
Researcher                                                                                                               2010;2(9)  

 

 
 

31

Evaluation Of The Rotor Aerodynamics Of A Wind Turbine Using 
Combined Blade Element And Momemtum Theory 

 

K.R. AJAO 

Department of Mechanical Engineering, University of Ilorin, Ilorin, Nigeria 

e-mail: ajaomech@unilorin.edu.ng 

I.K. ADEGUN 

Department of Mechanical Engineering, University of Ilorin, Ilorin, Nigeria 

e-mail: kadegun2000@yahoo.com 

Abstract: The analysis of the rotor aerodynamics is based on the combined blade element and momentum theory 
and the content is directed toward the physics of power extraction by wind turbines at both the near and far wake 
regions. The near wake is the area just behind the rotor, where the properties of the rotor can be discriminated, so 
approximately up to one rotor diameter downstream and the far wake is the region beyond the near wake, where the 
focus is put on the influence of the wind turbines in farm situations.  A wind turbine extracts energy from the wind 
by producing a step change in static pressure across the rotor-swept surface. Turbine rotor is the component which 
exhibits the largest proportion of fatigue failure and the centrifugal and gravity loads are primarily responsible. The 
generalized Fokker-Planck equation which is a partial differential equation satisfied by the probability density 
function is employed in modeling the turbine power. [Researcher. 2010;2(9):31-40]. (ISSN: 1553-9865). 
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1. Introduction 

The conversion of wind energy to useful 
energy involves two processes: the primary process 
of extracting kinetic energy from wind and 
conversion to mechanical energy at the rotor axis, 
and the secondary process of the conversion into 
useful energy, mostly electrical energy [1]. Wind 
turbines extract energy from the wind by producing a 
step change in static pressure across the rotor-swept 
surface. As the air approaches the rotor it slows down 
gradually, resulting in an increase in static pressure. 
The reduction in static pressure across the rotor disk 
results in the air behind it being at sub atmospheric 
pressure. As the air proceeds downstream the 
pressure climbs back to the atmospheric value 
resulting in a further slowing down of the wind. 
There is therefore a reduction in the kinetic energy in 
the wind, some of which is converted into useful 
energy by the turbine [2]. 

The major field science involved in this 
process is aerodynamics, but it needs meteorology 
(wind description) as input, and system dynamics for 
the interaction with the structure. The latter is 
important since all movement of the rotor blades, 

including bending of the blades out of their plane of 
rotation, induces apparent velocities that can 
influence or even destabilize the energy conversion 
process. 
Aerodynamics is the oldest science in wind energy; 
in 1915, Lanchaster [3] was the first to predict the 
maximum power output of an ideal wind turbine. A 
major break-through was achieved by Glauert [4], by 
formulating the blade element momentum (BEM) 
method. This method extended with many 
‘engineering rules’ is still the basis for all rotor 
design codes.      

Progress is significant in the 30-year history 
of modern wind energy. Nevertheless, many 
phenomena are still not fully understood or 
quantified. This is due to several aspects that are 
unique for wind turbine aerodynamics. 

 
2.  Generalized Actuator disc model 

To aid the understanding of combined blade 
element   and momentum theory   it is useful initially 
to consider the rotor   as an “actuator disc”. Although 
this model is very simple, it does provide valuable 
insight into the aerodynamics of the rotor.   In fluid 
mechanics the actuator disc is defined as a 
discontinuous surface or line on which surface forces 
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act upon the surrounding flow. In rotary 
aerodynamics the concept of the actuator disc is not 
new. Indeed, the actuator disc constitutes the main 
ingredient in the one-dimensional momentum theory, 
as formulated by Froude [5] and the ‘classical’ BEM 
method by Glauert. Some of the assumptions made 
are that, thrust load and velocity are uniform over the 
disc and the upstream and downstream, the pressure 
is freestream static pressure. 

Usually, the actuator disc is employed in 
combination with a simplified set of equations and its 
range of applicability is often confused with the 
particular set of equations considered. 

In the case of a horizontal axis wind turbine 
the actuator disc is given as a permeable surface 
normal to the freestream direction on which an 
evenly distribution of blade forces acts upon the flow. 
In its general form the flow field is governed by the 
unsteady, axisymmetric Euler or Navier-strokes 
equations, which means that no physical restrictions 
need to be imposed on the kinematics of the flow. 

The first Non-linear actuator disc model for 
heavily loaded propellers was formulated by Wu [6]. 
Although no actual calculations were carried out, this 
work demonstrated the opportunities for employing 
the actuator disc on complicated configurations as 
e.g. ducted propellers and propellers with finite hubs. 
Later improvements, especially on the numerical 
treatment of the equations are due to [7,8] and 
recently Conway [9,10] has developed further the 
analytical treatment of the method. In the application 
of the actuator disc concept for wind turbine 
aerodynamics the first non-linear model was 
suggested by Madsen [11], who developed an 
actuator cylinder model to describe the flow field 
about a vertical-axis wind turbine, the Gyro mill. 
This model has later been adapted to treat horizontal 
axis wind turbines. Recent development of the 
method has mainly been directed towards the use 
Navier-stokes equations. 

 
2.1          The Navier-Stokes Equations  

In a numerical actuator disc model, the Navier-stokes (or Euler) equations are typically solved by a second 
order accurate finite difference volume scheme as in a usual computational fluid dynamics (CFD) computation. 
Equations: 
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Where V


denote Reynolds-averaged velocity, P  is the pressure denotes time and   is the density of the fluid and 

  is the kinematic viscosity. The Reynolds stresses are modeled by the eddy-viscosity,  t and body force, f


, is 

introduce in order to model external forces fields. 
These equations constitute three transport equations, which are parabolic in time and elliptic in space, and 

equation of continuity stating that the velocity is solenoidal. The main difficulty of this formulation is that the 
pressure does not appear explicitly in the equation of continuity. The role of the pressure, however, is to ensure the 
continuity equation be satisfied at every time instant. A way to circumvent this problem is to relate the pressure to 
the continuity equation by introducing an artificial compressibility term into this [12]  .Thus, an artificial transport 
equation for the pressure is solved along with the three momentum, equations ensuring a solenoidal  velocity field 
when a steady state is achieved. The drawback of this method is that only time-independent problems can be 
considered. 

Another approach, the pressure correction method, is to relate the velocity and pressure fields through the 
solution of a Poisson equation for the pressure. This is obtained by taking the divergence of the momentum 
equations, resulting in the following relation:  

 VVVP t


  ).(.2             (3) 

which is solved iteratively along with the momentum equations. As an alternative to theV


- formulation of the 
Navier-stokes equations, vorticity based models may be employed. The vorticity, defined as the curl of  the time-
average velocity  

P

V


*                (4) 
This is introduced as primary variable by taking the Curl Eqn. (1).The result is the following set of equations: 
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Where contains some additional second order terms from the Curl operation. The equations can be formulated in 

various ways. The Cauchy-Riemann part of Eqn.(6) may be replaced by a set of Poisson equations  
Q
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 If we consider Eqn.(5) in an arbitrarily moving frame of reference we get   
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Where the velocity vector   refers to the inertial system  *
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  denotes the angular velocity of the coordinate system. However, the geometry of the blades and the viscous flow 
around the blades are not resolved. Instead the swept surface of the blades is replaced by surface forces that act upon 
the incoming flow at a rate corresponding to the period-averaged mechanical work that the rotor extracts from the 
flow. 

In the simple case of an actuator disc with constant prescribed loading, various fundamental studies can be 
easily carried out. Comparisons with experiments have demonstrated that the method works well for axisymmetric 
flow conditions and can provide useful information regarding basic assumptions underlying the momentum 
approach [13,14] turbulent wake states occurring for heavily loaded rotors [15,16], and rotors subject to coning 
[17,18]. 

When computing the flow past an actual wind turbine, the aerodynamic forces acting on the rotor are 
determined from two-dimensional aerofoil characteristic, corrected for three-dimensional effects, using a blade-
element approach.  

In Figure1, a cross-sectional element at radius  defines the aerofoil in the (,z) plane.  ir

         

Figure 1. Cross-sectional aerofoil element  

Denoting the tangential and axial velocity in the inertia frame of reference as Vo and Vz respectively. The 
local velocity relative to the rotating blade is given as  

).,( zrel VrVV                 (10) 

The angle of attack is defined as 
,                  (11) 
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Where ))((tan 1


 V

V
r

z
   is the angle between Vrel    and the rotor plane. 

The distribution of the surface forces, ie force per unit rotor area is given by the following expressions:  
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are the lift and drag coefficients respectively is the chord length 

is the numbers of blades and and  denote the unit vectors in the directions of the lift and drag respectively. e
2.11 Lift and Drag Coefficients 
The lift and drag coefficients are defined for an aerofoil by   

)
2

1
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Where L and D are the lift and drag forces, S* is the platform area of the aerofoil.        

  The lift and drag coefficients are determined from measured or computed two-dimensional aerofoil data 
that are corrected for three-dimensional effects. There are several reasons why it is necessary to correct the aerofoil 
data. First, at separation rotational effects limit the growth of the boundary layer, resulting in an increased lift as 
compared to two-dimensional characteristics. Next, the aerofoil characteristics depend on the aspect ratio of the 
blade. This is in particular pronounced at high incidences where the finite aspect ratio drag coefficient, CD, is much 
smaller than the corresponding one for an infinite blade. 
   As and example, for a flat at an incidence =900 , the drag coefficient CD =2 for an infinitely long plate, 
whereas for aspect ratio corresponding to the geometry of a wind blade CD  takes values in the range 1.2-1.3. 
 Hoerner [19] stated that the normal force from a flat plate is approximately constant for 450  <  < 1350, indicating 
that in this range both CL and CD have to be reduced equally.  
  Hassen [20] proposed to reduce CL and CD by an expression that takes values in range from 0.6 to 1.0, 
depending on the ratio between the distance to the tip and the local chord length. It should be noticed, however that 
this is only a crude guideline and that most aerofoil data for wind turbine use is calibrated against actual 
performance and load measurement.   
 
3.    Blade-Element Model 

Combined blade element and momentum theory is an extension of the actuator disc theory described above. 
The rotor blades are divided into a number of blade elements and the theory outlined above used not for the rotor 
disc as a whole but for a series of annuli swept out by each blade element and where each annulus is assumed to act 
in the same way as an independent actuator disc. At each radial position the rate of change of axial and angular 
momentum are equated with the thrust and torque produced by each blade element.  

The thrust  developed by a blade element of length  located at radiusdT 'dr 'r  is given by 

'2 )sincos(
2

1
cdrCCWdT DLi               (15) 

Where  is the magnitude of the apparent wind speed vector at the blade element.  iW

Also, the torque developed by the blade element of length  is given by dQ 'dr

''2 )cossin(
2

1
cdrCCrWdQ DL               (16) 

In order to solve for the axial and tangential flow induction factors appropriate to the radial position of a 
particular blade element, the thrust and torque developed by the element are equated to the rate of change of axial 
and angular momentum similar to those derived for the actuator disc.  
The annular induction factors may be expressed as follows  
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The parameter H is defined as follows: 

  for a    H = 1.0, and  for > 0.3539,   H = ,3539.0 a
)79.061.06.0(

)1(4
2aa

aa
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In the situation where the axial induction factor  is greater than 0.5, the rotor is heavily loaded and 
operating in what is referred to as the “turbulent wake state”.  

a

 
4. Modeling the Wind 

The wind field incidence on the turbine may be specified in a number of ways. For some simple 
calculations, a uniform, constant wind speed is assumed, such that the same incident wind speed is seen by every 
point on the rotor. For more detailed calculation however, it is important to be able to define both the spatial and 
temporal variations in wind speed and direction. 

The steady-state spatial characteristics of the wind field may include any combination of the following 
elements, wind shear, tower shadow and upwind turbine wake. When regarding wakes, a distinct division can be 
made into the near and far wake region. The near wake is taken as the area just behind the rotor, where the 
properties of the rotor can be discriminated, so approximately up to one rotor diameter downstream. Here, the 
presence of the rotor is apparent by the number of blades, blade aerodynamics, including stalled flow, 3-D effects 
and the tip vertices. 

The far wake is the region beyond the near wake, where the focus is put on the influence of the wind 
turbines in farm situations. Here the focus is on wake models, wake interference, turbulence models and 
topographical effects.  

 
4.1 Near wake Computations 

Although there exist a large variety of method for predicting performance and loadings of wind turbines, 
the most widely used approach today is based on the blade element and momentum theory. A basic assumption in 
the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from 
two-dimensional aerofoil characteristics. The advantage of the model is that it is easy to implement, it contains most 
of the physics representing rotary aerodynamics, and it has proven to be accurate for the most common flow 
conditions and rotor configurations.  A drawback of the model is that it, to a large extent relies on empirical input 
which is not always available. Even in the simple case of a rotor subject to steady axial inflow, aerofoil 
characteristics have to be implemented from wind tunnel measurements. The description is further complicated if we 
look at more realistic operating situation. Wind turbines are subject to atmospheric turbulence, wind shear from the 
ground effect, wind directions that change both in time and in space, and effect from the wake of nearby wind 
turbines.  

When the wind changes direction, misalignment with the rotational axis occurs, resulting in yaw error. This 
causes periodic variation in the angle of attack and invalidates the assumption of axisymmetric inflow conditions. 
Furthermore, it gives rise to radial flow component in the boundary layer. Thus both the aerofoil characteristics and 
the wake are subjected to complicated three-dimensional and unsteady flow behaviour, which only in an 
approximate way can be implemented in the standard BEM method. In all cases there is a need to develop three-
dimensional models from which parametrical studies can be performed. 

 
4.1.1 Vortex Wake Modeling 

Vortex wake models denote a class of methods in which the rotor blades and the trailing and shed vortices 
in the wake are represented by lifting lines or surfaces. At the blades the vortex strength is determined from the 
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bound circulation which is related to the local inflow field. The trailing wake is generated by spanwise variations of 
the bound vorticity along the blade. The shed wake is generated by the temporal variations as the blade rotate. 
 Assuming that the flow in the region outside the trailing and shed vorticies is curl-free, the overall flow field can be 
represented by the Biot-Savart law. This is most easily shown by decomposing the velocity in   solenoidal part and a 
rotational part, using Helmholtz decomposition:  
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              (19) 
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 is a vector potential and a scalar potential. '
The vector potential automatically satisfies the continuity Eqn. (2), and from the definition of vorticity, Eqn.(4), we 
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Where X


 denotes the point where the potential is computed and the integration is taking over the region where the 

vorticity is non-zero, designated by . olV
 From the definition Eqn.(19), the resulting velocity field is obtained by 
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   This is the most usual form of the Biot-Savart law. 
 In its simplest form the wake is prescribed as hub vortex plus a spiraling tip vortex or as a series of ring vortices.  In 
this case the vortex system is assumed to consist of a number of line vortices with vorticity distribution     
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Where is the circulation,    is the Dirac delta function and 'X


 is the curve defining the location of the vortex 
lines.  
Combining this with Eqn.(22) results in     
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Where  is the curve defining the vortex line and is the parametric variable along the curve. Utilizing 
Eqn (24), simple vortex models can be derived to compute quite general flow fields about wind turbine rotors.  

s 's

In a study of Miller [21], a system of vortex rings was used to compute the flow past a heavily loaded wind 
turbine. It is remarkable to simulate the vortex ring/turbulent wake state with good accuracy, as compared to the 
empirical correction suggested by Glauert [2]. 
 
4.12         Far Wake Computations 

If the turbine rotor being model led is assumed to be wholly or partially immersed in the wake of another 
turbine operating further upwind, a model is provided to define the modification to the steady-state mean wind 
profile caused by that wake. 

A Gaussian profile is used to describe the wake of the upstream turbine. The local velocity at a distance r  
from the wake centerline (which my be offset from the hub position) is given by :  

]1[
2

2

2W

r

o eVV


                           (25) 

Where  is the undisturbed wind speed,  oV   is the fractional centerline velocity deficit, and W  is the width of the 

wake.  
To define the velocity deficit  and the wake width W ,the eddy viscosity model is used.  
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   [i]       Eddy viscosity wake model  
The eddy viscosity wake model is a calculation of the velocity deficit field using a finite-difference solution 

of the thin shear layer equation of the Navier-Stokes equations in axisymmetric co-ordinates. The eddy viscosity 
model automatically observes the conservation of mass and momentum in the wake. An eddy viscosity, averaged 
across each downstream wake section, is used to relate the shear stress term in the thin shear equation to gradients of 
velocity deficit. The mean field can be obtained by a linear superposition of the wake deficit field and the incident 
wind flow.  
An illustration of the wake profile used in the eddy viscosity model is shown in Figure 2. 

 
 

Figure 2: Wake profile used in eddy viscosity model  
 
 
 
The Navier stokes equations with Reynolds stresses and the viscous terms dropped gives: 
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The turbulent viscosity concept is used to describe the shear stresses with an eddy viscosity defined by [22]. 
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mL  and  are suitable length and velocity scales of the turbulence as a function of the downstream distance mU x  

but independent of r . The length scale is taken as proportional to the wake width Bw and the velocity scale is 
proportional to the difference Ui -Uc across the shear layer. 

Thus the shear stress uv  is expressed in terms of the eddy viscosity. The governing differential equation to be 
solved becomes: 
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Because of the effect of ambient turbulence, the eddy viscosity in the wake cannot be wholly described by the shear 
contribution alone. Hence an ambient turbulence term is included and the overall eddy viscosity is given by Ainslie 
[23]. 

ambciW UUBFK   )(1             (29) 

Where the filter function  is a factor applied for near wake conditions. This filter can be introduced to allow for 

the build up of turbulence on wake mixing.  The dimensionless constant  is a constant value over the whole flow 

field and a value of 0.015 is used.  

F

1K
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The ambient eddy viscosity term is calculated by the following equation,  

                 (30) 100/.. 2
ambkamb IKF

 

kK  is the Von Karman constant with a value of 0.4. Due to comparisons between the model and measurements 

reported by Taylor [24] ,the filter function is fixed at unity.  F
 The centre line velocity deficit can be calculated at the start of the wake model ( two diameters  downstream ) using 
the following empirical equation by Ainslie [25].  
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Assuming a Gaussian wind speed profile and momentum conservation an expression for the relationship between 
the deficit Dm and the width parameter Bw is obtained as, 
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Using the above equations, the average eddy viscosity at a distance 2D downstream of the turbine can be calculated. 
The equations can then be solved for the centre- line deficit and width parameter further downstream.  
Assuming to the Gaussian profile, the velocity deficit a distance ‘r’ from the wake centerline is given by,  

    2
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Therefore the wake width W is given by  
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(ii)         Turbulence in the wake  
Using the eddy viscosity model, it is also possible to calculate the additional turbulence caused by the wake. The 
added turbulence is calculated using an empirical characterization by Quarton and Ainslie [26].  
This characterization enables the added turbulence in the wake to be define as a function of ambient 

turbulence , the turbine thrust coefficient , the distance X downstream from the rotor plane and the length of 

the near wake, Xn. 
ambI tC

To improve the prediction, the characterization was subsequently amended slightly by Hassan [27]. 
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Here all turbulence intensities are expressed as percentages. Using the value of added turbulence and the incident 

ambient turbulence, the turbulence intensity  at any turbine position in the wake can be calculated as, totI

 22
addambtot III              (36) 

The near wake length Xn is calculated according to Vermeulen [28] in term of the rotor R and the thrust coefficient 
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






I
dx

dr



  is the growth rate contribution due to ambient turbulence.  
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

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 is the contribution due to shear-generated turbulence. And,  

  


B
dx

dr
012.0








  is the contribution due to mechanical turbulence, where B is number of turbine blades and   

   is the tip speed ratio.    
5.  Modeling the wind turbine power  
As an application, the generalized Fokker-Planck equation is used to assess the uncertainty in the power output of a 
variable-speed wind turbine [29]. The dynamics of the wind turbine is given by the angular momentum theorem, 

         


 brakedrive PP

t
J







            (39) 

Where   is the rotor speed,   the moment of inertia,  the aerodynamic power captured by the wind turbine 

and   the braking power from the generator. The generator power output is related to the braking power by the 

simple relation 

J driveP

brakeP

 brakeG PP                       (40) 

  is a constant.  

The aerodynamic power is given by the algebraic relation   

    32 ),(
2

VCRP pdrive 
               (41) 

 Where    is the air density, R  the rotor radius,   the blade pitch angle.  

The tip speed ratio (TSR)     is the rotor tip speed divided by the oncoming wind speed and is given by  

 VR /                (42) 

The power coefficient  is defined as the power from the wind turbine divided by the power available in the wind.  pC
 
 
6. Conclusion     
                                                  

Wind turbine wake aerodynamics has been 
extensively studied both experimentally and 
analytically. Nevertheless, their knowledge is far 
from being satisfactory. Many of the numerical 
models proposed show an acceptable degree of 
agreement with the experiments with which they are 
compared. 

The models which depend on the least 
simplifying assumptions are better suited in dealing 
with different configuration and in reproducing wake 
development in detail.  Some aspects of individual 
wake modeling, such as full near wake 
representation, rotor tower interaction, dynamic 
inflow, convergence problems, influence of 
atmospheric stability and others are still issues of 
active research.  

One of the most important difficulties that 
have not been treated satisfactorily is the choice of 
appropriate input parameters to define ambient 

unperturbed flow particularly in complicated terrains. 
Usually, a comparison with wind tunnel experiments 
is reasonably straightforward, but when field 
experiments are used for comparison there are many 
difficulties and effects like meandering, that have not 
yet been satisfactorily modeled. 

Improved understanding of complex wind 
turbine aerodynamics formalized in accurate, robust 
models will constitute a powerful capability for 
analyzing and designing wind energy machines of the 
future. 
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