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ABSTARACT: This paper depicts the class OF Banach Spaces with normal structure and 
that they are generally referred to as uniformly convex spaces. A review of properties of a 
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INTRODUCTION 
 The importance of Uniformly convex spaces in Applied Mathematics and Functional 
Analysis, it has developed into area of independent research, where several areas of 
Mathematics such as Homology theory, Degree theory and Differential Geometry have come 
to play a very significant role. [1,3,4] 
Classes of Banach spaces with normal structure are those generally refer to as Uniformly 
convex spaces. In this paper, we review properties of the space and show that all non-
expansive maps have a fixed-point on this space. [2] 

Let x be a Banach Space. A Branch space x is said to be Uniformly convex if for 
0>ε there exist a ( ) 0>=∂ ε  such that if x, y £ x with //x//=1, //y//=1 and //x-y// ε≥ , then 

//
( ) −≤+ 1//2

1 yx ∂
. 

THEOREM (1.0) 
Let x = LP (µ) denote the space of measurable function f such that //f// are integrable, 

endowed with the norm. 

// f // = 
( ) Pfx 1// μ∂∂

 

Then for 1<P<+ , the space ∞ ( )μLP  is uniformly convex for the proof of the above 
theorem, we need the following basic lemma. 
 
Lemma  (1.0) 

Let X=Lp, then for p q>0, such 
111 =+ qp  and for each pair f, g £ x, the following 

inequalities hold. 
(i) For 1<p  2≤

( ) ( ) ( )qgpfqgfqgf ////////2////2
1////2

1// 1 +≤+++ −

 
 And 
(ii) For  ∞<≤ p2

( (( )qgppfpgfpgf p ////////2////////// +≤−++ −
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We now apply lemma (1.0) to prove theorem (1.0) 
 
 
Proof of theorem (1.0) 

,1 LpXgf =Choose ε  such that 1////,1//// ≤≤ gf  and for any 0>ε , we have 
ε≥− //// gf . Two cases arise: 

Case1:   21 ≤< p
In this case (1.0) yield 

( ) ( ) ( ) //////////)1(2//2
1////2

1// 1−+−−≤−++ qgpfqqgfqgf
 

( )( )( ) 11212 =−−−≤ qq  
 

Thus, 
( ) ( )

2
1//1//2

1//
q

q
g

gfqgf ε
−≤

−
−≤+

 

Or 
( ) ( ) 01

//
2

1//2
1//

>
−≤+ p

q

gf ε

 

So that by choosing 
( ) 01//
2

//1 >−= q
εδ

 

We obtain 
( ) δ−≤+ 1//2

1// gf
 and so ( )2≤= kpLpx  is uniformly convex. 

Case 2: ∞<≤ p2  

As in Case 1, we use (ii) of Lemma (3.1.1) to show that ( )∞<= kpLpx  is uniformly 
convex, completing the proof of the theorem. 

Since Lemma (3.1.1) is also valid for 1p, ∞<≤ p1 , the following theorem is also 
true. 
 
Theorem  (2.0) 

For , the space 1p of all infinite (real or complex) sequence, (x1,x2,x3,……) 

such that  i s uni formly convex. A s a special  case of  theorem (1.0), w e have 
the following. 

∞<≤ p1

<∑
∞

=

pxi //
1

+∞
i

Corollary (1.0) 
Every Hibert space H is Uniformly convex. Although theorem (1.0) and (3.0) provide 

large classes of space which are Uniformly convex, a few well known spaces are known not 
to be Uniformly convex. 
1. The Space λ is not Uniformly convex 

1=To see this ε  and choose ( ) ..2////////,.,.........0,0,0,1 11 εππ >=Υ−Υ λλ  However, 
( )1//2

1// ≤Υ−π
 and there is no 0=ε  such that 

( δ−≤Υ−Χ 1//2
1//

, showing that 1λ  
is not uniformly convex. 

∞λ  is not uniformly convex2. The space  
( ) ( )  1, Take . V and Both U ,.,.........0,0,0,1,1  and ...,,.........0,0,0,1,1 === ∞ε εConsider λVU then 

ε>=∞∞=∞ 2V//- //Uand ////,1//// VU . However, 
( ) ∞=− λ so and 1//2

1// VU
 is not 

 75



Researcher, 1(1), 2009, http://www.sciencepub.net, sciencepub@gmail.com  

 

uniformly convex. 
3. Consider c(a,b) the space of real-valued continuous function on the compact interval (a,b) 

with Sup norm. 
Then C (a,b) is not uniformly convex. 

To see this, choose two function f(t), g(t) defined as follows: 

F(t) = 1 for all ( )bat ,ε  
And 

( ) ( )bat
ab
tbtg ,each for  ε

−
−

=
 

Take 2
1

=ε
 clearly f(t), g(t) ( ) εε ⇒=− g//- //fand 1////////.ba,c gf . 

Also, 
( ) 1//2

1// =+ gf
 and so c(a, b) is Not uniformly convex. 

The following propositions are the consequences of the definition of uniform convexity. 
Proposition  (1.0) 

Suppose x is Uniformly convex Banach space, then for any 0 ,0 >>∂ ε  arbitrary 

Vectors x,y£x with //x// , //y// , there exists a ∂≤ ≥
( ) ( )

∂
⎭
⎬
⎫

∂
>

εδδ 2
1//such that  0 x

⎩
⎨
⎧ −≤+ 1//y

 
Proof 

0>ε  be given and let ∂=∂= /z ,/ 21 yxz  and suppose we set d
εε =

. Let 
εε =≥−=−≤ dyxzz /////0

1// //zand 1//// 21
2

1
 

Now, by uniform convexity, we have 
( )εδ−≤+= 1//2

1// 21 zz
 

That is 
( ) ( )

4
1//2

1// εδ≤+∂ yx
 

Which implies,   
( ) ( )

∂
⎭
⎬
⎫

⎩
⎨
⎧

∂
−≤+

εδ1//2
1// yx

 
Proposition (2.0) 

Let x be a uniformly convex Banach space. Then for any ( ) Χ∂>> εεεε y x,if 0,1 and 0,0  
such that ε>∂≤ y//-// x,x//// , then exist a; 

( ) such that 0>∂∂= εδ
 
( ) ( ) ) dyx //-1 ,min 12//1// ααεαα ∂−−+  

Proof 

Without loss of generality, we may take 
( )2

1,0ε
 

Now, ( ) ( ) ( ) ////21////1// yyyx αααα −++=−+  
( ) ( ) )0.1(..............................////21//2

1//2 yyx αα −++≤  

But by proposition (1.0), we have that there exists a 0>δ , such that 
( ) ( ) ∂−≤+ //////2

1// εδyx
 

Substitute this into (1.0), to have 
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( )
⎭
⎬
⎫

⎩
⎨
⎧ ∂

∂
∂=∂≤

εαδ2-                      //y//Since
 

  

( )
⎟
⎠
⎞

⎜
⎝
⎛ ∂

∂
∂−=
εα21

 
 

Put by the choice of 
( ) ( )ααααε -,1min  have ,2

1,0 ≥
 

Thus, we have, 

( ) ( ) ( ) ∂−
∂

−≤+ //1,min21////-1x// ααεδαα
 

We now discuss a characteristic of some Banach space, which is related to uniform 
convexity. 
2.0 STRICTLY CONVEX BANACH SPACES 
Definition (1.0) 

A Banach space X is said to be strictly convex (or strictly rotund if for any pair of 
vecors x, y £ x, the equation //x + y//=//x+//y//, implies that there exists a 0≥λ  such that 

( )xyor x x λλ == . 
The following Lemma on uniform convexity will be useful in the sequence. 
Lemma (1.0) 
Let X be a uniformly convex Banach space. 

If 
( ) //////yx2

1 then //0,y//-x//,0 x≤+≥+ λλλ
 

Proof 
Suppose similar) isy //  // // x // 0 case for the proof (The .////x ////0 <<<< y . 

Take 
0,y //- // x // b-a // The y.b x,aset   and 

y //// 
x ////

>==== λλλ
 

Let ελε ≥> y //-//xsuch that  0  
Observe that, 

 x ////
y //// 

y //// x //// y // //  // b// //x//, //a // ==== λ
 

So by proposition (3.1.1), there exist a 
( )

x ////
0>

=
εδδ

 

Such that 
( ) ( )  // x //,x ////

// x //
-1  // 2

1// <
∂

<+
εba

 

That is 
( )  // x //. // 2

1 // <+ yx
 

Completing the proof of the lemma, we now prove the following theorem. 
Theorem (1.2) 
Every uniformly convex space is strictly convex 
Proof 
Suppose x is uniformly convex Let x, Χεy  be non-zero vectors such that //x+y//=//x//+//y// 
We need to show that there exist yxsuch that  0 λλ =>a . We consider two possible cases. 
Case I: // x //=// y // 
Case II:  treated)isy //   /  // x // 0 caseother  (The // x //,y////0 <<<<  
Similarly, 
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Proof of Case I 

If x=, then (II) holds with 1=λ , so, suppose 
1

y //// 
// x // as then y;x =≠

 and // x+y //<2 //x // =+ 
// y // (Since // x // y //). 
That is, // x + y // <1 // x // + //y //. Contradicting (I). 
Thus, x≠ y is not possible and this proves case I. 
Proof of Case 2 
Suppose // x=y // = // x // + // y // and that x λ≠ y. Since x is uniform convex, lemma (2.0) 
yields. 

( ) ...(1.1)..............................     x //      ////yx2
1// <+ λ  

For 
//y//x////////

y //// 
// x // let   x//,//////0 +=+=<< yxy λ

 
And x λ≠ y 

We have 
( )

( ) )2.1......(..........////1////                                            
x // x-yx//y// //xy //// x ////

xyx +++≤
++=+=+

λλ
λλλλ

 

That is, 
( )

( ) )3.1......(..........y ////  x ////                                                           
// x // -x////y//// //x //y //// x ////

+=
++≤+

λ
λλλ

 

The inequalities (b) and (c) gives 
( ) ( ) ////1-y //x//y // //  x //// xλλλ ++=+  

From which we obtain (since 
( ) x ////yx2

1
y // //

 x ////
=+= λλ

 Contracting (1.1). This 
completes the proof of the theorem. 
Theorem (3.2.2) gives a large class of strict convex Banach spaces. However, it can be shown 

easily that  and c(a,b) are NOT strictly convex. For example, to see that  is not 
strictly convex. 

∞λλ ,, 11 L ∞λ

 
3.0 THE MODLUS OF CONVEXITY 
Definition (2.0) 
Let x be a Banach space, the modulus of convexity of X is the function ( ) ( )1,00,2:x →δ  

defined by 
( ) ( ) ( ){ }εεεδ ≥+−= y//-x//,0BC y x,://2

1//1x yxInf
. 

We now give an important characteristic of the modulus of convexity in the following 
proposition. 
Proposition (3.0) 
The modulus of convexity of a Banach space x is a non-decreasing convex function. 
Proof 

The proof that ( )εδx  is non-decreasing is a trivial consequence of definition (2.0) and it is 
therefore omitted. To proof convexity, suppose for any two vectors U, Vε X, we denote by 

N(U,V) the set of all pairs x, ,yε X with x, yε B1 (0), such that for some real scalars 11 , Bα  
we have 

BVyx
Uy-x

=+
=α

 
That is N(U,V) = ( ) ( ){ }BVyxU,y- xand 0By x,:yx, 1 =+=αε  
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For ( ) define ,2,0εr  
( ) ( ){ } )4.1.........(..........ry //-x//,VU, Nyx,,..........////2

11inf,, ≥+−= εδ yxrVU  

It is easy to see that ( ) (1.4)in for  0,, =rVUδ  
( ){ }VU,N xallfor  1,  x //// ε=Since  

Moreover, of r, for given any 21 ,λλ  in (0,2) and 0>ε , we can choose 
( ) ( ) ( 1,2Kfor such that  VU,x k =Nyk )ε   
 

)5.1.........(........................................//y,x// kkk λ≥  
  and 
( ) ( ) )6.1.....(..............................//x//2

112V,U, kk ky+−≥+ εδ λ  

The choice of (xk, yk) is possible because of the definition ( )εδ V,U,  in (1.5) as infimum. 

Now, for ( )0,1x =λ  

Let ( ) 213 x1xx λλ −+=  

And ( ) 213 1 yyy λλ −+=  

We have // ( ) ( )0x, x 1//1//x////x 12113 BCas≤−+≤ λλ  
Similarly 

Also, ( ) ( VU,N,x )εkk y  implies that exist constants kk βα ,  ( )2,1=k  such that 

 Vy
Uy

kk

kk

β
α
=−
=−

k

k

    xand
        x

 
From (1.6), we have 

( ) ( )
( ) ( )( )

( )
( ) U

UyU
y

yyyy

//y1//                  
1.7).........(.......... from                                       ,1                  

xy1yx                  
1xy1x        x

21

21

2211

212133

αλα
αλα

λ
λλ

−+=
−+=

−−+−=
−−+−+=−

 

If we set q= ( ) q,1 21 αλλα −+  some real number, 

We have ( ) ( ) 212133 1xy1x        x yyyy −−+−+=− λλ  
( ) ( )( )

( )
( ) V

VV
yy

//1//
.(1.8)....................              1

x1x

21

21

2211

βλλβ
βλλβ
λλ

−+=
−+=

+−++=
 

So that for some real number ( ) 21 1 βλλβγ −+=  
 
We have  

( )
( )

( )
( ) ////1////                         

////1////    //x//     
////1//                         

////1                         

21

2133

21

21

UU
UUy

U
U

αλαλ
αλλα

αλλα
αλλα

−+=
−+=−

−+=
−+=

…………………………….. (1.9) 
So that we have  
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( )
( )

( ) vv
v

v

21

2133

21

//1//                              
////1//     //yx//       

////1                               

βλβ
βλλβ

βλλβ

−+=
−+=+−

−+=

 
    ( ) )10.1..(....................//x//1//x// 2211 yy +−++= λλ  

Now making use of (3.3.9), we get 

  ( ) 2133 1//yx// ελλε −≥−  
But then (1.7) and (1.8) give 

( )( )

( )

( )

( ) ( )( )
( ) ( ) ( //2/v,u,//1//2

8v,u,

//yx//2
111//yx//2

11           

//yx//12
1//yx//2/1           

//yx//1//yx////2
1-1           

//x//2
111v,u,

21

2211

2211

2211

3321

ελεδλλελ

λλ

λλ

λλ

ελλεδ

+−++≤

+−−++−=

+−+−+−=

+−++=

+−≤−+ y

………….(1.11) 
From (1.0) 

( ) ( ) ( ) 2v,u,1v,u, 21 εεδλλελδ +−+=  
Now since ε  is arbitrary, we infer that 

= ( )( ) ( ) ( ) ( )2121 ,,1,,1,, εδλελδελλεδ vuvuvu −+≤−+  
Thus, (u, v,ε ) is convex. Now from the definitions of N(u, v) and δ (u, v,ε ) each pair (x, y) 

( ) ( )0 B x 0 Bε . 
Belong to some N(u, v), so that we have 

( ) ( ){ ( )  convex, is ,, as and 0 v0,u ,V  U,:,, x εδεεδεδ ε vuvuInf ≠≠Χ= So is ( )εδ  x  
For the next proposition, we need the following lemma. 
Lemma (2.0) 
Suppose  is non-decreasing convex function and ( ) ( 1,00,2:f → ) 2yx0 ≤<<≤ u  then  

( ) ( ) ( ) ( )
x-y

xfvf
u-v

vfuf −
≤

−

 
 Proof 

We can choose ( )1,0εαβ  such that 
( )yαα -1uV +=  and  

 ( ) )11.1...(....................1 yvU ββ −+=  
( ) ( )
( )

( )
( ) uy

y
−+

+
=

−
αα

αα
-1u

-1uf//
u-v

ufvf

 from (1.11) 
( ) ( ) ( ) ( )

( )  is if as   
-1u

ufyf1uf
uy −+
−−+

≤
αα
αα

 

  

( ) ( ) ( ) ( )
( ) ( )u-y 1

1yf1
α

αα
−

−−− uf

 

 = 

( ) ( ) ( ) ( )( )
( )uy

ufyf
uy

ufyf
−
−

=
−
−

β
β                   

 
( ) ( ) (1.11) from                     

x-y
ufyf ββ −  
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( ) ( ) ( ) ( )
xy

yfyfufyf
−

−+−
=

ββ

 
That is, 

( ) ( ) ( ) ( ) (1 ) ( ) ( ) )12.1.....(..........//1//vf yf
xy

ufyf
uv

uf βββ
−+−+

−
−

≤
−
−  

But since f is convex we get from (1.11) 
 
 

ence, (1.12) leads to  H
( ) ( ) ( ) ( )

xy
fyf

uv −
uf

−
−

≤
− xvf

 
We now prove the following proposition 
Proposition  (3.0) 

onvex function with f(0) = 0. Then for each x>2, f 
n ipschitz constant (2-x)-1  

f 

Let ( ) ( )1,00,2:f →  be a non-decreasing c
is continuous a d has L
Proo

As any point in the domain of f, r ( )2,0ε , say is finite and f is
1

 non-decreasing then at 
2, the right derivative f  r(x)  of f exists (See Rockfella). 

Thus, f (v+) 
each x>

or v<x<2, we have by definition f1 r  
( ) ( ) ( ) ( ) by               2limxflim xffvf −

≤
−

2vxvx vx −→−→ x  Lemma (1.11) 
( ) ( )

v
vff

−
−

=
2

2

 
( ) ( ) ( ) ( )

( ) )( uy
ufyf

−−
−−−

=
α

αα
1

11

 
 

( ) ( ) ( ) ( )( )
( )uy

uf
uy

ufyf
−

=
−
−

β
β −yf             

 
( ) ( )( ) above from           yf

xy
uf

−
− ββ  

( ) ( ) ( ) ( ) .(1.13)..............................  yf-     
x-y

yfufyf +−
=  

That is, 
( ) ( ) ( ) ( )( ) ( ) )14.1.....(..........//1//vf

xy
yfufyf

uv
uf

−
−−

≤
−
− ββ  

But since f is convex, we get from (1.12) 
( ) ( ) ( ) ( ) ( ) //1//1// yfufyufxf ββββ −+≤−+=  

Hence, (3.3.12) leads to 
( ) ( ) ( ) ( )

xy
fyf

uv
uf

−
−

≤
−
− xvf

 
We now prove the following proposition 
Proposition  (4.0) 

onvex function with f(0) = 0. Then for each x>2, f 
n ipschitz constant (2-x)-1  

Let ( ) ( )1,00,2:f →  be a non-decreasing c
is continuous a d has L
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( ) ( ) ( )
v-2

1              
2

2
≤

−
−

v
vff

 That is 
1 ≤= vrf

Replacing v by x, we have  

( )
x-2

1        f      1 ≤= vr
 

( )2,0εNow, by the mean value theorem, for all x,y  we have 
( ) ( ) ( ) ////////// yxfyfxf −≤− ε  for some ( )yx,ε  

(A) fromy/  -       //x1   
 

−

/
x-2

≤

That is  
So that the function f is Lipschitz constant (2-x)-I  on each interval (0,x). 

wing proposition is also of interested 

( ) ( ) ( ) ) ////2//// 1 yxxyfxf −−≤−  

The follo
Proposition (5.0) 

The Banach space x is uniformly convex if and only if ( ) 0x >εδ  for all ( )2,0εε  
Proof 

ε ≥≤≤ y//-/x //y//1,/  /and 1 with //x/Xyx, εSuppose x is uniformly convex, then if  we have 
( ) 0for  ,1//2

1// >−≤+ δδyx
 

Now , ( ) ( //x-1 1. //y//1, //x//,y//- //xy//, ≤≤≥+=εδ Infx ε  
( ) 0//11// >=−−≤ δδ  

Let ( ) ( ) such that x y  x,choose and 2,0rfor  0xδ εεε >  
ε≥≤≤ y //- //xand 1 //y //1,x ////  

By definition 
( ) ( ) ( ){ } 0y//- //xand 0 B,://2

1//1 >≥+−= εεδ yxyxInfx
 

This implies that for all ( )0 B, εyx  with 
( ) ( )εδε xyx  2

1//-,1y//-x// +≥
 

This implies that there ex 0>δists a  such that  
( ) 0 ,1//2

1//1 >−≤+− δδyx
 

Which implies uniform convexity 
 

 AND REF LEXIVITY OF BANACH SPACES4.0  NORMAL STRUCTURE E  
h some other geometric properties which are important in 

 b

t of c  

In this section, we deal wit
studying the fixed point theory of non-expansive mapping. 
Let C e a bounded convex subset of a Banach spacex. 
The diameter d of c is define by 
D = Sup{// zi-zj //, zj, ziCA}  

Χ∈ meter point of C A point Zo  is said to be a dia

If Sup { } dzz =∈− ://z// 0  
And a poin x∈ is called a non-diamental point  z ∗

 

If Sup { } { }Czj zi,:zj//-//zi Sup ://// ∈<−∈−∗ Czzz  
Definition 3.0 

A bounded convex subset of Banach space is said to have normal structure if for each 
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convex subset x of C, consisting of more than one point A, contains a non-diamental point 

ts athat is there exis  Az ∈0 . 

Such that Sup { } { }Azj zi,:zj//-//zi Sup ://// 0 ∈<∈− Czzz  
Geometrically, C is said to have normal structure if for every convex, C subset A of C 

there exist a ball whose radius is less than diameter of A centered at a point of A which 
contains A. 

In the following, we exhibit large classes of spaces with normal structure. 
Proposition (6.0) 

Every uniformly convex set in X, containing as least two different point Z1, Z2. 
( )210 2

1 Ζ+Ζ=z
 for any C∈Ζ , proposiSuppose  is the diameter∂  of C and tion (1.2) given 

us, from 
( ){ }

0
//Z//1

211
Z

//Z-//Z         // //Z;//z-z// 21
0Z

−−
≤=∂≤−∂≤

δ

 
( ) ( ){ } ( ){ }

0

221

z-z                                  
2

1
2

1

Since =

−=−+− ZZZZZz

 
The above inequality implies that C is contained in the ball of radius, say, r, less than 

 centered at Z0 , that is, ∂ ( ) ( )00 , ZBCrZBZ r⊆→∈ . 

Where { }CzzzSupr ∈−= ://// 0  
itionPropos  (7.0) 

very convex and impact E subset of a Banach space normal structure. 

ontrad tion that is, we shall assume that a compact convex subset 
all generate a sequence, 

Proof 
icWe proof this by this c

of C of a Banach space X does not have normal structure. Then we sh
will contradict the hypothesis of compactness. which 

Suppose C does not have normal structure, then we may assume that all point of C are 
diamental for C. let Z0 be the diameter of C, we shall construct a sequence Z, Z2,…………. 
Of point of C that 

( )j...i1,2,......j i,  //// ≠==− dZZ ji  
To do this, we choose CZ ∈1  arbitrary and assume that Z2,Z3,………………….Zn have 

already been chosen. 
By the convexity of C 

( )nZZn ++ ................1
1 point of C and thus by assumption, is diamental for C. by  is a 

the Sup” is achieved in C so that we can find a point  such 
that  

CZ ∈+1n Z,compactness of C, the “

d        
//............

=
// 11 +− ++ ZZ n

n+1 j

Which means that the sequences /{Zn} n  has no convergent subsequence, and thus has 
no cluster value in C. this contradicts the compactness of C and completes the proof. 

t normal structure, then so does every convex subset 
no

n
Z n

 
Consequently, //Z -Z // = d for j =1..,… 

1≥

We observe tha  if a convex set C has 
of C  . in particular, if the whole space X has rmal structure, then every convex subset of X 
has normal structure. This follows from the definition. 

Some Banach space does not have the following. 
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Example 
1. The Space X = C(0,1) with Sup norm does not have normal structure. 
2. The space X = L1 (0,2π ) does not have normal structure. 

re. Is called a retracting mapping. 
Def

3. The space X = I1 does not have normal structu
inition (3.4.10) 

X is a retract of Y, if XCY and there exist a continuous mapping α . 
Lem

pping 
onotone operator. 

ma (3.4.10) 
Let M be a closed convex subset of a Hilbert space. If T is a non-expansive ma

of M into H, then I-T is a restriction to M of a m
Proof 

Hyx, ∈ . Let r be the metric retraction of H into H, for 
(I-Tr)x – (I-TR), x-y) 
=//x-y//2 – (Trx-Try, x-y) 

0≥
y//-Try// //x-//Trxy//-x// 2 −≥

 
I-Tr is monotone
The retraction to
Lemma

 
 M I – Tr is I – T 

 (3.4.10)** 
If T is monotone and X0 and Y0 are normal of H such that Tx = Y0 

, y) 

Let 

Then Y0 = Tx 
 
(3.4.11) Conjectures 

 be a e a convex subset of a normal linear space L let T be a non-expansive 
 into L, Then for 0<t<1, the mapping St = tI(1- t)T is non-expansive and the 

me set of fixed points is T. 

xpensive, L is a normed linear space MCL and convex, then if  

Proof 
For any Y in H and T>0 
Let yt = X0 +ty0 
With y- yt then (Tyt – y0, y) 0≥  so that  

( )y,y 00Tx≥  (Tyt – y0

0tTy then ,0 Tyt →→ +

 

So that   ( )y,y 00Tx  

(1) Let M  b
mapping on M
sa
If TMCM, then St <Cm 
In fact, by kransnoseleki, we have the following conjectives. 
(2). Consider a mapping 

LM:T → , Where T is non-e
( )1 TI += 2G

, G is non-expansive and the exists 
∗ such MX ε ∗∗ = XGX that  

Also, (xm ) xnTλλ −+=+ 1X 1n  
( )1,0λε  is true in a uniformly convex space. 

 

 have examined in this paper project, the non-expansive mapping and the fixed point 
theorem  that classes Banach of spaces with normal 

 examples of uniformly convex spaces. Thus, the Lp space  are 
ples of uniformly convex spaces. 

Conclusion 
We

. We have also been able to show
( )∞<< p1structures are

classical exam
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ozbrak 

. L (1968): Real Analysis, Second Edition, Macmillan International Edition,  
ss, Syndics of 

Therefore, is application a non-expensive operator will have solution on these spaces. 
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