Mathematical Programming Approach to Optimization with Fritz John Conditions: Case Study

Taruni Singh¹ & Mayank Pawar²

¹Research Scholar Mewar University Chittorgarh (Rajasthan)
²Teerthanker Mahaveer University, Moradabad (U.P.)

Abstract: The mathematical discipline devoted to the theory and methods of finding the maxima and minima of functions on sets defined by linear and nonlinear constraints (equalities and inequalities). Mathematical programming is a branch of operations research, encompassing a wide class of control problems, the mathematical models of which are finite-dimensional extremal problems. Mathematical programming problems are used in various fields of man’s activity where it is necessary to choose one course of action from several possible courses, for example, in the solution of the numerous problems of projection and of process control and planning.

Keywords: mathematical programming with optimization, Fritz John conditions.

Introduction:

The Fritz John theorem is one of the most important results in mathematical programming. When there are, besides inequality constraints, also equality constraints, the existing proofs are usually quite long and intricate. This is the case, for example, of the paper of Mangasarian and Fromovitz (1967), perhaps the first paper dealing with this topic, of the book of Bazaraa and Shetty (1967) and of Bazaraa, Sherali and Shetty (1993), of the paper of Still and Streng (1996), etc. An interesting paper of McShane (1973) uses the penalty approach and therefore it is useful in those courses on optimization, where also the computational aspects are treated[1].

In mathematical programming it is customary to distinguish linear and convex programming. In nonlinear programming the objective function becomes nonlinear or one or more of the constraints inequalities have non-linear inequalities have non-linear relationship or both. Non-linear programming which has the problem of minimizing a convex objective function in the convex set of points is called convex programming where the constraints may taken to be non-linear.

In linear programming the objective function and constraints are linear, in convex programming the objective functions admissible set are convex. Convex optimization problems are far more general than linear programming problems, but they share the desirable properties of LP problems: They can be solved quickly and reliably up to very large size up to hundreds of thousands of variables and constraints.

Nonlinear programming presents different perspective on mathematical programming problems in which the objective function and the constraint functions are not necessarily linear. There are many real world problems which have more than one conflicting objective functions. Such programming problems are called multiobjective programming problems. The mathematical discipline devoted to the theory and methods of finding the maximization and minimization of functions on sets defined by linear and nonlinear constraints. Mathematical Programming is a branch of optimization. It is used in various fields of man’s activity where it is necessary to choose one course of action from several possible courses.

HYPOTHESES FORMULATION

(a) The general mathematical programming problem can be formulated as:

Max (or min) \(f(x) \)

Subject to \(g_j(x) (\leq, =, \geq) 0, \quad j=1,2,...,m \)

\(x \in S \)

Where \(f \) and \(g_j, j=1,2,...,m \) are real valued functions defined on \(S \subseteq \mathbb{R}^n \). The function \(f(x) \) is called the objective function and \(g_j(x), j=1,2,...,m \) are called constraint functions.

(b) A general multiobjective programming problem having \(k (\geq 2) \) objectives is of the form:

\(\text{(MP)} \ min f(x) = (f_1(x), f_2(x), ... f_k(x)) \)

Subject to \(g_j(x) \leq 0, \quad j=1,2,...,m \)

\(x \in S \)
Where \(f_i, i=1, 2, \ldots, k \) and \(g_{ij}, j=1, 2, \ldots, m \) are real valued functions defined on \(S \subseteq \mathbb{R}^n \).

(c) The mathematical representation of non-linear programming problem is as follows:

\[
\text{(P)} \quad \begin{array}{l}
\text{Minimize } f(x) \\
\text{Subject to } g_{ij}(x) \leq 0, \quad j=1, 2, \ldots, m \\
\quad x \in S
\end{array}
\]

where \(f \) and \(g_{ij}, j=1, 2, \ldots, m \) are real valued functions defined on \(S \subseteq \mathbb{R}^n \).

(d) In non-linear fractional programming we maximize (minimize) the ratio of two non-linear functions subject to linear or non-linear constraints. It is of the form:

\[
\text{(FP)} \quad \begin{array}{l}
\text{maximize } \frac{f(x)}{g(x)} \\
\text{subject to } h_j(x) \leq 0, \quad j=1, 2, \ldots, m \\
\quad x \in S
\end{array}
\]

(FP) is said to be concave-convex fractional program, if \(f(x) \) is concave, \(g(x) \) is convex on the convex set \(S \), if \(g \) is non-affine, then \(f \) is required to be non-negative. If \(f \) and \(g \) are differentiable, then concave convex fractional program has a pseudoconcave objective function.

In fractional programming problem if objective function is differentiable then cancave-convex fractional programming has a pseudoconcave objective function. Since the Kuhn-Tucker optimality conditions are often difficult for a global optimal solution, therefore, cancave-convex fractional programming problem can be solved by various algorithms of convex programming. For Frank-Wolfe’s method [4], Jagannathan [5], Dinkelbach [6] and Geoffrion [7] have shown that a fractional program can also be represented by a parametric program. Dinkelbach [6] proposed an iterative procedure that solves the equivalent parametric program. Schaible [8] modified Dinkelbach’s algorithm and gave an algorithm similar to Dinkelbach’s procedure and is based on a theorem by Jagannathan [5] concerning the relationship between fractional and parametric programming.

Proper efficiency of the solution of multi-objective programming problem is a strengthened solution concept. It eliminates unbounded trade-offs between the objectives. It was originally introduced by Kuhn-Tucker [9] and later followed by Klinger [10], Geoffrion [11] and White [12] for the usual multiobjective programming problem. The concept of efficiency was generalized to cone efficiency by Yu [13]. Subsequently, proper efficiency was generalized by Browien [14]. Later the definition was strengthened by Benson [15] to assure equivalence to the Geoffrion definition even when the decision set is non-convex.

Conclusion

The mathematical programming problem with equilibrium constraints is a good example of a problem where the new condition is useful. In the usual formulation the constraints take the form \(xg = 0 \) which implies that all the feasible points are Fritz-John points; however it can be shown that few points satisfy the approximate gradient projection (AGP) condition. There may be further approach in order to extend the new optimality condition to nonsmooth optimization, bilevel programming and vector optimization.

References:

