Evaluation of Nutritional and Sensory Properties of Cookies Produced from Sweet Potato-Maize Flour Blends

Adeyeye, Samuel A. 1,*, Akingbala, John O. 2

1. Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria.
2. Department of Food Science and Technology, Bowen University, Iwo, Nigeria.

saadeyeye@yahoo.com; jakingbala@gmail.com

Abstract: Evaluation of nutritional and sensory properties of cookies produced from sweet potato- maize flour blends was carried out. Substitution of maize flour with sweet potato flour reduced the protein from 6.8-4.4%, moisture from 5.3-5.0%, crude fibre from 3.4-2.5% and fat from 9.8-8.5% of the composite flours and the cookies. The ash and sugar contents were increased from 4.3-5.8% for ash and 2.1-3.9% for sugar with increase in sweet potato flour substitution. The calorific value of the cookies decreased from 457-397cal/100g as the percentage of sweet potato flour increased in the maize flour cookies. Sensory evaluation results showed that the colour, texture, taste and overall acceptability changed significantly with increase in sweet potato flour substitution. The study concluded that cookies could be made from blends of flour from different tropical cereals and root and tuber crops which could complement the calorie need of the people and help in food security in Africa if properly harnessed. However, optimum substitution level was found to be 40%, above this, the product becomes less acceptable to the consumer.

http://www.sciencepub.net/researcher

Key words: sweet potato, maize, flour, cookies, nutritional, quality.

1. Introduction

Maize (Zea mays L., Poaceae) is the most important cereal in the world after wheat and rice with regard to cultivation areas and total production (Purseglove, 1992; Osagie and Eka, 1998). The name maize is derived from the South American Indian Arawak-Carib word mahiz. It is also known as Indian corn or corn in America (Kochhar, 1986; Purseglove, 1985). It was introduced into Nigeria probably in the 16th century by the Portuguese (Osagie and Eka, 1998). In Nigeria, maize is known and called by different vernacular names depending on locality like ‘agbado’, ‘igbado’ or ‘yangan’ (Yoruba); ‘masara’ or ‘dawar masara’ (Hausa); ‘ogbado’ or ‘oka’ (Ibo); ‘apaapa’ (Ibira); ‘oka’ (Bini and Isha); ‘ibokpot’ or ‘ibokpot union’ (Efik) and ‘igumapa’ (Yala) (Abdulrahaman and Kolawole, 2006).

Maize is a major source of carbohydrates, protein, vitamin B, vitamin A (yellow maize) and minerals. Maize is a major source of starch. Cornstarch (maize flour) is a major ingredient in home cooking and in many industrialized food products (Mishra et al., 2012).

Sweet potato (Ipomoea batatas L.) is an important alternative source of carbohydrates and attains fourth place after rice, corn and cassava. Presently, this crop is considered as having low economic value but it has significant social importance. It is most versatile for snack food, but it is used as staple food or as a rice substitute in many countries (Zuraida, 2003). Sweet potato has a large potential to be used as food in developing nations with limited resources because of short maturity time, ability to grow under diverse climatic conditions and on less fertile soil (Zuraida, 2003). Sweet potato flour can serve as a source of energy and carbohydrates, beta carotene (pro-vitamin A), minerals (Ca, P, Fe and K) and dietary fibre which can add natural sweetness, colors and flavour to processed food products (Ulm, 1988., Woolf, 1992). Addition of various proportion of sweet potato flour in wheat flour can increase the nutritive values in terms of fibre and carotenoids. This also helps lower the gluten level and prevents coeliac disease (Tilman, et al., 2003). Blending of sweet potato flour with wheat flour can be used for production of bakery goods with improved functional properties and reduced retro-graduation, staling rate and production time (Adeleke, and Odedeji. 2010) and also helps in making a good baking product with increased economic value.

Cookies are small, flat dessert treats, commonly formed into a circular shape. They constitute an important component of the diet (Mishra et al., 2012). Research into the use of tropical crops has shown that biscuits and other pastries such as meat-pie, cookies, cake etc could be made from flours of locally available crops such as sweet potato, cassava, corn, rice, millet, sorghum etc (IITA, 1985). Cookies are convenient snacks product dried to a very low
moisture content taken among young people and adult to provide energy (Okaka, 1997).

Baking industry in Nigeria is flourishing day by day. A wide variety of baked goods is available in the market to fulfill consumer demand for nutritional requirements. Besides other baked products, cookies are one of the most popular bakery products, widely consumed due to its ready-to-eat nature, good nutritional quality, low cost and longer shelf life that has also been enriched with dietary fibre (Adelekeji, and Odedeji, 2010).

This study was conducted to evaluate the nutritional and sensory properties of cookies produced from sweet potato-maize flour blends.

1.0 Methodology
2.1 Materials

The yellow cultivar of sweet potato and white cultivar of maize used for this experiment were purchased from Kuto market in Abeokuta, Ogun State, South Western part of Nigeria. Other ingredients, e.g. fat (Breadeen brand), sugar, salt, baking powder (sodium acid pyrophosphate and sodium bicarbonate) and eggs were also purchased at Kuto market in Abeokuta, Ogun State, South Western part of Nigeria.

2.2 Methods

2.2.1 Preparation of Sweet Potato Flour

Sweet potato flour was prepared by the method reported by Kabira (1991). Sweet potato tubers were sorted, washed in water to remove dirt and adhered soil, peeled and sliced to 1-3mm thick slices. The slices were dipped in a 0.2N Potassium meta-bisulphite solution for 10 minutes and drained. The sulphited sweet potato slices were blanched in hot water to inactivate the enzymes in the tubers at 80°C for 5 minutes. After blanching the sweet potato slices were drained and dried at 60°C for 24 hours in a forced air oven (cabinet dryer). The dried slices were grounded in a hammer mill to pass through 0.3mm opening. The flour was packaged in cellophane bag until used (Fig. 1).

2.2.2 Preparation of Maize Flour

The maize flour was prepared by the method reported by Asiedu (1989) and De Ruiter (1978). Maize grains were sorted, conditioned by spray 35cl of water into the grains and allowed to stay for 15 minutes. This is done for easy dehulling and degerming. The degenerated and dehulled maize was milled in a disc attrition mill and allowed to pass through 300mm opening. The floor was packaged in cellophane bag until used (Fig. 2).

2.2.4 Preparation of Cookies

Cookies were prepared by the method reported by Okaka and Isieh (1990). Flour (200g) from each sample of different flour blends was used for the experiment. Sugar (80g) was creamed with margarine (100g) until light and fluffy constituency was obtained using kenwood chef with initial minimum speed and the speed increased step wise until the mark of 6 on the chef indicator was attained. Whole egg (60g) was added, then flour (200g), powdered milk (20g), baking powder (0.1g), and salt (1g) were added and mixed until a stiff paste (batter) was obtained. The batter was rolled on a floured board using rolling pin to a thickness of 0.2–0.3cm. The rolled batter was cut into shapes and arranged on a greased tray and baked at 150°C for 20 minutes. The cookies were brought out, cooked and packaged in cellophane bag until used (Fig. 3).

2.3 CHEMICAL ANALYSIS OF SAMPLES

2.3.1 Moisture content of the flour samples

Moisture content of sweet potato tubers, maize grains, sweet potato flour, maize flour, their blends and cookies samples were determined by oven method described in AOAC (1990) and Joslyn (1970).

2.3.2 Protein content of the flour samples

Crude protein was determined by the Kjeldahl nitrogen method where:

\[
\text{% Crude protein} = \text{ % total nitrogen} \times 6.25
\]

2.3.3 Fat content of the flour samples

Fat content was determined by the soxhlet extraction method described in AOAC (1990) and Joslyn (1970). A 2g sample was extracted with 240ml of petroleum ether in a soxhlet extraction apparatus for 8 hours. The ether was distilled off and the flask dried.

\[
\text{% Fat} = \frac{W_3 - W_2}{W_1} \times 100
\]

Where \(W_3 \) is the weight of the flash with the extracted oil
\(W_2 \) is the weight of the empty flash
\(W_1 \) is the weight of the sample.

Ash was determined by AOAC (1990) method. A 2g sample was ignited at 600°C in a muffle furnace for 6 hours. The residue was cooled in a desicator and weighed.

2.3.4 Crude fibre content of the flour samples

Crude fibre was determined by AOAC (1990) method. A 1g sample was weighed into 600ml of erlenmeyer flask, 100ml of Trichloroacetic acid (TCA) digestion reagent was added. The solution was brought into boil and reflux for exactly 40 minutes at 50 - 60°C. The crust was removed from the heater, cooled a little bit and was filter through a 15.0cm, No. 4 Whatman filter paper of 1.0g the residue was washed six times with hot water and once with methylated spirit.
Fig. 1: Flow and mass balance diagram for sweet potato flour processing.
Residue was removed by spatula from the opened out filter paper and the fibre was transferred into a porcelain dish and was dried overnight at 500°C. The sample was transferred to a desiccator and weighed when cool; it was ashed in a muffle furnace at 600°C for 6 hours. This was cooked again and reweighed.

% Crude fibre = weight of grain after drying - weight after ashing / sample weight x 100

2.3.1.5 Starch Content Determination

Starch was described by the method descended by Hassid and Neufield (1964). Each flour sample was refluxed with boiling ethanol at 80°C for 6 hours in a soxhlet extractor. The ethanol insoluble residue was refluxed with 10% HCl for 4 hours in a soxhlet extractor. The resulting hydrolysates was neutralized with 105 NaOH and quantitatively estimated by the anthrone-sulphuric acid method (Caroll et al., 1956). The value of glucose was multiplied by 0.9 to obtain the starch value (Hassid and Neufield, 1964).

2.3.1.6 Sugar Content Determination

This was determined by refractometry method with the ABBE 60 Refractometer (Bellingham _ Starley Limited, Kent, England).

2.3.1.7 Calorific Value Determination

Calorific values of the cookie samples were determined by using Gallenkamp Ballistic Bomb Calorimeter (Coded CBB 330). 1g of each sample of the cookies was ignited electricity and burnt in excess oxygen in the bomb. The maximum temperature rise of the bomb was measured with the thermocouple and galvanometer system.

2.4 Sensory Evaluation

Cookies prepared from maize flour and maize flour with various level of sweet potato flour substitution was compared to cookies from 100% wheat flour sample (R), and 2 = Extremely inferior to R. Two different 10 members consumer type untrained sensory panels selected from undergraduate students of University of Agriculture, Abeokuta who eats cookies regularly participated in the sensory test. Also, quality attributes, colour, texture, taste, appearance, crispiness and overall acceptability were evaluated on a 9-point Hedonic scale where 9 = Like extremely and 1 = Dislike extremely.

2.5 Statistical Analysis

The results of proximate composition,
physico-chemical analysis and sensory evaluation were analyzed using SPSS 16.0. Means and standard deviations were determined using descriptive statistics. Comparison between samples were determined using analysis of variance (ANOVA) and multiple range tests. Statistical significance was defined at \(P \leq 0.05 \).

Fig. 3: Flow and mass balance diagram of cookies processing
3.0 Results And Discussion

3.1 The proximate composition of maize grain and sweet potato tubers

The proximate composition of the maize grains and sweet potato tubers used for the production of flour are presented in table 1. The moisture, crude protein, crude fibre, ash and fat contents of the maize grains are consistent with the range of those reported in the literature (Miracle, 1966; Oyenuga, 1968, Purseglove, 1985, David and Dickerson, 1991). The moisture, crude protein, crude fibre, ash and fat contents of sweet potato tubers are also consistent with the range of those components reported in the literature (FAO, 1968; Onwueme, 1978, Oboh, 1986; Oboh et al, 1989, Woolfe, 1989 and David and Dickerson, 1991).

The carbohydrate contents of the maize grains and sweet potato tubers were obtained by difference. The values of 69.7% and 30.5% agreed with the values if 70.1 – 83.9% and 32.2% reported by Oyenuga (1968), and David and Dickerson (1991) for maize grains and sweet potato tubers respectively.

3.2 The proximate chemical composition of maize flour, sweet potato flour, and their blends.

The proximate composition of maize flour, sweet potato flour, and their blends are presented in table 1. The moisture and protein contents of maize flour were 9.2% and 8.0% respectively. These values agreed with 9.6 – 13.5% and 9.6 – 10.7% reported by Oyenuga (1968). The moisture and protein contents of sweet potato flour were 8.3% and 5.8% which are within the values of 1.4-9.4% and 5.0% reported by Onwueme, (1978); Oboh, (1986) and Oboh et al, (1989). The fat and crude fibre contents of the maize flour were 1.4% and 1.3% respectively. The crude fibre value agreed with 1.3% reported by Oyenuga (1968) but the fat content did not agree with 4.0 – 4.1% reported by Oyenuga (1968). This may be due to the degerming of the maize grain before milling. The fat and crude fibre contents of sweet potato flour, 0.5% and 1.0% agreed with 0.4 – 3.0% and 1.0% reported by FAO (1968) and Oboh (1986) respectively. The ash content of maize flour and sweet potato flour were 1.3% and 1.9% which are within the range of 1.3% and 1.2% reported by Oyenuga (1968), and Horton (1988).

The starch contents of the maize flour and sweet potato flour were 69.1% and 38.6% respectively. These values agreed with 77% and 30.8 – 41.8% reported by Purseglove, (1985) and Oboh (1989). The sugar contents use 1.2% and 3.9% for maize flour and sweet potato flour respectively. These values agreed with 2.0% and 3.7 – 10.4% reported by Purseglove, (1985) and Oboh, (1986).

The moisture, ash, crude fibre, fat, protein, starch and sugar contents of maize flour, flour substituted with 10%, 20%, 30%, 40%, 50% and 100% sweet potato flour were significantly different (P≤0.05). The moisture, crude fibre, protein and starch contents of the mixture decreased as the percentage substitution of sweet potato flour increased. While the ash, fat and sugar contents increased as the sweet potato flour substitution increased.

3.3 Effect of Sweet potato flour substitution on the proximate composition of maize flour cookies.

The effect of sweet potato flour substitution on the proximate composition of maize flour cookies are presented in table 4. The wheat flour cookies had the highest values for all the components analyzed except for protein and sugar contents. The moisture, crude fibre, fat and protein contents of the cookies from different flour blends decreased as the percentage of sweet potato flour in the blends increased. The ash and sugar contents increased from 4.3 to 5.8% and 6.0 to 9.8% respectively as the percentage of sweet potato flour in the blends increased.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Moisture %</th>
<th>Ash %</th>
<th>Crude fibre %</th>
<th>Fat %</th>
<th>Crude Protein %</th>
<th>Carbohydrate %</th>
<th>Starch %</th>
<th>Sugar %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour (control)</td>
<td>8.5c</td>
<td>1.9b</td>
<td>1.46</td>
<td>2.3b</td>
<td>8.4b</td>
<td>N.D</td>
<td>78.1</td>
<td>1.9f</td>
</tr>
<tr>
<td>Maize grains</td>
<td>10.4bc</td>
<td>2.9a</td>
<td>2.0a</td>
<td>4.1a</td>
<td>9.9a</td>
<td>69.7a</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>Sweet potato tubers</td>
<td>61.4a</td>
<td>1.9b</td>
<td>1.8ab</td>
<td>0.8d</td>
<td>1.6c</td>
<td>32.5b</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>Maize flour (100%)</td>
<td>9.26</td>
<td>1.3e</td>
<td>1.3b</td>
<td>1.4c</td>
<td>8.0b</td>
<td>N.D</td>
<td>69.16</td>
<td>2.1e</td>
</tr>
</tbody>
</table>

(1) N.D = Not Determined
(2) All data are means of 3 replicates expressed on dry weight basis
(3) Means with the same subscripts are not significantly difference at P≤0.05.
Table 2: The proximate composition of cookies from different flour substitution

<table>
<thead>
<tr>
<th>Ratio of maize flour: Sweet potato flour</th>
<th>Moisture %</th>
<th>Ash %</th>
<th>Crude fibre %</th>
<th>Fat %</th>
<th>Protein %</th>
<th>Sugar %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour (control)</td>
<td>6.1a</td>
<td>4.7c</td>
<td>3.4c</td>
<td>9.8a</td>
<td>6.4a</td>
<td>4.8f</td>
</tr>
<tr>
<td>Maize flour 100:0</td>
<td>5.3b</td>
<td>4.3d</td>
<td>3.0b</td>
<td>9.9a</td>
<td>5.4b</td>
<td>6.0e</td>
</tr>
<tr>
<td>90:10</td>
<td>5.2bc</td>
<td>4.6c</td>
<td>2.9bc</td>
<td>9.3b</td>
<td>5.4b</td>
<td>6.4de</td>
</tr>
<tr>
<td>80:20</td>
<td>5.1c</td>
<td>5.0c</td>
<td>2.8cd</td>
<td>9.2b</td>
<td>5.3b</td>
<td>6.8cd</td>
</tr>
<tr>
<td>70:30</td>
<td>5.2bc</td>
<td>5.0b</td>
<td>2.8cd</td>
<td>9.0c</td>
<td>4.8c</td>
<td>7.1bc</td>
</tr>
<tr>
<td>60:40</td>
<td>5.1c</td>
<td>5.1b</td>
<td>2.7e</td>
<td>8.9c</td>
<td>4.9bc</td>
<td>7.4bc</td>
</tr>
<tr>
<td>50:50</td>
<td>5.0cd</td>
<td>5.1b</td>
<td>2.6ef</td>
<td>8.7d</td>
<td>4.7bc</td>
<td>7.7b</td>
</tr>
<tr>
<td>0:100</td>
<td>5.0cd</td>
<td>5.8a</td>
<td>2.5f</td>
<td>8.5e</td>
<td>4.4c</td>
<td>9.8a</td>
</tr>
</tbody>
</table>

(1) All data are means of 3 replicated expressed on dry weighed.
(2) Means with the same subscripts are not significantly different at P≤0.05.

3.4 Calorific value of sweet potato flour substituted maize flour cookies

The calorific values of samples from sweet potato flour substituted maize flour cookies are presented in Table 3. Cookies made from wheat flour (control) had the highest energy (491 cal/100g). This value agreed with the value of 493 cal/100g reported by McCance and Widdowson (1991) for digestive biscuits. The calorific value of maize flour cookies decreased with increasing concentration of sweet potato flour substitution. The expected increase in calorific value due to greater concentration of sugar in cookies with increase in sweet potato content is offset by the lower concentration of fat in these samples (Table 3). The greater energy of the wheat flour cookies over that of 100% maize flour cookies which had greater oil and sugar contents (Table 3) was due to the greater starch content of the wheat flour (Table 1).

Table 3: Calorific values of sweet potato flour substituted maize flour cookies.

<table>
<thead>
<tr>
<th>Ratio of Marie Flour: Sweet Potato Flour</th>
<th>Energy (Cal/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Flour (control)</td>
<td>491a</td>
</tr>
<tr>
<td>100:0</td>
<td>457b</td>
</tr>
<tr>
<td>90:10</td>
<td>443bc</td>
</tr>
<tr>
<td>80:20</td>
<td>445bc</td>
</tr>
<tr>
<td>70:30</td>
<td>429c</td>
</tr>
<tr>
<td>60:40</td>
<td>421c</td>
</tr>
<tr>
<td>50:50</td>
<td>413cde</td>
</tr>
<tr>
<td>0:100</td>
<td>397d</td>
</tr>
</tbody>
</table>

The calorific values of the cookies from maize flour and sweet potato flour substituted maize flour showed that they are comparable with similar products from wheat, barley and sorghum (McCance and Widdowson, 1991). The high calorific values of sweet potato flour substituted maize flour cookies will increase the calories intake of consumers especially children. This reduces the shortage of calories among the most vulnerable group (children) in Nigeria.

3.5 Sensory Evaluation of Cooke Samples

3.5.1 Sensory Evaluation of Cookies (Multiple comparison)

The sensory evaluation of cookies prepared from maize flour and sweet potato flour substituted maize flour are shown in table 7. The values were compared with the cookies prepared from Wheat flour (control). The results showed that the means of all the samples were not significantly different from each other at (P<0.05) level. The means of all the parameters were in (4.0-5.7) texture (5.0-56.2) crispiness (5.3-5.8) and overall acceptability (4.3-5.5). The results also show that increase in the level of sweet potato flour in the maize flour improved crispiness and texture of the cookies but it becomes noticeable at 40% level and above as it causes colour impairment while no improvement was noticed in other appearance.

Table 4: Mean Sensory evaluation of Cookies (Multiple Comparisons)

<table>
<thead>
<tr>
<th>Ratio of Marie flour: Sweet Potato flour</th>
<th>Appearance</th>
<th>Colour</th>
<th>Flavour</th>
<th>Texture</th>
<th>Flavour</th>
<th>Crispiness</th>
<th>Overall Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:0</td>
<td>5.7a</td>
<td>5.3a</td>
<td>4.1ab</td>
<td>5.4a</td>
<td>4.0b</td>
<td>5.30a</td>
<td>4.3b</td>
</tr>
<tr>
<td>90:10</td>
<td>5.10a</td>
<td>4.6a</td>
<td>4.6a</td>
<td>5.8a</td>
<td>4.0a</td>
<td>5.40a</td>
<td>4.7ab</td>
</tr>
<tr>
<td>80:20</td>
<td>5.0a</td>
<td>5.0a</td>
<td>4.5a</td>
<td>5.5a</td>
<td>4.7ab</td>
<td>5.6a</td>
<td>5.0a</td>
</tr>
<tr>
<td>70:30</td>
<td>4.7ab</td>
<td>4.2ab</td>
<td>4.8a</td>
<td>6.2a</td>
<td>4.3b</td>
<td>5.8a</td>
<td>4.9ab</td>
</tr>
<tr>
<td>60:40</td>
<td>5.0a</td>
<td>5.1a</td>
<td>5.8a</td>
<td>5.4a</td>
<td>5.6a</td>
<td>5.8a</td>
<td>5.4a</td>
</tr>
<tr>
<td>50:50</td>
<td>5.4a</td>
<td>5.2a</td>
<td>5.1a</td>
<td>5.7a</td>
<td>5.7a</td>
<td>5.8a</td>
<td>5.4a</td>
</tr>
<tr>
<td>0:100</td>
<td>5.4a</td>
<td>5.7a</td>
<td>5.4a</td>
<td>5.0a</td>
<td>5.0a</td>
<td>5.6a</td>
<td>5.6a</td>
</tr>
</tbody>
</table>

(1) All data are means of 3 replicates
(2) Means with the same subscripts are not significantly different (P<0.05).
3.5.2 Sensory Evaluation of Cookies (Hedonic Scale)

For the hedonic scale shown in table 8, all the samples were not significantly different (P< 0.05). The control with the value of 6.6 rated the highest in terms of overall acceptability with the exception of 40% Level of sweet potato flour substitution (7.0).

The result showed that increase in the level of sweet potato flour in the maize flour in the level of noticeable at 40% and becomes less acceptable at 50% as the percentage of substitution increases 100% sweet potato flour cookies had least acceptability value of 5.5. For the organoleptic test 0%, 10%, 20%, 30% and 40% levels of substitution were not significantly different from each other in terms of their comparison with the control. However, they were significantly different from 50% and 100% levels of substitution except for texture and crispiness where there was no significantly difference between the mean scores of all levels of substitution. A change in colour was not noticed at 40% level of substitution and this became intense at 50% level. However, 30% and 40% substitution have highest overall acceptability. Although 50% substitution also had high overall acceptability, majority of the panelists complaints about the colour of the product.

Table 5: Mean sensory evaluation of cookie samples (Hedonic Scale).

<table>
<thead>
<tr>
<th>Ratio of Marie flour: Sweet Potato flour</th>
<th>Appearance</th>
<th>Colour</th>
<th>Taste</th>
<th>Texture</th>
<th>Flavour</th>
<th>Crispiness</th>
<th>Overall Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Flour (Control)</td>
<td>6.7a</td>
<td>7.8a</td>
<td>6.8a</td>
<td>5.5ab</td>
<td>7.1a</td>
<td>5.2ab</td>
<td>6.6a</td>
</tr>
<tr>
<td>100:0</td>
<td>6.5a</td>
<td>7.1ab</td>
<td>4.6b</td>
<td>5.7ab</td>
<td>5.7ab</td>
<td>6.5a</td>
<td>5.8ab</td>
</tr>
<tr>
<td>90:10</td>
<td>5.5ab</td>
<td>6.0b</td>
<td>5.6ab</td>
<td>6.4a</td>
<td>6.1a</td>
<td>6.2a</td>
<td>5.3b</td>
</tr>
<tr>
<td>80:20</td>
<td>6.2a</td>
<td>6.3ab</td>
<td>6.6a</td>
<td>6.7a</td>
<td>5.8ab</td>
<td>6.9a</td>
<td>6.3a</td>
</tr>
<tr>
<td>70:30</td>
<td>6.8a</td>
<td>6.0b</td>
<td>6.7a</td>
<td>6.0a</td>
<td>4.7b</td>
<td>7.1a</td>
<td>6.5a</td>
</tr>
<tr>
<td>60:40</td>
<td>6.3a</td>
<td>5.7b</td>
<td>6.6a</td>
<td>6.5a</td>
<td>6.0a</td>
<td>6.3a</td>
<td>7.0a</td>
</tr>
<tr>
<td>50:50</td>
<td>5.4a</td>
<td>5.2a</td>
<td>5.1a</td>
<td>5.7a</td>
<td>5.7a</td>
<td>5.8a</td>
<td>5.4a</td>
</tr>
<tr>
<td>0:100</td>
<td>4.4b</td>
<td>4.1c</td>
<td>5.4ab</td>
<td>6.3a</td>
<td>5.2ab</td>
<td>6.0a</td>
<td>5.5b</td>
</tr>
</tbody>
</table>

(1) All data are means of 3 replicates
(2) Means with the same subscripts are not significantly different (p< 0.05)

4.0 Conclusion

Substitution of maize flour with sweet potato flour has been found to reduce the protein, moisture, crude fibre, starch and fat contents of the flours and the cookies. The ash and sugar contents were increased with increase in sweet potato flour substitution. The calorific value of the cookies decreases as the percentage of sweet potato flour increases in the maize flour. The study concluded that cookies could be made from blends of flour from different tropical cereals and root and tuber crops which could complement the calorie need of the people and help in food security in Africa if properly harnessed. However, optimum substitution level was found to be 40%, above this, the product becomes less acceptable to the consumer.

Correspondence to:
Adeyeye, Samuel A.
Department of Food Science and Technology,
Federal University of Agriculture,
Abeokuta, Ogun State, Nigeria.
Telephone: +2347067004902
Emails: saadeeye@yahoo.com

References

18. FAO (1973) Composite flour programme, FAO, Rome, Italy.

and Quality Evaluation of cowpea-biscuits Nig. Food Journal 8:56-62.

51. Van, H. M. 2000. Quality of sweet potato flour during processing and storage. Food Rev. Inter. 16: 1-37

