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Abstract: Remote sensing image processing is nowadays a mature research area. The techniques developed in the field 
allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood 
prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote 
sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer 
science, electronics, and communications. From a machine learning and signal/image processing point of view, all the 
applications are tackled under specific formalisms, such as classification and clustering, regression and function 
approximation, image coding, restoration and enhancement, source unmixing, data fusion or feature selection and 
extraction.  This paper serves as a survey of methods and applications, and reviews the last methodological advances in 
remote sensing image processing. 
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1.  Introduction 

Of all the various data sources used in GIS, one 
of the most important is undoubtedly that provided by 
remote sensing. Through the use of satellites, we now 
have a continuing program of data acquisition for the 
entire world with time frames ranging from a couple of 
weeks to a matter of hours. Very importantly, we also 
now have access to remotely sensed images in digital 
form, allowing rapid integration of the results of remote 
sensing analysis into a GIS. The development of digital 
techniques for the restoration, enhancement and 
computer-assisted interpretation of remotely sensed 
images initially proceeded independently and somewhat 
ahead of GIS. However, the raster data structure and 
many of the procedures involved in these Image 
Processing Systems (IPS) were identical to those 
involved in raster GIS. As a result, it has become 
common to see IPS software packages add general 
capabilities for GIS, and GIS software systems add at 
least a fundamental suite of IPS tools. IDRISI is a 
combined GIS and image processing system that offers 
advanced capabilities in both areas. Because of the 
extreme importance of remote sensing as a data input to 
GIS, it has become necessary for GIS analysts. Remote 
sensing can be broadly defined as the collection and 
interpretation of information about an object, area, or 
event without being in physical contact with the object. 
Aircraft and satellites are the common platforms for 
remote sensing of the earth and its natural resources. 
Aerial photography in the visible portion of the 
electromagnetic wavelength was the original form of 
remote sensing but technological developments has 
enabled the acquisition of information at other 
wavelengths including near infrared, thermal infrared 
and microwave. Collection of information over a large 

numbers of wavelength bands is referred to as 
multispectral or hyperspectral data. The development and 
deployment of manned and unmanned satellites has 
enhanced the collection of remotely sensed data and 
offers an inexpensive way to obtain information over 
large areas. The capacity of remote sensing to identify 
and monitor land surfaces and environmental conditions 
has expanded greatly over the last few years and 
remotely sensed data will be an essential tool in natural 
resource management. Attending to the type of energy 
resources involved in the data acquisition, remote 
sensing imaging instruments can be passive or active. 
Passive optical remote sensing relies on solar radiation as 
illumination source.  The signal measured at the satellite 
by an imaging spectrometer is the emergent radiation 
from the Earth-atmosphere system in the observation 
direction. The radiation acquired by a (airborne or 
satellite) sensor is measured at different wavelengths and 
the resulting spectral signature (spectrum) is used to 
identify a given material. The field of spectroscopy is 
concerned with the measurement, analysis, and 
interpretation of such spectra [1]. Some examples of 
passive sensors are infrared, charge-coupled de- vices, 
radiometers, or multi and hyperspectral sensors [2]. In 
active remote sensing, the energy is emitted by an 
antenna to- wards the Earth’s surface and the energy 
scattered back to the satellite is measured [3].  Radar 
systems, such as Synthetic Aperture Radar (SAR), are 
examples of systems for active re- mote sensing. In these 
systems, the time delay between emission and return is 
measured to establish the location, height, speed and 
direction of objects. The diversity of platforms and 
sensors implies a diversity and very articulated research 
area in which machine learning, signal and image 
processing are very active. In fact, from a machine 
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learning and signal/image processing viewpoint, all the 
applications are tackled under specific formalisms, such 
as classification and clustering or regression and function 
approximation. However, the statistical characterization 
of re- mote sensing images turns to be more difficult than 
in grayscale natural images because of pixel’s higher 
dimensionality, particular noise and uncertainty sources, 
the high spatial and spectral redundance, and their 
inherently non-linear nature. It is worth to note that all 
these problems also depend on the sensor and the 
acquisition process. Consequently the developed 
methods for processing remote sensing images need to 
be carefully designed attending to these needs. 

Even if scientific production is high, the cross-
fertilization between the remote sensing and the image 
processing com- munities is still far from being a reality.  
In order to boost communication paths, this paper 
presents a survey of related methods and applications in 
both fields, and revises the hot topics and last 
methodological advances in remote sensing image 
processing. 
2.  The Framework of Remote Sensing Image 
processing 

From acquisition to the final product delivered 
to the user, a remotely sensed image goes through a 
series of image processing steps, starting with efficient 
compression strategies and ending with accurate 
classification routines (Fig. 1). Each step is detailed in 
the next sections. 
2.1. Image Coding 

Along with the increasing demand of 
hyperspectral data, the sensor technology used to capture 
these images has been significantly developed, 
improving, among others, the spatial and spectral 
resolution. 
Such improvement on quality leads to an increasing 
demand on storage and bandwidth transmission 
capabilities. Both lossy and lossless image coding have 
been investigated extensively in hyperspectral images 
[4]. The lossy coding systems in the Consultative 
Committee for Space Data Systems (CCSDS) 
[http://public.ccsds.org] recommendation are based on a 
transform stage, where data is decorrelated in the spatial 
domain using a wavelet transform (plus a bit plane 
encoder stage), thus following the latest standard 
JPEG2000 for grayscale images. Other well known 
wavelet-based cod- ing system used for hyperspectral 
data are SPIHT-3D and SPECK-3D [5]. In order to 
improve the coding performance, a common strategy is 
to decorrelate first the image in the spectral domain [6]. 
 

 
Fig. 1. Remote sensing image processing chain. 

For feature selection, either filters or wrappers 
are proposed [7]. Although filters have been extensively 
studied in remote sensing [8], the recent advances focus 
on wrappers, which guarantees that the selected feature 
subset is iteratively optimized. SVM-based recursive 
feature elimination [9] and genetic algorithms [10] are 
some examples of recent successful applications of 
wrappers in remote sensing. Regarding feature 
extraction, the use of linear methods such as PCA is 
quite common. Recently, advances in embedding using 
nonlinear methods have been proposed such as local lin -
ear embedding or isometric mapping [11]. Also, 
multivariate kernel-based feature extraction methods 
have been presented recently to cope with nonlinearities 
in the data [12]. 
2.3. Restoration and Denoising  

Image restoration is an important step in the 
image processing chain. Several problems are 
encountered in this application: different noise sources 
and amounts are present in the data and scattered either 
in the spatial or specific spectral bands. This makes 
necessary appropriate spatial smoothing per band. Note 
also that applying PCA captures second-order statistics 
only, and has no information about noise variance. A 
nice alternative is the widely used minimum noise 
fraction (MNF) algorithm [13]. The method performs 
nicely in multispectral imagery and moderate noise 
levels. In hyperspectral images the noise covariance 
estimation is a more challenging problem and other 
techniques have been recently proposed, such as 
anisotropic diffusion [14], wavelet shrinkage [15], or 
kernel multivariate methods [12]. In radar signal 
processing, the main problem is about removing speckle 
noise in SAR images. Latest advances propose specific 
wavelet forms [16] and to include spatial information 
through Markov random fields [17]. Assessment of the 
obtained filtered images is another hot topic in the area 
[18]. A common problem is also found in removing the 
registration noise, with critical impact in change 
detection applications [19]. 
2.4. Image Fusion and Enhancement 
Spatial resolution of sensors is often limited with respect 
to their spectral resolution. Multi- or hyperspectral 
sensors give a unique amount of spectral information, but 
they often lack the spatial detail necessary for the 
application. On the contrary, panchromatic sensors 
provide information with higher level of spatial detail, 
but lack spectral information. Since the design of a high 
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resolution sensor in both spectral and spatial domains 
would be extremely costly and challenging in terms of 
engineering, image fusion methods are often employed 
to create an image taking advantage of both 
panchromatic and multi- or hyperspectral sensors. 
Classical IHS or PCA methods are inadequate when 
applied to remote sensing images. Therefore specific 
approaches based on Laplacian Pyramids [20], wavelets 
[21], geostatistics [22], and Bayesian Maximum Entropy 
[23], have been proposed recently.  
2.5. Signal Unmixing  

An important problem in remote sensing is the 
development of automatic extraction of spectral end 
members directly from the input hyperspectral data set. 
With these pure pixels in the image identified, all pixels 
can be synthesized as a linear (or non-linear) 
combination of them, and this, in turn, allows subpixel 
detection [2] or mineral mapping [24]. Some classic 
techniques for this purpose include the N-FINDR 
algorithm [25], the vertex component algorithm (VCA) 
in [26], and an orthogonal subspace projection (OSP) 
technique in [27], among others [28]. Selection of the 
free parameters and inclusion of spatial information in 
the unmixing process are key issues nowadays [29]. 
Recently support vector domain description (SVDD) has 
been also used [12]. 
2.6. Regression and Model Inversion  
In remote-sensing data analysis, the estimation of 
biophysical parameters is of special relevance in order to 
better understand the environment dynamics at local and 
global scales [1]. The inversion of analytical models 
introduces a higher level of complexity, induces an 
important computational burden, and sensitivity to noise 
becomes an important issue. Consequently, the use of 
empirical models adjusted to learn the relationship 
between the acquired spectra and actual ground 
measurements has become very attractive. Parametric 

models have some important drawbacks, which typically 
lead to poor prediction results on unseen data. As a 
consequence, nonparametric and potentially non-linear 
regression techniques have been effectively introduced 
for the estimation of biophysical parameters from 
remotely sensed images. Different models and 
architectures of neural networks have been considered 
for the estimation of biophysical parameters [30]. 
Recently the use of support vector regression (SVR) has 
yielded good results in modeling some biophysical 
parameters [31].  
2.7. Image Classification  

Classification maps are probably the main 
product of remote sensing image processing.  Important 
applications are urban monitoring, catastrophe 
assessment, change or target detection. Broadly 
speaking, classification methods can be divided in three 
families. Unsupervised methods aim at clustering the 
image pixels into a pre-defined number of groups by 
measuring their similarity.  One of the main applications 
for such methods is change detection, where the method 
should be able to recognize changes in real time [32, 33].  
Supervised methods use labeled information to train a 
model capable to recognize pre-defined classes. At 
present, this field is probably the most active in remote 
sensing image processing. The most successful methods 
are neural networks [34] and sup- port vector machines 
[35].  The latter have been applied in a wide range of 
domains, including object recognition [36], multi-
temporal classification [37] and urban monitoring [38]. 
Finally, semi-supervised methods join the (typically few) 
labeled data and the information about the wealth of 
unlabeled samples. In remote sensing, the data manifold 
has been modeled with either graphs [39, 40] or cluster 
kernels [41] algorithms. Also, the transductive SVM has 
been applied [42]. 

 
 

Table 1. A taxonomy for remote sensing methods and applications 
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3. Conclusion 
The fields of remote sensing and image 

processing are constantly evolving in the last decade, but 
cross-fertilization is still needed. This paper serves as a 
survey of methods and applications and highlights the 
hot topics and latest methodological advances in remote 
sensing image processing. The literature has been revised 
under the specific machine learning and signal 
processing paradigms, and attention has been paid to 
classification, regression, image coding, restoration, 
source unmixing, data fusion, feature selection and 
extraction. 
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