
Researcher 2013;5(12) http://www.sciencepub.net/researcher

 60

QoS-based and Scalable Scheduling of OpenSees Tasks in a Virtual Cloud Computing Environment

Dr. Hadi Salimi1, Seyed Emad Fereshteh Nezhad2, Dr. Mohsen Sharifi3

1. Department of Computer Engineering, University of Science and Technology, Iran

2. Msc of Computer Engineering, University of Science and Technology, Iran
3. Department of Computer Engineering, University of Science and Technology, Iran

emad_fereshtehnejad@yahoo.com

Abstract: In recent years, the amount and complexity of computations required for solving our everyday problems
have increased considerably. These problems require higher computing power hence higher number of computing
components. Different methods are used for solving such problems such as parallel machines, computer clusters,
grid systems and cloud systems. An important issue in all these approaches is scheduling the tasks taking into
account Quality of Service (QoS) considerations. This article offers QoS-based algorithm in a cloud computing
context. QoS parameters considered in this study include cost and reduction of the average response time. The basic
procedure for this algorithm is that every user requests for QoS parameters is valuated using index method. In
addition, having received user request, computations are performed and every request is given a priority with the
aim of minimizing the cost and according to resource utilization. The result of this valuation of user requests is first
used for scheduling activities in real environment. These indexes are then used in the system’s execution queue to
determine the priority of user request. The proposed algorithm is implemented in a real environment using the
OpenSees software. Results from the computations indicate that using the proposed algorithm improves the average
execution time by 15% compared to the EDF (Earliest Deadline First) method while increasing the number of
OpenSees execution requests. It also reduces resource utilization cost proportionately by 5%. This study reveals that
using the proposed method increases the number of requests and at the same time fewer requests are missed.
[Hadi Salimi, Seyed Emad Fereshteh Nezhad, Mohsen Sharifi. QoS-based and Scalable Scheduling of OpenSees
Tasks in a Virtual Cloud Computing Environment. Researcher 2013;5(12):60-68]. (ISSN: 1553-9865).
http://www.sciencepub.net/researcher. 7

Keywords: Scheduling, Tasks Graph, OpenSees, Cloud Computing

1. Introduction

At the beginning of the 90s when the
number of local workstations and cluster computers
were not sufficient to perform scientific work loads,
scientific committees started to construct some
groups through which they could exclusively share
their existing clusters. Thus, the idea of grid
computing was formed. The common factor between
cluster computing and grid computing models was
that through both of them empty and unused
computing capacity of workstations was shared.

This sharing was typologically different
from one problem to another and did not always
guarantee higher efficiency. The grid computing
model has had the highest influence in developing
scientific works. It has been claimed that the users of
a grid environment have easy access to a high
number of computing nodes and by adding more
computing resources enhance the speed of producing
output [2].

Cloud computing is a model based on the
internet by which computing resources are shared
through a cloud environment and the internet
interface. Softwares, information, cloud environment
and all other devices are available to users as public
tools. Cloud computing is a new supplementary,

practical, and commercial model for internet-based IT
services. Cloud computing is claimed to be
dynamically scalable and most of its resources are
found on the internet in form of services.

In the last few years, Amazon cloud
computing system, EC2, and other commercial cloud
systems have offered computing services with
defined service quality. For specific time intervals
(usually in hours) until the request time ends, cloud
computing resources can only be used for the same
interval of time. The flexibility of cloud environment
allows users to customize computing resource for
several hours or a number of resources for one hour.

One of the challenges of scheduling
resources in a cloud computing environment is
selecting suitable computing resources in order to
execute one user request. In fact, it is impossible to
predict which computing resource group has higher
efficiency for the user’s request. Therefore, the main
issue in this phase is allocating certain number of
computing resources to an activity in a particular
interval of time.

In this article, it has been attempted to
offer a strategy that could make selecting and
combining QoS parameters simpler by indexing them.
QoS parameters considered in this study include the

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 61

cost of executing the program on virtual machines
and the reduction of average execution time. The
general procedure for this approach is that once
program execution request is received from the user
in the form of a workflow of activities, the QoS
parameters chosen by the user (service-level
agreements) are valued using indexing method. In
addition, once user request is received and assuming
that execution is done with minimum cost,
computations are simultaneously done according to
the amount of resource utilization and prioritized.
Result obtained from the valuation of user request is
first matched with the result from resource computing
to check the feasibility of execution. The result of
matching user request valuation and computing
resources are then used to determine user request
priority in execution queue. Using this strategy, ideal
conditions could be matched to real conditions.
Results from this evaluation show that using this
method causes an average reduction of 15 per cent in
resource utilization. It also reduces the average
execution time by 15 per cent. The rest of this article
is organized as follows: section 2 deals with related
works about workflow scheduling in cloud
computing. Section 3 explains the hypotheses and
models introduced in this paper. In section 4, the
architecture designed for scheduler system is
described. Section 5 explains how different parts of
the main scheduler work. Section 6 describes
execution queue holder and the algorithm monitoring
execution queue. In section 7, the proposed method is
presented in a real environment. Finally in section 8,
conclusion is made and future works are explained.

2. Related Work

In [6], workflow scheduling in grid
computing is studied. This is study is a two-condition
scheduling model. In this study, DCA strategy is used
to optimize problem with two independent conditions
of cost and execution time. Selected algorithm first
chooses the main condition and the user sets the
variability percentage of the second parameter. This
strategy does not include service quality requirements.
Neither does it distinguish between resources and
QoS. Finally, it does not use task categorization to
reduce bandwidth usage.

In [8], a scheduling algorithm is proposed
which is based workflow cost for real-time
applications. The purpose of this algorithm is to
develop a scheduler that could minimize cost, but is
limited by time restrictions applied (forced) by the
user. The incoming workflow is divided into subtasks
in order to form a direct flow. Jobs\tasks that cannot
form a flow are separated and each of them is
executed in an independent subcategory.

The method proposed in [7] first provides

different users, each of whom needs certain QoS
parameters, with different services. Then, in order to
present workflow from occurring at the same time,
one strategy for scheduling several workflows with
different QoS limitations has been proposed. In
addition, it introduces a scheduler to check the
requirements of optimizing QoS parameters,
minimizing execution space and cost by optimizing
where softwares are placed.

In [5], a model is proposed based on QoS
which allows performance degrader elements to be
identified and problem be detected through a fault
tolerance strategy.

In [9], a heuristic, greedy method is
introduced and in [10] homogeneous earliest finish
time algorithm is defined. In both articles, QoS
parameters are disregarded. Also, in both methods it
is assumed that there is a workflow graph and the
strategy is not suitable for real conditions.

In [12], a strategy with throughput
maximization for scheduling workflows with heavy
transactions is proposed. However, this method is not
suitable for scheduling several workflows because by
workflows with heavy transactions we mean
executing several examples of the same workflow.
Therefore, this strategy is primarily useful for one
workflow and the notion of several workflows
requires that every workflow be completely different
with the next one in terms of structure and number of
transactions.

In [13], a guided-planner strategy is
proposed for scheduling several workflows. This
strategy first values all jobs and then decides which
one should be done first. In this procedure, executing
the tasks with lower value is constantly postponed. In
addition, in this strategy, QoS requirement parameters
such as cost are not taken into account.

In the strategies introduced, conditions of
the execution environment (the bandwidth used,
exhaustion of resources) are not taken into account.
Also, prioritization or variability ofQoS parameters
and matching them to the user’s request are not taken
into account. In this study, it has been attempted to
introduce a strategy in which conditions of the real
execution environment are met as well as some QoS
parameters such as execution time.

3. Hypotheses and Models

In this paper, two models are considered
for presenting the procedures. These models include
infrastructure model and software model
characteristics of which are explained below.
3.1. Infrastructure Model

In the infrastructure model, a series of
physical machines are considered. A virtual
monitoring machine VMware ESXi4.1 is installed on

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 62

every physical machine. At least four virtual
machines are installedon each physical machine by
this monitoring machine. This series along with their
subsystems are interconnected through a local
network. All physical machine are independent of
each other and can be on or off independently. This is
also true for virtual machines i.e. each installed
virtual machine can be on, off or on suspend
independent of the other machines. The defined
specifications of all physical and virtual machines are
identical. Each physical machine is equipped with an
Intel CoreTM22 Duo 2.2 GHz and 4GB of main
memory. The operating system installed on each
virtual machine is a Windows XP along with
supplement V.3. Therefore, all systems are of the
same type and identical.
3.2 Software Model
As previously mentioned, OpenSees and TCL Editor
softwares have to be installed on each virtual
machine. The fourth version of .Net Framework has
to be also included in each system. Finally, a copy of
the software must be installed on the systems. This
software is implemented in order to connect the
systems, receive different parts of the program,
transfer the results obtained from execution and to
report how the OpenSees software is operating.

4. System Architecture
In the architecture of the proposed design

as showed in Fig 1 is considered. The user first gives
the system the request to execute simulation program
along with service level agreement. Every request is
first delivered to the super scheduler. The super
scheduler consists of three subsections: 1 the section
related to receiving user requests; 2. the section
responsible for calculating the average time of
completing the request in different states and 3. The
section setting request priority and producing a list of
requests has being executed. After receiving the
request, the amount of resources required to execute
user request is estimated. In addition, in this
computation the degree of a request’s priority and the
number of resources with which it should be executed
are also determined. Finally, the result of these
computations is matched with the user request and
the system selects the appropriate execution. Then,
the request along with the properties of the estimated
resources is delivered to the monitoring section to be
placed in the execution queue (Fig. 1. Part B.). In this
section, the request is placed in the execution queue
according to the proposed algorithm. The requests are
delivered to the core of the computing cloud (Fig. 1.
Part C) in certain time.

Figure 1: proposed System Architecture

In the core of the proposed strategy, every

request is given to the first free virtual machine (Fig.
1. Part D). From that moment on, that virtual machine
would act as the initiator and controller of execution
process of the task graph. Having received user

request, the initiating machine will demand resources
from the resources management system according to
the properties determined in previous sections and
executes the request.

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 63

5. Procedure of the Super Scheduler Stages
As shown in Fig. 1, user’s request is given to the

system first. This request is checked by the first
subsection. In this section, the user’s request is
checked with the assumption of “executing request
using one hundred percentage of the virtual
machines’ computing capacity.” This assumption has
two advantages: firstly, if the system does not have
sufficient resources to execute the request in the
shortest time possible, it could be executed with the
lowest cost. Secondly, it is a benchmark to identify
the user request’s degree of promptness. Using this
checking, a flag is set which registers the promptness
of the request. If in this state the user’s request could
be executed with one hundred percent of the
computing capacity in the identified time, we could
easily place it in the system’s execution queue taking
into account the parameters and prioritization of
users’ requests. Nevertheless, if using one hundred
percent of the computing capacity did not yield an
execution in that given time, the request will be on a
critical path. It means that in order not to miss the
request more resources should be used for the
execution to be done in the deadline specified.
Therefore, the special flag of this issue is set to the
critical state. In this section, completion time and the
deadline defined for it are interrelated in four states:
1. Jobs with short deadline and long completion time;
2. Jobs with short deadline and short completion
time;
3. Jobs with long deadline and long completion time;
and
4. Jobs with long deadline and short completion time.

In subsection two, estimation of the user’s
request execution resources is computed assuming
that different computing capacities are used. It means
how much completion time will it have if user’s
request is executed with 25% of the virtual machines’
computing capacity? Where in the execution queue
will it be? How much will execution cost be in this
state?

This computation is performed for utilizing

50%, 75% and 100% of the capacity. Choosing this
categorization and defining coefficients for
computing power usage results in simplification in
two respects: firstly, a program can be easily divided
into several sections and secondly, computing
capacity is standardized to create cost-benefit
conditions. If user requests are executed using 25%
of the virtual machines’ computing capacity, there
will be short completion time and high execution cost
and if they are executed with 100% of the computing
capacity, there will be long completion time and low
cost.

These computations are delivered to the
third subsection of the super scheduler. This
subsection is responsible for distributing user
requests among virtual machine for execution and
scheduling. Its other responsibility is to manage
users’ requests and create a list of the jobs that are
being executed. In the next stage, user’s request is
delivered to the scheduler along with the four
computations. This scheduler compares these
computations with the agreement given by the user.
This selection determines how user’s request is
executed. The agreement submitted by the user can
be in one of three states. In order of priority value,
these states are: the state based on priority, the state
based on deadline, the state based on the lowest cost.

After matching and selecting the manner of
execution, user’s request along with this
supplementary information are sent to the queue
holder section and monitoring section illustrated in
Fig. 1.B. This section plays an important role. It has
to determine where in the queue the user request
should be placed. In this section, in addition to the
usual execution queue, a second queue is formed in
which missed jobs are placed. Jobs placed in this
queue enjoy a special priority because they must be
executed first using customized resources and then
the jobs already present in the first queue. Finally,
after the user request is placed in the related queue, it
will be sent to the resource management section
mentioned in Fig. 1.B.

Fig. 2. Super Scheduler job processing procedure pseudo code

1. Receive users’ requests along with service level agreements.
2. Given that one hundred percent of computing resources are utilized, estimate execution time.
3. Receive information related to computing resources from resource management subsystem.
4. If the resources required for the incoming workflow are more than the system’s free resources, flag the incoming job as a critical
one.
5. Estimate the required time for executing incoming job given that 75%, 50% and 25% of the computing resources are utilized.
6. Compare four computed information groups with the existing information in service level agreement.
7. Select the lowest possible percentage of resource utilization required to meet service level agreements.
8. For the incoming workflow, construct a structure to show priority, the requesting user and the request’s priority and add it to the
list.
9. Send the structure constructed in step 8 to the queue manager.

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 64

6. Execution queue monitor and holder
The execution monitoring algorithm is the

main and the most important part of the queue holder
and queue monitor (Fig 1.B). This algorithm uses a
method described below to place requests in
execution queue. The logic of this method is based on
EDF algorithm ([3], [4]). In the computing section, in
addition to computing the four execution states,
maximum start time (the maximum time for request
execution) is also computed. The advantage of this
computation is in the fact that if the job execution
start time passes the computed interval during
rescheduling of jobs, the work will definitely be
missed. This computation is according to the flag set
in step 4 in the super scheduler algorithm to show the
priority of the request.

In the monitor algorithm, the placing of the
request in the queue is determined according to this
information. The procedure is that in order to put the
request in queue the monitor starts searching until it
reach a time shorter than the request deadline. From
here on, it can be placed in the interval that has the
same length as the request completion time. In this
state, in order to create more flexibility for the
scheduler, it is better to compute the completion time
as T+t. The time difference added to the completion
time is according to the system fluctuation
proportionate to the missed jobs. For instance, if 10%
of the requests are missed in the system, it is better to
add 10% of the same length of time to the completion
time of each request.

The monitor constructs two queues for
execution. The first queue, the common execution
queue, is with A, B, C and D priorities. In the
prioritization process, there is a highest priority and
those requests are placed in the second queue. Among
the requests placed in the second queue are the
missed jobs. In order to execute jobs placed in the
second queue, some of the resources are allocated
exclusively. The number of these resources increases
proportionate to need and concentration of the second
queue. The algorithm for increasing and decreasing
resources for the second queue is completely
dynamic. First, we allocate 20% of the resources to
the second queue. In response to the second queue’s
demand we increase exclusive resources. At this time,
if there is a request in the first queue that would
require this amount of resources, the second queue is
the priority. Also, if there is a request in the second
queue and the number of exclusive resources is
insufficient for execution, resources should be taken
from the requests of the first queue which are already
being processed and only 10% of their execution is
completed and the second queue’s request should be
responded to. If such a request was not found, second
queue’s request has to wait until enough resources are

freed. After the second queue is emptied or the first
queue no longer needs resources, they return to their
initial amount.

With every request incoming to the first
queue, once the monitor finds its place in the queue,
reorganizes the set of requests after it. This
reorganization is for checking and finding requests
which may be lost with this new modification. It is
essential that the resources allocated to the second
queue are never less than 20% of the entire resources
of the cloud environment even if there is resource
shortage crisis for execution of requests in the first
queue. That is because once all resources in the
second queue are freed, it is difficult to get them back
in the middle of the execution of the requests in first
queue and it results in more requests being missed.

If the user selects the request execution
model with the lowest cost, the monitor has to inform
the resource management system to choose the
virtual machines on the same physical machine. This
also leads to the reduction of intra-network transfers
and bandwidth usage. Thus, the cost of bandwidth
usage is minimized.

7. Efficiency Evaluation

In order to evaluate the efficiency of the
proposed design, a prototype system with the
following properties was implemented. This software
is constructed with the .Net 4 technology and C#
programming language in Visual Studio (V. 2010)
environment. This software is designed for Windows.
Of course, with some modification, it also has the
capability to be executed in Linux Ubuntu (Version
10). However, with respect to the infrastructure
consideredfor easier execution of OpenSees programs,
Windows XP environment was chosen.

The software selected for case study is
OpenSees [14] software. Programs written by
OpenSees are used in simulating the behavior of a
structure subjected to earthquake. For this simulation,
using heuristic method and numerical computation
methods such as Newton, OpenSees applies
pre-defined forces to the user-designed structure and
saves the computation results for later analysis or
next stages of processing. The structure of programs
written by OpenSees can be seen in two perspectives.

First perspective: every program written by
OpenSees includes three sections including
preprocessing, processing and post-processing. In the
preprocessing section, variables are defined, required
files are created, initial values are given to the
variables or files are filled with initial values. In other
words, this section is responsible for defining and
creating the structural model. This section is most of
the time involved with parts like ROM (Hard Drive).
In the processing section, certain number of

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 65

processings is done based on the definition of the
variables and defied forces. Compared to the
preprocessing section, the processing section requires
longer time for computation. Most of the programs
written by OpenSees include only these two stages.
The last section or the post-processing section
analyses the output data registered by the processing
stage. This stage is takes a lot of time and requires
high computational capacity. The results obtained in
this stage are also saved in files. It should be noted
that if a structure is large, the processing stage takes
longer time than the post-processing stage. In this
article, however, the post-processing stage in the real
example is four times longer than the processing
stage.

The second perspective is derived from the
first perspective. As mentioned in the first perspective,
every program written by OpenSees first defines
some files and variables, processes them and finally
analyses the results. These stages are reiterated for a
certain number (n) of times. Thus, this certain
number could be considered as a combination of ones.
It means that the three said stages are run n times for
different and independent data. Therefore, every
execution could be executed separately on an
independent system. In the implementation process,
this perspective is applied.

The implemented software is designed
with the aim of running written programs by
OpenSees with reduced average execution time and
controlling the cost of executing programs. In this
software, the time required for executing OpenSees
programs from the beginning of the execution until
outputs are collected is measured. In addition, the
amount of transactions created in the network for

each OpenSees program executed is also measured
and saved in record files.

In this software, the proposed algorithm is
implemented along with the selected architecture.
The result obtained from executions is compared with
the usual execution time of each OpenSees program.
In order to implement the algorithm and architecture
we have chosen, assumptions and parameters are first
defined the result of which is described below.

According to the analysis and assumptions
considered, service level agreement for the user could
be given to the system in three states (patterns). If the
completion time is important for the user when
requesting execution of simulator program, pattern 2
(Deadline-Priority-Cost) which is based on deadline
will be selected. If the user requests several
executions of the program and prioritizes them or in
other words determines the important and the more
important, pattern 1 (Priority-Deadline-Cost) which is
based on priority will be selected. Finally, if the user
only needs to execute the program with the lowest
cost possible, pattern 3 (Cost-Priority-Deadline)
which is based on cost is recommended.

Here, the cost parameter consists of two
parts. Part one is the resource consumption of the
virtual machines per execution of user requests and
part two is the bandwidth used for transferring the
outputs. According to the analyses, if a parameter
affects the computation result in logarithmic terms,
parameters have to be multiplied to obtain a formula
for each parameter’s degree of effect [15].
Therefore, it was attempted to find a suitable
coefficient for each parameter showing its effect.
Coefficients such as the ones in table 1 could be
attributed to each parameter in each pattern.

Table 1: Computed coefficients for QoS parameters in each pattern

Pattern Name Cost Coefficient Deadline Coefficient Priority Coefficient

Based on 1.5 5 13

Based on 1.5 7 7

Based on 2 3 7

The common factors in simulator programs

are reiteration and performing a set of computations
with different initial values and assumptions.
Therefore, a written simulator program could be
divided into n parts. These parts are independent of
each other. By analyzing OpenSees software, we
found out that a program written in OpenSees
environment can ideally produce about 2 Mb of
output per execution of one part (of n parts).
Therefore, if a simulator program written by
OpenSees could be divided into n parts, the expected
output will be about n*2 Mg in the worst scenario.

Furthermore, according to the

measurements, executing one time from n times in
worst circumstances would take 4 minutes. Therefore,
executing n times would take approximately n*4
times. We may conclude that n parts could be
executed on one virtual machine sequentially which
would take about n*4 minutes or execute n times
simultaneously parallel to each other on n virtual
machines in which case execution time would be
about 4 minutes. Table t can be drawn according to
these assumptions.

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 66

Table 2: Computing different states of time and resource consumption per request
Computation

Number

Computational

capacity utilized

Task per

VM

Number of

VM

Output and bandwidth

usage (Mb)

Completion time

(mins)

1 100% M K K*M*2 4*M

2 75% 3M/4 4K/3 (4K/3)*(3M/4)*2 (3M/4)*4

3 50% M/2 2K 2k*(M/2)*2 (M/2)*4

4 25% M/4 4K 4K*(M/4)*2 (M/4)*4

It should be noted that if output values are

computed in four states, a constant value is obtained
whereas it is not so in reality. The value is constant in
terms of the overall value of traffic in the network,
but the four states are different in terms of network’s
bandwidth usage. If this constant output value is
injected to the network from a virtual machine and
wants to be transferred, it will never allow this
amount of transaction to exceed the allowed limit
(usually 30%) due to control policies on TCP/IP
protocol. That is because if the number of transacting
virtual machines are high, bandwidth usage will
increase proportionately and at a point in time the
entire bandwidth will be occupied.

Based on this information, the monitor is
responsible for matching the service level agreement
to the real conditions of the execution environment.
For the pattern based on cost, computations 1 and 2,
for the pattern based on deadline, computation 3 and
for the pattern based on priority computation 4 are
selected. For instance, if a request is estimated to
utilize 100% of the computational capacity of priority
C or D and user’s service level agreement is
execution based on cost, computation 1 or 2 is
selected. Computation number 3 or 4 can be selected

depending on the user selecting the pattern based on
priority or the pattern based on deadline and also
depending on computation priority obtained in the
first stage of the flow graph.

The reason for choosing these assumptions
for the pattern based on cost is due to the
insignificance of the request’s deadline or its not
being the priority. Therefore, if its deadline passes in
the execution queue, a flag is used which represents
this pattern and simply prevents this request from
being transferred to the second queue while not
falling behind from the current time.

Experiments are performed on a real model
in real environment. The program selected for the
experiments is a program simulating the behavior of a
two-story building in the city of Tehran with high
seismic activity [1]. In order to perform the
experiments, the requests are selected with two
methods and applied to the algorithm. The first
method is selecting requests with identical priority
and volume. By volume we mean the number of the
program’s execution loops. First, in order to perform
the experiment, three physical machines are used
with 10 virtual machines installed on each of them.
The scheduling evaluation result is shown in Fig. 3.

Fig. 3. Evaluation result of two scheduling method with three physical machines (requests’ volume are the same and

priorities different)

In this test, due to the low number of
computation resources, the proposed EDF method
performs the scheduling similar to EDF with

negligible difference. In this test, by capturing a
number of computation resources for executing
requests, the proposed EDF method will have no

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 67

considerable difference with EDF method because
the number of resources is low and limited in
proportion to the volume of requests. In the second
phase of the experiment, two scheduling methods are
implemented on 8 physical machines with 10 virtual

machines installed on each of them. In this phase, the
volume of requests and their priorities are selected
equally. As shown in Fig. 4, the proposed EDF
method responds to the requests better than EDF
method and fewer requests are missed.

Fig. 4. Evaluation result of two scheduling methods with 8 physical machines (number of requests and priorities are

the same)

In the third phase of the experiment, two
scheduling methods are implemented on 8 physical
machines with 10 virtual machines installed on each
of them. But in this phase, the number of requests is
the same and their priorities are selected different.

The result from evaluation shown in Fig. 5 proves
that the performance of the proposed scheduling
method in terms of executing requests fares better
than EDF.

Fig. 5. Evaluation result of two scheduling methods with 8 physical machines (volume of requests are the same and

the priorities different)

Evaluations indicate that the scheduler
algorithm introduced here better manages the
resources when the number of requests increases.
This results in fewer requests being missed. Results

obtained from the tests and comparing them leads us
to the conclusion that the more the number of
computation resources, the more optimal the
proposed EDF algorithm acts in scheduling the

Researcher 2013;5(12) http://www.sciencepub.net/researcher

 68

requests because the proposed method is able to
better manage pending requests for execution using
indexing method, and by constructing a second queue
and capturing a number of resources.
8. Conclusion and Future Work

In this paper, a strategy was introduced by
which heavy activities of the OpenSees software can
be performed with better management in a virtual
cloud computing environment. In addition, with
respect to the selected method (indexing method) for
receiving QoS parameters from the user, user requests
can be valued and matched with existing resources.
The proposed strategy was implemented in small
scale and in a real context. Results obtained from
different experiments reveal that the algorithm
proposed in this paper acts on average 15 percent
more optimum than EDF. This optimum behavior
includes the reduction of average request execution
time, reduction of resource utilization and reduction
of missed requests. In addition, we may come to the
conclusion that the performance of the proposed EDF
performs scheduling better than other methods when
the number of available resources is higher and with
the increase in the number of user requests fewer
requests are missed. The proposed method for
receiving parameters and evaluating them has paved
the way for evaluating scheduler response reliability
and the effects of unpredictable accidents with the
help of fuzzy logic. Future work will be extending the
indexing method to different parameters of QoS and
studying indexing on quality parameters such as
accuracy or availability.

References:
[1] M. Banazadeh, E. Fereshtehnejad, "System reliability

assessment of steel moment frames with different
failure mechanisms using Bayesian Probability
Network". 8th International Conference on
Structural Dynamics, EURODYN 2011, Leuven,
Belgium, PP 2985-2992, 4-6 July 2011.

[2] M. Baker, R. Buyya, D. Laforenza, “Grids and Grid
technologies for wide-area distributed computing”.
Software: Practice and Experience, PP: 1437–1466.
2002

[3] I. Foster, C. Kesselman, The Grid2, Morgan Kauffmann
Publishers, 2003.

[4] C. Liu, J. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment”,
Journal of the ACM 20 (1) (1973) 46-61.

[5] L. Ramakrishnan and D. A. Reed. “Performability
modeling for scheduling and fault tolerance
strategies for scientific workows”. 17th international

symposium on High performance distributed
computing ACM, pages 23-34, New York, NY, USA,
2008.

[6] M. Wieczorek, S. Podlipnig, R. Prodan, and T.
Fahringer. “Bi-criteria scheduling of scientific
workows for the grid”, 8th IEEE International
Symposium on Cluster Computing and the Grid
IEEE Computer Society, pages 9-16, Washington,
DC, USA, 2008.

[7] M. Xu, L. Cui, H. Wang, and Y. Bi. “A multiple qos
constrained scheduling strategy of multiple workows
for cloud computing”, Parallel and Distributed
Processing with Applications, International
Symposium on, 0:629-634, 2009.

[8] J. Yu, R. Buyya, and C. K. Tham. “Cost-based
scheduling of scientific workflow application on
utility grids”, 1st International Conference on
e-Science and Grid Computing IEEE Computer
Society, pages 140-147, Washington, DC, USA,
2005.

[9] R. Sakellariou and H. Zhao, “A hybrid heuristic for
DAG scheduling on hetero-geneous systems”, 13th
Heterogeneous Computing Workshop (HCW 2004),
Santa Fe, New Mexico, USA, April 26, 2004.

[10] H. Topcuouglu, S. Hariri and M. Wu,
“Performance-effective and low-complexity task
scheduling for heterogeneous computing”, IEEE
Transactions on Parallel and Distribution Systems,
vol. 13, no. 3, pp. 260–274, 2002.

[12] K. Liu, J. Chen, Y. Yang and H. Jin, “A throughput
maximization strategy for scheduling
transaction-intensive workflows on SwinDeW-G”,
Concurrency and Computation: Practice and
Experience, Wiley, 20(15):1807-1820, Oct. 2008.

[13] Z. Yu and W. Shi, "A planner-guided scheduling
strategy for multiple workflow applications,"
International Conference on Parallel Processing
Workshops IEEE Computer Society, 2008.

[14] OpenSeez software specification, available at:
http://opensees.berkeley.edu/OpenSees/workshops/p
arallel/IntroductionOpenSees.pdf

[15] J. A. Rice, "Mathematical Statistics and Data analysis",
3rd Edition, Thomson Learning Publishers, 2006.

[16] G. Galen, “What cloud computing really means?",
available at:
http://www.infoworld.com/d/cloud-computing/what-
cloud-computing-really-means-031, Visited:
2010-06-02.

[17] Parsian, A.; Fundamentals of probability and statistics
for engineering and science students., Center,
Isfahan University Press, first edition, 2005

[18] E. Walker. "Benchmarking Amazon EC2 for
high-performance scientific computing". The
USENIX Magazine, 33(5), 2008.

10/12/2013

