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Abstract: Signal and imaging investigations are currently a basic step of the diagnostic, prognostic and follow-up 
processes of heart diseases. Besides, the need of a more efficient, cost-effective and personalized care has lead 
nowadays to a renaissance of clinical decision support systems (CDSS). The purpose of this paper is to present an 
effective way to achieve a high-level integration of signal and image processing methods in the general process of 
care, by means of a clinical decision support system, and to discuss the advantages of such an approach. Among 
several heart diseases, we treat heart failure, that for its complexity highlights best the benefits of this integration. 
Architectural details of the related components of the CDSS are pro-vided with special attention to their seamless 
integration in the general IT infrastructure. In particular, significant and suitably designed image and signal 
processing algorithms are introduced to objectively and reliably evaluate important features that, in collaboration 
with the CDSS, can facilitate decisional problems in the heart failure domain. Further-more, additional signal and 
image processing tools enrich the model base of the CDSS. 
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1.Introduction 

Signal and imaging investigations are currently 
a basic step of the diagnostic, prognostic and follow-up 
processes of heart diseases. Not by chance, in the last 
decades, the development of Computer-Aided Diagnosis 
(CAD) schemes has attracted a lot of interest and effort 
within medical imaging and diagnostic radiology, 
becoming in some cases a practical clinical approach. 
The basic concept of CAD is to provide a second opinion 
or a second reader that can assist clinicians by improving 
the accuracy and consistency of image based diagnoses 
[1]. Actually, the clinical interpretation of diagnostic data 
and their findings largely depends on the reader’s 
subjective point of view, knowledge and experience. 

Hence, computer-aided methods, able to make 
this interpretation reproducible and consistent, are 
fundamental for reducing subjectivity while increasing 
the accuracy in diagnosis. As such, they are likely to 
become an essential component of applications designed 
to support physicians’ decision making in their clinical 
routine workflow. Other important motivations rely on 
the limits to reader’s ability of data interpretation caused 
by either the presence of structure noise or the vast 
amount of data, generated by some devices, which can 
make the detection of potential diseases a burdensome 
task and may cause oversight errors. Besides, the 
development of computerized applications for supporting 
health care givers (an old but still alive quest, started 
more than 45 years ago in the early 1960s) is 
experiencing a period of rapid expansion in knowledge, 
motivated by a renewed interest [2]. The need of a more 
efficient, cost-effective and personalized care and of a 

more rational deployment of diagnostic resources is one 
of the reasons behind this renaissance. Actually, the 
development and increasing use of hospital or, even, 
cross-enterprise regional health information systems 
make possible the design of ambitious integrated 
platforms of services in order to guarantee the continuity 
of care across the various stakeholders. Clinical Decision 
Support Systems (CDSSs) are a natural and key 
ingredient of such integrated platforms, since they may 
compete with the increasing bulk of clinical data by 
providing an integrated approach to their analysis. In 
addition, CDSSs may foster adherence to guidelines, 
prevent omissions and mistakes, spread up-to-date 
specialistic knowledge to general practitioners and so on. 
This being the general setting, the purpose of this paper 
is to address the integration of signal and imaging 
investigations with the wide-ranging services provided 
by CDSSs. Actually, signal and image processing 
methods may be understood and embedded as a part of 
the model base of the CDSS. In such a way an effective 
high-level integration of signal and image processing 
methods in the general process of care is achieved. With 
the aim of avoiding unnecessary generality, the paper 
addresses the specific yet complex and paradigmatic 
example of image and signal processing for decision 
support in heart failure. Indeed, heart failure is a clinical 
syndrome, whose management requires –from the basic 
diagnostic workup– the intervention of several 
stakeholders and the exploitation of various imaging and 
non-imaging diagnostic resources. The paper is 
organized as follows. First, heart failure management is 
briefly described in Section 2.1, including a description 
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of its diagnostic workup which is enlightening to 
understand the complexity of this syndrome. In Section 
2.2 the quest for a decision support system is motivated, 
describing relevant decisional problems. In Section 3, 
signal and imaging investigations are justified, 
highlighting the value added to the CDSS, while suitably 
designed algorithms for image and signal processing are 
introduced in Sections 3.2 and 3.3 respectively. In 
Section 4, the results of architectural design for 
integration are described both at the IT infrastructure 
level (Section  4.1) and at the higher level represented by 
the general CDSS (Section  4.2). Finally, Section 5 ends 
the paper with some remarks and directions for future 
work. 
2. Background 
2.1 Heart  Failure 

Heart Failure (HF) is a complex clinical 
syndrome resulting from any structural or functional 
cardiac disorder which impairs the ability of the ventricle 
to fill with or eject blood. In its chronic form, HF is one 
of the most remarkable health problems for prevalence 
and morbidity, especially in the developed western 
countries, with a strong impact in terms of social and 
economic effects. All these aspects are typically 
emphasized within the elderly population, with very 
frequent hospital admissions and a significant increase of 
medical costs. The first, immediate and enlightening 
proof of HF complexity is represented by its diagnostic 
workup, which we briefly describe next. Indeed, it can be 
considered as the first stage of HF patients’ management 
which necessarily requires the acquisition and analysis of 
signal and imaging data. 

 Fig. 1. HF Diagnostic Workflow 
Heart Failure Diagnostic Workup. Figure 1 

shows the sequence of steps that compose the HF 
diagnostic workflow  [3]: after having assessed the 
presence of main signs and symptoms, physicians 
usually require diagnostic examinations such as ECG, 
chest X-ray and neuroendocrine evaluations (i.e. Brain 
Natriuretic Peptides - BNP) in order to check out the 
diagnosis, confirmed eventually by an echocardiography 
investigation. Supporting such a decision problem 
requires to encode the workflow into an opportune 
knowledge base which formalizes, for each step, the set 

of conditions evaluated by physicians. The first step 
regards the presence and severity of signs and symptoms 
such as breathlessness, swelling, fatigue, hepatomegaly, 
elevated jugular venous pressure, tachycardia, third heart 
sound and pulmonary crepitations. Then, ECG signals 
are acquired for investigating the presence of anterior Q 
waves and left bundle branch block, signs of left atrial 
overload or left ventricular hypertrophy, atrial fibrillation 
or flutter and ventricular arrhythmia. If ECG 
abnormalities are present, HF diagnosis is considered 
carefully possible and further checked out by analyzing 
chest X-ray. Such an examination is useful for detecting 
the presence of cardiac enlargement (cardio-thoracic 
ratio > 0.50) and pulmonary congestion. In parallel, 
neuroen-docrine analysis are performed to test out high 
levels of natriuretic peptides which suggest the presence 
of a cardiac disease. Whether all these examinations 
certify the presence of abnormalities, an 
echocardiographic investigation is per-formed for 
documenting a cardiac dysfunction. The most important 
parameter to be evaluated from such a diagnostic 
modality is the Left Ventricle Ejection Fraction (LVEF); 
other relevant data are the fractional shortening, the 
sphericity index, the atrioventricular plane displacement, 
the myocardial performance index, the left ventricular 
wall motion index, the isovolumic relaxation time, the 
early to atrial left ventricular filling ratio, the early left 
ventricular filling deceleration time, the pulmonary 
venous atrial flow velocity duration, the ratio of 
pulmonary vein systolic and diastolic flow velocities, 
and the pulmonary artery pressures. HF diagnosis is 
finally concluded if symptoms and signs and ECG / X-
ray / BNP level / Echocardiographic abnormalities are all 
present. 
2.2 Decision  Support  in  Heart  Failure 

Recent studies and experiences have 
demonstrated that accurate heart failure management 
programs, based on a suitable integration of inpatient and 
outpatient clinical procedures, might prevent and reduce 
hospital admissions, improving clinical status and 
reducing costs. Actually, HF routine practice presents 
several aspects in which an automatic, computer-based 
support could have a favorable impact. A careful 
investigation about the needs of HF practitioners and the 
effective benefits assured by decision support was 
performed: four problems have been identified as highly 
beneficial of CDSS point-of-care intervention [4]. They 
can be referred as macro domain problems and listed up 
as: (i) HF diagnosis, (ii) prognosis, (iii) therapy planning, 
and (iv) follow-up. Further detailed decision problems 
were identified for specifying these macro domains, 
focusing as much as possible on the medical users’ 
needs; explicative examples are: 

 severity evaluation of heart failure – 
identification of suitable pathways   
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 planning of adequate, patient’s specific therapy 
– analysis of diagnostic examinations  

 early  detection  of  patient’s  decompensation  
An accurate analysis highlighted that the needed corpus 
of knowledge mainly consisted of domain know-how. 
Nevertheless, the solution of some of these problems 
seemed still debated in the medical community, due to 
the lack of validated and assessed evidences. In such 
cases, computational models appeared the best solution 
for modelling the decision making, extracting knowledge 
directly from available data. In this perspective, a CDSS 
for the management of heart failure, which com-bines 
several models of reasoning, has been suitably designed. 
Having the overall organization of the CDSS being 
reported in [5], the focus in the sections below is on the 
analysis of diagnostic examinations and on their 
integration into the CDSS. 
3. Signal  and  Image  Processing  in  Heart  
Failure 
3.1 Significance 

During the formalization of the main decisional 
problems that require the CDSS intervention and, hence, 
listing up all the pieces of knowledge, data and 
information relevant for decision making, the importance 
of considering and interpreting ECG signals and 
echocardiography images had come forth. Indeed HF 
diagnostic workup was a straightforward example of the 
importance of computer-aided data processing in HF 
decision making, but other significant contributions can 
be envisaged. Overall, among all the profitable 
applications into decision support workflows, the 
following can be listed up: 

 automatic or semi-automatic computation of 
parameters relevant in the decisional problems;  

 support of physicians’ case-based reasoning 
processes; – discovery of novel pertinent 
knowledge.  

While the first is typical of routine workflows in 
relatively simple situations, as described in the 
diagnostic workup example, the other two can be 
considered advanced applications that may aid 
physicians in facing critical cases or critical problems. 
Actually, not only the parameters extracted from signals 
and images examinations are significant to physicians for 
formulating a response but also the data themselves can 
be useful for having a general overlook of a patient’s 
situation. This means that allowing clinicians to explore 
data can assure the availability of a lot of other pieces of 
information hidden in the same data. Moreover, when 
dealing with a difficult case, comparing the one at hand 
with assessed responses for other patients’ situations can 
be really helpful [6]. This entails maintaining and 
making available a database of cases with annotated 
images and signals which can be retrieved by similarity 
on a set of computed features (see Section  4.1). Difficult 
diagnoses and, most of all, prognosis assessment are 

examples of these situations. For such critical problems, 
data processing facilities can have further relevance for 
the discovery of novel knowledge by granting the 
computation of a wide range of parameters which can be 
explored and correlated in order to find out new relevant 
patterns  [7]. 

Finally, from the opposite side, opportune 
knowledge formalization may represent advantages in 
personalization of diagnostic imaging and non-imaging 
investigations. This means that adequate conditions 
could be encoded within the CDSS in order to suggest 
which kind of parameters could be more usefully 
evaluated for a given patient during, for instance, an 
echocardiography or an ECG session. 

                        (a) 

                        (b) 
Fig. 2. Typical frames of an image sequence taken from 
the apical view    
 
3.2 Image  Processing  Methods 

Imaging techniques offer invaluable aid in the 
objective documentation of cardiac function, allowing 
for the computation of parameters relative to chamber 
dimensions, wall thickness, systolic and diastolic 
function, regurgitations and pulmonary blood pressure. 
As previously mentioned, chest X-ray and 
echocardiography should be included in the HF initial 
diagnostic workup. Further, echocardiography will be 
regularly repeated to monitor in an objective way the 
changes in the clinical course of a HF patient. Additional 
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techniques, like nuclear imaging and cardiac magnetic 
resonance, may be also considered for particular patients, 
since they have not been shown to be superior to 
echocardiography in the management of most HF 
population. Thus, echocardiography and in particular 2-
D TransThoracic Echocardiography (TTE) for its 
portability and versatility is the key imaging technique 
for the practical management of HF. The most important 
measurement performed by TTE is LVEF, which permits 
to distinguish patients with cardiac systolic dysfunction 
from patients with preserved systolic function. LVEF is 
given by the normalized (non-dimensional) difference 
between left ventricle End-Diastolic Volume (EDV) and 
the End-Systolic volume (ESV). Among different models 
for the computation of such volumes, the American 
Society of Echocardiography  [8] suggests the use of the 
so-called Simpson’s rule, by which the left ventricle is 
approximated by a stack of circular (or elliptical) disks 
whose centers lie in the major axis. Simpson’s method, 
therefore, relies on left ventricle border tracing. It is 
well-known that manual border tracing, besides being 
time-consuming, is prone to inter- and intra- observer 
variability, and thus is unable to provide a satisfactory 
and reproducible measurement of LVEF. Image 
processing techniques may reduce variability of human 
interventions in border tracing, by providing automated 
or, at least, semiautomated methods for tracing contours 
of relevant structures found in an image. However, the 
segmentation problem for ultrasound images is by no 
means trivial, due mainly to low signal to noise ratio, 
low contrast, image anisotropy and speckle noise [9]. 
Nevertheless, some acquisition devices already offer the 
possibility of automatically computing a set of relevant 
parameters but are still really expensive and this is the 
reason why older devices are still very common. 

From these considerations, it was early realized 
that the development of assisted segmentation methods, 
able to deal with echocardiographic image sequences, 
could represent a valid support to the physicians in the 
process of image report formation. Thus a prototypical 
toolkit  [10] –composed of three main modules– for the 
analysis of apical-view sequences of the heart has been 
developed. Two typical frames of such sequences are 
shown in Figure 2. The first module (Region 
Identification ), which takes in input an apical sequence 
of the heart, is able to identify the left ventricle cavity in 
every frame of the sequence by means of mimetic 
criteria, providing a rough segmentation. The second 
module (Segmentation Refinement ), which takes in 
input an image and a rough segmentation of it, is able to 
refine the segmentation exploiting a variational 
formulation of level set methods, which achieves 
regularization of the boundary of the left ventricle as 
well as better adherence to image edges  [11]. The third 
module (Feature Extraction) is able to extract significant 
features from a set of segmented left ventricles, the most 

important being EDV and ESV (both computed 
according to Simpson’s rule) and, in turn, LVEF. After 
the integration in a suitable graphical user interface, three 
possible ways may be foreseen to employ the toolkit. 
These ways are described below according to the 
automatism level, starting from the less automatic one. 
Case A) Manual Selection of the End-Diastolic and 
End-Systolic Frames and Rough Manual Contour 
Tracing. In this case, the toolkit provides a refinement of 
the manually traced left ventricle contour in the manually 
selected frames. Instead of using the common free hand 
selection, the user may just quickly select a polygonal 
region approximating the left ventricle cavity. The 
Segmentation Refinement module is then triggered. In 
particular, the manually drawn con-tour is used for the 
initialization of the level set method. Finally, the third 
module is used for feature extraction. 
 

                       (a) 

                       (b) 
Fig. 3. Final result of segmentation in an end-systole (a) 
and in an end-diastole (b) frame 
 
Case B) Manual Selection of the End-Diastolic and 
End-Systolic Frames and Automatic Contour 
Tracing. In this case, the toolkit traces automatically the 
contour of the left ventricle in the manually selected 
frames. The Region Identification module is used to find 
an approximate left ventricle contour. Then the contour 
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is refined by the level set segmentation step as in Case 
A). 
Case C) Automatic Selection of the End-Diastolic and 
End-Systolic Frames and Automatic Contour 
Tracing. In this case the toolkit takes in input the whole 
image sequence and applies the Region Identification 
module to every frame in order to obtain a rough 
segmentation of the left ventricle. Then the volume of 
the cavity is computed on this rough segmentation by 
using the Feature Extraction. The indices of the frames 
corresponding to the extremal values (i.e. maximum and 
minimum) of the volume are found and stored. Then, the 
Segmentation Refinement is applied to the contours in the 
frames which are near to those of extremal values. 
Computing again volumes on the basis of the refined 
contours by the Feature Extraction module leads to the 
identification of the end-systole and end-diastole frames 
and to the computation of related clinical parameters. 
The final result of segmentation in the automatically 
identified end-systole and end-diastole frames is shown 
in Figure 3. 

The proposed image processing toolkit could be 
easily extended in several ways. Besides integrating 
standard tools for performing graphically image 
measurements (such as linear measurements) and 
producing IHE-compliant Simple Image and Numeric 
Reports, the core segmentation modules may be adapted 
to deal with other echocardiographic views, so as to 
perform a complete quantification of heart chambers. 
                                       
3.3     Signal  Processing  Methods 

ECG is one of the very basic examinations 
performed in the evaluation and assessment of HF. 
According to  [3], the negative predictive value of 
normal ECG to exclude left ventricular systolic 
dysfunction exceeds 90%. The most common ECG 
examinations are the Resting ECG and the Holter ECG. 
While the latter is more commonly used for the 
discovery of rhythm abnormalities and the computation 
of the Heart Rate Variability (HRV), the former is more 
commonly used for the evaluation of morphological 
abnormalities in the PQRST shape. Considering the 
crucial role of ECG signals and the various related 
examinations, it has been immediately judged important 
to design and implement some basic, robust and scalable 
algorithms for ECG processing that could be 
immediately applied to the raw data acquired by ECG 
devices with different lead numbers and different 
acquisition periods. After some interviews with the 
clinicians, it has been identified a significant operative 
scenario, where the ECG acquired with a non-
interpretive electrocardiograph is transferred to the 
hospital gateway and from there processed in order to: 

1. Detect  the  QRS  complexes  
2. Identify  the  dominant  beats  
3. Evaluate  the  averaged dominant  beat  (for  all  

the  leads)  
In particular, the averaged dominant beat can be 

used by the cardiologists (with the help of a graphical 
ECG viewer), for the evaluation of all the measurements 
of interest for the diagnosis or the follow-up of heart 
failure patients, like ST de-pression, QRS and QT 
durations, Sokolow-Lyon index for left ventricular 
hyper-trophy, presence of left or right branch bundle 
block and presence of pathological Q waves. Notice that, 
since the average dominant beat is cleaner from the noise 
than the original signal, performing measurements on 
this average beat leads to a more accurate results, thus 
reducing inter- and intra- observer variability. The 
algorithms developed for ECG processing are briefly 
described below. 
QRS Detection. The selected approach for QRS 
detection belongs to the time-domain techniques  [12]. 
The first step consists in a signal pre-filtering using a 
moving-average linear filter in order to reduce the 
baseline wandering and the high-frequency noise, and to 
select the typical frequencies contained in the QRS 
complexes. Then a QRS enhanced Signal (QeS) is built 
as the sum of the absolute derivatives of each pre-filtered 
channel. The filter for the generation of the derivatives 
has been chosen trying to reduce the effect of the high 
frequency residual noise. In practice a pass-band filter is 
used with a derivative behavior in the band of interest. 
Then, the beginning of a QRS is detected when the QeS 
overcomes a suitably defined adaptive threshold. Using 
only the above algorithm the QRS detection results are 
good enough, especially in recordings with low or 
medium content of noise. However, when the noise in 
one or both leads is high, the performances of the 
detector are significantly reduced. Therefore, a technique 
for the improvement of the detection performance when 
the noise is present only in one channel has been 
introduced. In particular a Noise Index (NI) is associated 
with every detected QRS on the basis of the T-P interval 
average power divided by the QRS average power 
[13].Since the NI can be used as an indicator of the noise 
in the two different channels and of good QRS detection, 
the appearance of a number of consecutive noisy QRSs 
determines the beginning of a noisy interval, which ends 
once a few consecutive non-noisy QRSs appear. In this 
way, a procedure for best channel selection can be 
obtained with significant improvement of the overall 
QRS detection performance. The results have been 
evaluated on the 48 records of the MIT-BIH Arrhythmia 
Database where each ECG record is composed by 2 leads 
sampled at 360 Hz for a total duration of about 30 
minutes. The annotated QRSs are 109494 in total. The 
results have been very satisfying on all the an-notated 
QRSs and, with the inclusion of an automatic criterion 
for ventricular flutter detection, a sensitivity=99.76% and 
a positive predictive value=99.81% have been obtained. 
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Construction of the Average Dominant Heart Beat.  
A prerequisite for the construction of the 

average dominant beat is the morphological 
classification of each detected QRST. In fact, it is 
necessary to avoid the introduction of extrasystoles or 
non-dominant beat in the averaging process, since they 
would alter the quality of the averaged beat. Normally 
the evaluation of the heart beat type is performed 
considering its morphology and its occurrence compared 
to the previous and following beats (rhythm). If the 
requirement is to obtain a complete rhythm evaluation, 
then it is necessary an accurate classification of each 
heart beat based on both morphological and rhythm 
criteria. However, significant clinical information can be 
obtained from the analysis of the dominant beat 
morphology. For the classification algorithm, only the 
basic morphological parameters were taken into 
consideration, trying to limit as much as possible the 
complexity of such a system. For such purpose, the 
development and the test of the algorithms were made 
using the records of the MIT-BIH Arrhythmia Database 
that includes four records acquired from patients with 
pacemaker. The algorithm is based on a two-stage 
clustering technique; firstly a possible classification of 
all beats is performed, and then all clusters but the one 
that has been identified with the dominant beats of the 
signal are reprocessed. In particular, the clusters 
containing non-dominant beats (according to the first 
stage) that are large in number are split into smaller ones 
and reconsidered for misjudgment of being non-
dominant. Details will appear elsewhere. 

Finally, the averaged dominant beat is 
represented by the class centroid of the dominant class 
evaluated on all the QRST assigned to the dominant class 
after accurate alignment with horizontal and vertical 
wiggling. Figure 4 shows a graphical interface that, 
among other functionalities, allows for visualizing the 
average dominant heart beat and performing linear 
measurements. 
4      Architectural  Design  and  Results 
4.1     IT  Infrastructure 

The signal and image processing methods 
described in Section 3 have as a result a bunch of clinical 
parameters together with a new set of annotated images 
and wave-forms (e.g. the segmented echocardiographic 
sequences and the computed aver-aged dominant beats). 
These data should be stored in a structured way in order 
to trigger CDSS functionalities involving the extracted 
parameters; further retrieval procedures should be 
devised to support physicians’ case-based reasoning. 
Aiming at answering these needs, a composite repository 
has been prepared and standard-compliant network 
services have been enabled. Apart from a standard 
database for clinical parameters, a DICOM Image 
Archive has been included into the composite repository. 
The Image Archive is used to store the original images 

deriving from a TTE examination as well as the 
annotated images produced by the image processing 
toolkit. DICOM Secondary Capture (DICOM-SC) 
modality is used for the latter purpose, since it is 
specifically designed to embed the results of image 
processing (ranging from the application of enhancement 
filters to more complex image processing procedures) 
into a DICOM image  [14]. The header of the DICOM-
SC image may replicate the patient personal information 
contained in the original DICOM image which is used as 
input of the image processing algorithms. Further, the 
header may be used to add a reference to the original 
DICOM study: in this way the original images and the 
processed ones are persistently linked together within 
one DICOM study. However, when DICOM-SC is used 
for storing the results of a segmentation task, a major 
limitation is represented by the impossibility to edit the 
segmentation after exporting to DICOM-SC. This 
problem will be fixed in future releases of DICOM 
standard; actually some relevant DICOM supplements 
are in an advanced status of preparation (such as DICOM 
Supplement 132 which aims at defining the so-called 
Surface Segmentation Storage SOP Class). Having 
obtained in this way an interoperable repository, a 
second step towards integration consists in embedding 
network services into the developed prototypical toolkit. 
Up to now, the image processing toolkit is able to save 
its results in DICOM-SC format with a meaningful 
header. The header may replicate the personal details of 
the patient contained in the original images and other 
pieces of information which are not altered during 
processing. A new series UID is associated to the 
segmented images, while the study UID (if available in 
the original images) is kept. Further, DICOM utilities 
(based on the JAVA implementation of DICOM 
provided by the DCM4CHE toolkit  [15]) have been  
Fig. 4. A screen of the ECG viewer displaying (in zoom 

mode) additional information including the reference 
(average) beats. The caliper (ruler) is active and the 
amplitude and intervals can be accurately 
measured.integrated in the toolkit; in particular, the 
segmented images are sent to the Image Archive directly 
from the image processing application. 
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4.2     Integration  in  the  General  CDSS  
Architecture 

The intervention of signal and image processing 
methods into the management of care delivery, as 
detailed in the previous sections, has been carefully and 
deeply investigated while designing the CDSS, 
identifying its functionalities and modeling its 
architecture. The CDSS has been devised for processing 
patients’ related information by exploiting the relevant 
medical knowledge which has been opportunely elicited 
from medical experts and extracted from clinical 
guidelines. The symbolic paradigm has been selected for 
formalizing such knowledge into an ontology- and rule-
based Knowledge Base  [4]. During the knowledge 
representation process, the integration of both signal and 
image processing methods has been conceived in order 
to embody parameters extracted from different data 
acquisition modalities into the more general process of 
health care management. In particular, the integration has 
been focused on two main issues, i.e. (i) sup-plying 
relevant parameters to the inferential processes and (ii) 
personalizing the diagnostic investigations by suggesting 
which parameters should be extracted. An example can 
be used for better explaining the implications of these 
two is-sues: while processing a patient’s information for 
identifying the causes of his worsening, the CDSS may 
need a number of routine parameters not yet avail-able. 
In such a case, a suggestion will be issued by the system 
asking the clinician to perform additional examinations, 
such as an ECG or a TTE, in order to obtain the missing 
parameters. On the other side, it can happen that such 
routine parameters are not able to completely explain 
patient’s status and thus the sys-tem can require the 
extraction of other non standard features that can 
enlighten patient’s peculiar conditions. In both cases, the 
inferential process pauses, waiting for additional 
information. Reactivating the inferential process requires 
data processing algorithms to be performed. The CDSS 
has been hence carefully and specifically designed for 
incorporating this kind of functioning. Figure 5 shows 
the CDSS architecture defined according to a multilevel 
conceptualization strategy which distinguishes between 
the knowledge and processing components. Such 
conceptualization division makes the organization of 
knowledge inside the sys-tem explicit, providing an 
implementation-independent description of the role that 
various knowledge elements play during the decision 
supporting process. 

The  CDSS  is  then  composed  by  the  following  
components: 
 

 the Domain Knowledge Base which maintains 
the domain knowledge, formalized from the 
guidelines and from the clinicians’ know-how. 
It consists of a suite of ontologies and a base of 
rules;  

 the Model Base which contains the 
computational decision models, signals and 
images processing methods and pattern 
searching procedures;  

 the Meta Knowledge Base which is composed 
by the strategy knowledge about the 
organization of the CDSS tasks;  

 the Brain which is the system component 
endowed with the reasoning capability. It is 
divided into (i) a meta level composed by a 
Strategy Controller that manages and 
orchestrates the object level according to what 
stated into the Meta KB; and (ii) an object level 
that contained both an Inference Engine for 
reasoning on the Domain KB and a Model 
Manager for handling and applying 
computational reasoning and data processing 
models.  

 

             Fig. 5. The CDSS architecture 
 
In particular, the integration of signal and image 

processing models are, first of all, assured by a dedicated 
formalization of the relevant acquisition modalities, 
diagnostic examinations and computable parameters 
within the ontologies of the Domain KB. Moreover, 
inferential rules able to process parameters extracted 
from both signals and images are encoded into the same 
KB. Finally, the Meta KB contains suitable procedural 
rules for integrating the application of the data 
processing methods into the inferential reasoning 
process. More precisely, when the Inference Engine 
stops into a crisis status due to the missing values of 
specific parameters, the Strategy Controller is able to 
solve the problem by requiring the application of the 
opportune processing methods triggered by the Model 
Manager. 
 
5      Conclusions 

In this paper we have presented a high-level 
integration of diagnostic signal and image processing 
into the wide-ranging services provided by a CDSS for 
the management of heart failure. In particular, we have 
motivated the choices made in designing suitably image 
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and signal processing algorithms and we have shown 
how they can be deployed in decisional problems –and 
hence in the global process of care– by the CDSS. Future 
activities will focus on the extension of the already 
developed signal and image processing toolkit as well as 
on the realization of an integrated interface for their easy 
usage in conjunction with the CDSS. 
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