Output on the screen: The square of a number
z is: 16 If the statement: z = x*x; is replaced by: z =
Math.pow ((x), 2); i.e., if the above program is
rewritten as: <!DOCTYPE html> <html> <body>
<script> var x; var z; x=4; z = Math.pow ((x), 2);
document.write (" The square of a number z is: " + z);
</script> </body> </html> Then there will be no
change in the output on the screen i.e., The square of a
number z is: 16 will be outputted on the screen. Which
means: z = pow ((x), 2); is the same as z = x*x;
Program 1.9 JavaScript program to find the cube root
of a number <!DOCTYPE html> <html> <body>
<script> var x; var z; x=4; z = Math.cbrt (x);
document.write (" The cube root of a number z is: " +
z); </script> </body> </html> Output on the screen:
The cube root of a number z is: 1.5874010519681996
Program 2.0 JavaScript program to round off a number
<!DOCTYPE html> <html> <body> <script> var x;
var z; x=4.5; z = Math.round (x); document.write ("
The round off a number z is: " + z); </script> </body>
</html> Output on the screen: The round off a number
z is: 5 Program 2.1 JavaScript program to find the
incremented and decremented values of two numbers.
<!DOCTYPE html> <html> <body> <script> var x;
var y; var z; var p; var a; var b; x=4; y=6; z=x+1;
p=x-1; a = y+1; b= y-1; document.write (" The
incremented value of x is: " + z); document.write ("
The decremented value of x is: " + p); document.write
(" The incremented value of y is: " + a);
document.write (" The decremented value of y is: " +
b); </script> </body> </html> Output on the screen:
The incremented value of x is: 5 The decremented
value of x is: 3 The incremented value of y is: 7 The
decremented value of y is: 5 Program 2.2 JavaScript
program to find the greatest of two numbers using if
else statement The syntax of if else statement is: if
(this condition is true) { print this statement using
document.write function; } else { print this statement
using document.write function; } <!DOCTYPE html>
<html> <body> <script> var x; var y; x=4; y=6; if
(x>y){ document.write (" x is greater than y"); } else
{ document.write (" y is greater than x"); } </script>
</body> </html> Output on the screen: y is greater
than x Program 2.3 JavaScript program to find the
greatest of three numbers using if else if else statement
The syntax of if else if else statement is: if (this
condition is true) { print this statement using
document.write function; } else if (this condition is
true) { print this statement using document.write
function; } else { print this statement using
document.write function; } <!DOCTYPE html>

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

193

<html> <body> <script> var x; var y; var z; x=4; y=6;
z=12; if (x>y & & x>z){ document.write (" x is
greater than y and z"); } else if (y>x & & y>z)
{ document.write (" y is greater than x and z"); } else
{ document.write (" z is greater than x and y"); }
</script> </body> </html> Output on the screen: z is
greater than x and y Program 2.4 JavaScript program
to print the first ten natural numbers using for loop
statement <!DOCTYPE html> <html> <body>
<script> var i; for (i=1; i<=10; i++) document.write
("" + i); </script> </body> </html> Output on the
screen: 1 2 3 4 5 6 7 8 9 10 for (i=1; i<=10; i++)
denote the for loop statement and the syntax of the for
loop statement is: for (initialization; condition;
increment) Here: i=1 denote initialization (i.e., from
where to start) i<=10 denote the condition (i.e., stop
when 10 is reached) i++ imply increment (which tells
the value of i to increase by 1 each time the loop is
executed) and i++ is the same as i+1. Since the
initialization i.e., i=1 The statement document.write
("" + i); make provision to print the output: 1 on the
screen. After this, the following execution takes place:
i= 1 Is the condition (i<=10) is true? Yes because i=1
Do this i= 1+1 = 2 The statement document.write ("" +
i); make provision to print the output: 2 Now, i= 2 Is
the condition (i<=10) is true? Yes because i=2 Do this
i= 2+1 = 3 The statement document.write ("" + i);
make provision to print the output: 3 Now, i= 3 Is the
condition (i<=10) is true? Yes because i=3 Do this i=
3+1 = 4 The statement document.write ("" + i); make
provision to print the output: 4 Now, i= 4 Is the
condition (i<=10) is true? Yes because i=4 Do this i=
4+1 = 5 The statement document.write ("" + i); make
provision to print the output: 5 Now, i= 5 Is the
condition (i<=10) is true? Yes because i=5 Do this i=
5+1 = 6 The statement document.write ("" + i); make
provision to print the output: 6 Now, i= 6 Is the
condition (i<=10) is true? Yes because i=6 Do this i=
6+1 = 7 The statement document.write ("" + i); make
provision to print the output: 7 Now, i= 7 Is the
condition (i<=10) is true? Yes because i=7 Do this i=
7+1 = 8 The statement document.write ("" + i); make
provision to print the output: 8 Now, i= 8 Is the
condition (i<=10) is true? Yes because i=8 Do this i=
8+1 = 9 The statement document.write ("" + i); make
provision to print the output: 9 Now, i= 9 Is the
condition (i<=10) is true? Yes because i=9 Do this i=
9+1 = 10 The statement document.write ("" + i); make
provision to print the output: 10 stop because the
condition i<=10 is achieved. If you replace the
statement: for (i=1; i<=10; i++) by the statement: for
(i=1; i==10; i++) Then there will be no display of
output on the screen. If the statement: document.write
("" + i); is replaced by the statement document.write
(
</br> + i); Then the output on the screen is: 1 2 3
4 5 6 7 8 9 10 What will be the output of the following

program: <!DOCTYPE html> <html> <body>
<script> var i; for (i=1; i<=10; i++) document.write
("
 javascript </br>"); </script> </body> </html>
Answer: javascript javascript javascript javascript
javascript javascript javascript javascript javascript
javascript Program 2.5 JavaScript program to print the
first ten natural numbers using while loop statement
The syntax of while loop statement is: while (this is
the condition) { execute this statement; }
<!DOCTYPE html> <html> <body> <script> var i=1;
while (i<=10) document.write ("" + i++); </script>
</body> </html> Output on the screen: 1 2 3 4 5 6 7 8
9 10 Program 2.6 JavaScript program to print the first
nine natural numbers using do while loop statement
The syntax of do while loop statement is: do { execute
this statement; } while (this is the condition);
<!DOCTYPE html> <html> <body> <script> var i=1;
do{ document.write ("" + i++); } while (i<10)
</script> </body> </html> Output on the screen: 1 2 3
4 5 6 7 8 9 Program 2.7 JavaScript program to print
the average of the first10 numbers using for loop
statement <!DOCTYPE html> <html> <body>
<script> var i, avg, sum = 0; for (i=1; i<=10; i++) sum
= sum + i; avg = sum/10; document.write ("
 sum
of the first 10 numbers = </br>" + sum);
document.write ("
 average of the first10 numbers
= </br>" + avg); </script> </body> </html> Output on
the screen: sum of the first 10 numbers = 55 average of
the first10 numbers = 5.5 Program 2.8 Switch case
method a) <!DOCTYPE html> <html> <body>
<script> var ch ='2'; switch (ch) { case '1':
document.write ("Red"); break; case '2':
document.write ("White"); break; case '3':
document.write ("Yellow"); break; case '4':
document.write ("Green"); break; default:
document.write ("Error"); break; } </script> </body>
</html> Output on the screen: White b) <!DOCTYPE
html> <html> <body> <script> var ch ='animal';
switch (ch) { case 'animal': document.write
("elephant"); break; case 'reptiles': document.write
("crocodile"); break; case 'birds': document.write
("parrot"); break; case 'mammals': document.write
("cow"); break; default: document.write ("Error");
break; } </script> </body> </html> Output on the
screen: elephant Program 2.9 Addition of two numbers
using JavaScript function <!DOCTYPE html> <html>
<body> <script> function addition (a, b) { return a +
b; } document.write ("" + addition (4, 3)); </script>
</body> </html> Output on the screen: What is the
mistake in the following program: <!DOCTYPE html>
<html> <body> <script> function addition (a, b)
{ return a % b; } document.write ("" + function (4, 3));
</script> </body> </html> Answer: There is mistake
in the above program. return a % b; is written instead
of: return a + b; The program: <html> <head> <script>
function addNumbers () { var x = parseInt

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

194

(document.getElementById ("value1").value); var y =
parseInt (document.getElementById ("value2").value);
var z = document.getElementById ("answer"); z.value
= x + y; } </script> </head> <body> value1 = <input
type ="text" id="value1"/> value2 = <input type
="text" id="value2"/> <input type="button"
value="Click here" onclick="addNumbers ()"/>
Answer = <input type="text" id = "answer"/> </body>
</html> Corresponds to the output: The above
program demonstrates how to get two inputs from the
user (i.e., value1 and value2) and have a button (i.e.,
click here) on the page to call a function: function
addNumbers () to process the inputs and output the
answer on the web screen. var x = parseInt
(document.getElementById ("value1").value); denote:
that we are creating the variable x and assigning it a
value = parseInt (document.getElementById
("value1").value) parseInt (document.getElementById
("value1").value) get the value (i.e., get the integer
value) for x entered in the input field which is defined
with id value1. parseInt (document.getElementById
("value2").value) get the value (i.e., get the integer
value) for y entered in the input field which is defined
with id value2. After entering the values for x and y in
the input fields you click on the button click here after
button click "on click" in the statement: <input
type="button" value="Click here"
onclick="addNumbers ()"/> call the function
addNumbers () within which var z =
document.getElementById ("answer"); z.value = x + y;
is executed i.e., the entered values for x and y are
added and the answer is entered in the input field
which is defined with id answer. Note: if you want to
enter the floating values (say if you want enter 1.63
 & 1.569) for x and y in the input fields, then
you need to replace the statements: var x = parseInt
(document.getElementById ("value1").value); var y =
parseInt (document.getElementById ("value2").value);
in the above program by the statements: var x =
parseFloat (document.getElementById
("value1").value); var y = parseFloat
(document.getElementById ("value2").value); i.e.,
<html> <head> <script> function addNumbers () { var
x = parseFloat (document.getElementById
("value1").value); var y = parseFloat
(document.getElementById ("value2").value); var z =
document.getElementById ("answer"); z.value = x +
y; } </script> </head> <body> value1 = <input
type="text" id="value1"/> value2 = <input type="text"
id="value2"/> <input type="button" value="Click
here" onclick="addNumbers ()"/> Answer = <input
type="text" id = "answer"/> </body> </html> What
will be the output of the following programs: a)
<html> <head> <script> function area () { var r =
parseFloat (document.getElementById
("value1").value); var a = document.getElementById

("answer"); a.value = 4*3.14* r* r; } </script>
</head> <body> radius = <input type="text"
id="value1"/> <input type="button" value="Click
here" onclick="area ()"/> Area of the circle = <input
type="text" id = "answer"/> </body> </html> Answer:
b) <html> <head> <script> function ifelse () { var x =
parseInt (document.getElementById ("value1").value);
var y = parseInt (document.getElementById
("value2").value); var z = parseInt
(document.getElementById ("value3").value); if (x>y
 & & x>z) { document.write (" x is
greater than y and z"); } else if (y>x & & y>z)
{ document.write (" y is greater than x and z"); } else
{ document.write (" z is greater than x and y"); } }
</script> </head> <body> x = <input type="text"
id="value1"/> y = <input type="text" id="value2"/> z
= <input type="text" id="value3"/> <input
type="button" value="Click here" onclick="ifelse
()"/> </body> </html> Answer: c) <html> <head>
<script> function switchcase () { var ch = parseInt
(document.getElementById ("value1").value); switch
(ch) { case 1: document.write ("Red"); break; case 2:
document.write ("White"); break; case 3:
document.write ("Yellow"); break; case 4:
document.write ("Green"); break; default:
document.write ("Error"); break; } } </script> </head>
<body> ch = <input type="text" id="value1"/> <input
type="button" value="Click here"
onclick="switchcase ()"/> </body> </html> Answer:
The difference between Java and JavaScript Both Can
Run in a Browser. But JavaScript program is often
faster, sometimes almost instant. Java programs take a
little bit of time (several seconds or more) to process.
Java programs consumes a lot of computer memory to
function properly, which can cause a computer to slow
down or another program to operate more slowly
while JavaScript programs uses less memory (very
little in some cases) to do its processing and function
properly. JavaScript contains a much smaller and
simpler set of commands than does Java. It is easier
and faster for the average beginner to understand and
learn. Java codes is typically written in an Integrated
Development Environment (IDE) and compiled into
class files and then to byte codes and then executed by
JVM (Java Virtual Machine) -- while JavaScript code
is directly executed by browser. One more difference
which comes from this fact is that, Java is run inside
Java Virtual Machine and needs Java Development Kit
or Java Runtime Environment for running, on the other
hand JavaScript runs inside browser and almost every
modern browser (such as Chrome, Mozilla) supports
JavaScript. Operating System: A well-defined set of
instructions in the form of statements that is installed
into the computer which provide instructions for
computer how to operate (i.e., how to receive the raw
data through input devices (like key board, mouse etc.),

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

195

process the input data through processing device called
CPU (Central Processing Unit) and store the processed
data (in information storage devices like hard disks)
and display the processed data through output devices
(like monitor, printer etc.)). A well-defined instruction
is called a code and a well-defined set of instructions
constitute a program (i.e., compilation of codes gives a
program). For example: word is a code and a
paragraph is a program (i.e., compilation of words
gives a paragraph). Examples of Operating system (a
well-defined set of instructions that is installed into the
computer which provide instructions for computer
how to operate) are: DOS (Disk operating system
developed by Bill Gates and Paul Allen in 1980 for
IBM PCs), Linux (operating system developed by
Linus Torvalds at the University of Helsinki with the
assistance of developers around the world), Windows
NT, 95 & 2000 (developed by Microsoft
corporation for PC), UNIX (developed by AT & T
Bell Laboratories, Murray Hill, New Jersey) etc.
Drivers: A well-defined set of instructions (what we
call programs or software) that is installed into
computer and stored in the form of files in the
computer that allows the computer to communicate
with its hardware components (i.e., hardware
components like mouse, key board, printer etc.).
Without drivers, the computer cannot communicate
with its hardware components as a result a mouse,
keyboard, or a printer wont work properly. Domain
name: If we type www.google.com (which is called
the domain name) in the browser, then the domain
name is sent to DNS (domain name system) where the
domain namewww.google.com is converted to IP
address 74.125.224.72 (because website / web pages
are only identified by their IP address in the server)
and this IP Address is sent to the web server (a system
that acts like a data center from where the required
information (i.e., web page of google.com) is taken
and sent to the browser and the www.google.com web
page is displayed in the web browser). If you type the
IP address in the browser, then DNS is not required.
For human convenience (difficult remember numbers,
for example: www.google.com is domain name, IP
address is 74.125.224.72. Because it is difficult to
remember 74.125.224.72 so www.google.com is
preferred). Hosting: Host is a system that contains
information and this information can be accessed by
computer users by a means of internet. This process is
called hosting. IP address or Internet Protocol address:
Just like every house on a street has a postal address
which helps the post man to find that house on a street,
every computer connected to internet has an Internet
Protocol address or IP address which helps the other
computers to find that computer on the network.
Suppose A B, C, D, E, F and G are the computers
connected to each other by means of internet (i.e., they

are on the network). If computer A has not assigned
any IP address, then users at computers B, C, D, E, F
and G cannot send any email or other data to user at
computer A or user at computer A cannot receive any
email or other data from the users at computers B, C,
D, E, F and G by a means of internet. IP address is of
four types: Public IP address and Private IP address
Static and dynamic IP address Static IP address
permanent IP address Dynamic IP address temporary
IP address (exist only for a limited time i.e., IP address
leased for a limited time). Public and Private IP
address: Amazon organization is assigned an IP
address IPA and Google organization is assigned an IP
address IPG. And the systems (1, 2, 3, 4, 5..etc.)
within the Amazon or the Google organization are
assigned an IP addresses IP1, IP2, IP3 etc. IPA and
IPG imply public IP addresses IP1, IP2, IP3 etc.
implies private IP addresses Which means: Public IP
address is used for external communication (i.e., used
for the communication between the Amazon and the
Google organization) and Private IP address is used
for internal communication (i.e., used for
communication between the systems within the
Amazon or the Google organization). ASP.NET: ASP
Active Server Page ASP.NET (Active Server Page
Network Enabled Technology) is a technology
developed by Microsoft corporation using the
languages -- C#, Visual Basic. Net, J script & J#
-- to build dynamic web pages / websites and web
applications. Dynamic web page contains information
(say date, month or year or time zone of the day)
change automatically daily without a developer editing
its source codes while static web page contains
information (say date, month or year or time zone of
the day) cannot change automatically daily without a
developer editing its source codes. Virtual Memory: If
the RAM (i.e., Random Access Memory) is full and it
is running out of space available for storage of further
information and there is no access to store further
information, the idea of extending memory by using
disk is called virtual memory (i.e., the further
information is stored in disk and retrieved when
required). This process is called paging or swapping.
Server: Examples of server are: IIS (Internet
Information server LATTER NAMED Internet
Information service) a web server developed by
Microsoft corporation, Apache HTTP (HTTP mean
Hyper Text Transfer Protocol) a web server developed
by Robert McCool at the national center for
supercomputing applications (university of Illinois,
Urbana-Champaign) to provide web hosting service.
Note: XML Extensible (extendable) Markup (symbols
and notations like <, >, / etc.) Language (which is both
human and machine understandable language) is a
simple and very flexible text format designed to store
and transport data through internet. HTML (Hyper

 Report and Opinion 2018;10(1) http://www.sciencepub.net/report

196

Text Markup Language) = A text format designed to
display data XML to display the output: note to people
from steve jobs message Design is not just what it
looks like and feels like. Design is how it works.
Answer: <note> <to> people </to> <from> steve jobs
</from> <message> Design is not just what it looks
like and feels like. Design is how it works.
</message> </note> Note: If the statement:
<message> Design is not just what it looks like and
feels like. Design is how it works. </message> is
replaced by the statement: <Message> Design is not
just what it looks like and feels like. Design is how it
works. </message> Then there will be no display of
the output on the console screen. The statement: <to>
people </to>imply: element <to>imply: start tag and
</to>imply: end tag <note> </note>is termed: parent
element and <to> people </to> <from> steve jobs
</from> <message> Design is not just what it looks
like and feels like. Design is how it works.

</message> are termed: child elements XML to
display the output: Book Name of the book: Harry
Potter Author: J K. Rowling Price: $255 Pages: 296
Year: 2002 Edition: 8 Answer: <Book>
<Name>:Harry Potter </Name> <Author>: J K.
Rowling </Author> <Price>: $255 </Price> <Pages>:
296 </Pages> <Year>: 2002</Year> <Edition>: 8
</Edition> </Book> Note: What will be the output of
the following: <Book> <Name>: Harry Potter
</Name> <Author> J K. Rowling </Author> <Price>
$255 </Price> <rowling><Pages> 296
</Pages></rowling> <Year> 2002</Year> <Edition>
8 </Edition> </Book> Answer: Book Name of the
book: Harry Potter Author: J K. Rowling Price:
255$ Pages: 296 Year: 2002 Edition: 8 Note:
<rowling><Pages> 296 </Pages></rowling> is termed:
child element <Pages> 296 </Pages> is termed: sub
child element.

1/25/2018

