
 Researcher 2015;7(9) http://www.sciencepub.net/researcher

7

Design and architectural support for self-adaption

Rafat Aghazadeh

Master of Computer Engineering, Pardis Shahid Beheshti University, Tehran, Iran
Aghazadeh.ra@gmail.com

Abstract: Software systems have been developed in various centres extensively. They play important role and basic
in any organization. If these systems became out of service can lead to irrecoverable damage to the organization. In
order to keep these systems running continuously. They need to repair, recover and control themselves without
human intervention, until any abnormal condition happens they will be able to keep system available with making
right decision. For these reasons to be felt requirement to self-adaptive capability in systems. Researchers proposed
different designs and trends for achieve to better and more efficient to self-adaptive goals. We are going to study a
number of them in this paper.
[Rafat Aghazadeh. Design and architectural support for self-adoptation. Researcher 2015;7(9):7-18]. (ISSN:
1553-9865). http://www.sciencepub.net/researcher. 2

Keywords: self-adaptation, software-architecture

1-Introduction

In the beginning of new century researcher in
the IBM introduced a new idea for management of
software. This system has ability to repair itself and
adapt new application automatically. This operate
based on Monitoring, Analysis, Planning, Execution,
which is known as MPAE-K.

We briefly describe each of the components.
(figure1).

Monitor: They collect information with various
method in order to share them with human users.

Analysis: This component has ability to identify
situations and relationships between them and also
broadcast the future.

Planning: Provides procedures to achieve
specified goals.

Figure 1. Autonomous control loop

Execute: Provide Procedures for implementing

specific programs this part includes required files and
standards for policies and also includes analysing,
planning and the source of knowledge for execute.

Sensor and effector create access point to
managed resources. Any change in structure should
apply through sensor and effector. [1]

System perform adopt should integrate
functional aspects and management logic. [2]

Figure 2. Overview of an adaptive system

Managment logic in terms of MAPE included

Monitoring phase collecting run-time data, analysis
phase evaluate system behaviour, Plannig phase
identifying the corrective actions, Execution phase
perform operations.

We can divide this self –adaptive system
specification into three level.

1-General Level include Self-Adaptivness
2–Major Level includes Self-Configuring, Self-

Healing, Self-Optimizing, Self-Protecting
3- Primitive Level includes Self-Awareness,

Context-Awareness

2-factors

Number of factors to evaluate system is given
below.

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

8

Self-configuration: When system needs
changes, this change happens automatically and
dynamic perform configuration.

Self-healing: In case of any bugs or problems
happens in the systems, reacts to those problems
those every process to solve problems.

Self- optimization: Regulating the use of
resources to perform the desired operation in the best
way possible.

Self-protection: Detects security attacks and
perfom defensive measures as needed.

Self-managing: Operations management in a
coordinate system.

Self-awareness: Understanding of the system
behaviour.

Self-situation: Notification to external
situations.

Self-monitoring: The ability to identify and
observe the system.

Self-adjustment: Perform the necessary
implementing which suits with conditions.

Self-organization: Capability to be accessible
straight away.

Self-maintenance: The ability to maintain
system automatically maintain.

Self-repairing: Having ability to repair fault and
error and return system to normal condition.

Self-tunning: Having ability to self –supervising
and self –adjusting mean while having ability to
recognise problems and solve them.

Self-contained: This part uses meta model and
meta computation to perform adjustments and
adaptation.

Self-control: System controls itself and data
entry continusly.

Self-evaluating: Are able to evaluate system and
own situation in order to increase system
performance.

Self-diagnosing: Ability to recognise problems
and errors.

Other features include self-configuration, Self-
anticipation (ability to predict), Self-critical (enable
critical to their ability), Self-defining (ability to
define attributes and ….), Self-governing (Ability to
self-determination,…), Self-recovery, Self-reflecting,
Self-defense.

Functionality, Integrity, Maintainability,
Portability, Scaleability, Availability, Reliability,
stability are quality factors.

3-existing models/framework
3-1-Ecological Architecture

In this system a software controls instead of
human being [3]. (figure 3)

Figure 3. Humans as managers and Autonomous as
manager

Autonomous managers perform self –

management activities as multiple and distributed.
In a self-organization approach self-organizing

components operate with together locally.
components include functional component and
management components.

Figure 4. A model of Self-organization

In an ecological approach, self-organizing

components operate with together and manager
components.

Manager could control overall of system.
However a couple of component are placed into

the system as a manager, this component interact
with other component, therefore they act as a self-
adaptive component.

Figure 5. A model of Ecological Approaches.

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

9

3-2- on Decentralized Self-Adaption
Distributed system has a number of self-

adaptive systems which placed in local systems. This
article consider each camera as a self-adapting
system which able to report traffic information
automatically [4].

A local self-adaptive system include local
managed system and self- adaptive units. A self-
adaptive unit adapts the local managed system. For
adapt uses as meta-level computations and meta-level
models in distributed systems.

Figure 6. Reference model for decentralized self-adaptive systems

Meta-level computations returned control loop

computations in self-adaptive systems. Include four
steps monitor, analyze, plan, execute.

This article introduces a decentralized self –
adaptive system as a reference. (figure 6)

Mete-level model includes system model
consists system model (part of system that managed
by the self-adaptive unit), concern model (objectives
of a self-adaptive unit),working model(data structures
and information shared),coordination model
(coordinate data between meta-level computation of
self-adaptive units).
3-3-Rainbow: Architecture-Based Self-Adaptation
With Reusable Infrastructure

Rainbow is a framework that for support self-

adaption uses two Items 1- SoftWare Architecture 2 –
reusable infrastructure[5].

And too It use of external adaptation
mechanism. As illustrated figure 7.

RainBow have a framework that is an abstract
model to perform monitor, evaluate model and
Adaptation when is need and there is problem in
running system.

Software Architecture prepare a global
perspective of the system and represent important
Behaviors and properties of system different levels.

Figure 7. External control of self-adaptation

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

10

Figure 8. Rainbow framework

Figure 8 show rainbow framework.
Rainbow have reusable Units, different

component reusable from a system to another
systems framework divided two part 1-Adoptation
Infastructure 2-system-specific adaptation knowledge,
also adaptation Knowledge include architecture and
translation layers.

Rainbow Included Layers system-Layer
Infrastructure, architecture-Layer Infrastructure,
Translation Infrastructure, system-specific adaption
knowledge.

system-layer Infrastructure describe system
access interface then make an infrastructure that
begin implement it system modifications transfer by
Effector mechanism to actual system.

architecture-Layer Infrastructure perform
aggregate information and update properties in the
architecture model. periodically model and events
checked, finally perform necessary adaptation.

Translation Infrastructure map information of
system to model and maintain various mappings.
system-specific adaption knowledge includes
parameters, component types, properties, behavioral
contraints and adaptation strategies. these help to
perform system require adaptation.

Architectural style in RainBow have four sets of
entities 1-component and connector types (a
vocabulary of elements) 2- constraints 3- properties
(attributes of the component and connector types) 4-
analyses (make an appropriate architectural style).
3-4- RA4SaS

Figure 9. Outline Structure of ProSA-RA

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

11

RA4SaS support adaptation system at running.
This architecture have 4 main purpose 1-for new
system have design of concrete architecture 2-focus in
extensions of systems 3- evaluation of systems that use
of reference architecture 4-improvement in the
standardization and interoperability. RA4SaS done

Software Monitoring and Software Adaptation without
shareholders invention. RA4SaS proposed an
architectural model two level (meta and base) that two
level have reflective characteristics and explore
reflection for sas development [6].

Table 1. THE MODEL 5W1H AND ADAPTATION SCOPE

Questions Scopes
What will be adapted? Attributes, software entities, architectural components, etc.
Where will the adaptation occur? Software system, software architecture, ar- chitectural components, etc
Who will perform the adaptation? Autonomous systems, humans, both, etc
When will the adaptation be applied? How often, anytime, constantly, etc
Why will it be adapted? Errors in project, new requirements (users or technology), etc

How will it be adapted?
Is there any action plan for adaptation?
Was the adaptation planned?, etc

Table 2. SELF-* PROPERTIES VS QUALITY FACTORS

Primitive term Synonyms Quality factor

Self-configuring no

Functionality
Integrity
Maintainability
Portability
Scalability
usability

Self-healing
Self-diagnosing
self-reparing

Availability
Integrity
Maintainability
Reliability
survivability

self-optimizing
self-adjusting
self-tunning

Efficiency
Functionality
Integrity
Maintainability
Performance
Troughput

Self-protecting Self-defense

Availability
Confidentiality
Functionality
Integrity
Reliability

A refrence architectures named Prosa-Ra

(process based on software architecture–reference
architecture) illustrated in figure 9.

Step1 named Information Source Investigation.
Inputs includes Documents, Software Systems and
Information from people.

In this level all information and resources
collected as a specified questions in order to find out
about architectural requirements.

Step 1 show questions for adaptation and scopes
of action. (Table 1).

Table show terms and quality factors. (Table 2)

Only these four characteristics have been studied
and other characteristics have not been considered.

Choice a refrence architecture for Self-Adaptive
system that show dynamic behavior and refrence
models in a set. It included bloch diagrams (BD: a
diagram the represented relationship of the blochs),
Formal Methods (FM: process that uses formal
methods).

Formal Notation for Business Process (FN: show
a business process in business process model),
Informal Notation (IN: a type of special notation),
Layer Diagrams (LD: represented organization
physical artifacts) and UML diagrams (UD: a

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

12

graphical language) also specifies
Knowledge/Element for design reference model and
Refrence Architecture.

It included Action Plane (an actions sequence to
execute a specific activity), Agents (types agent that
show dynamic behavior), Autonomous SubSystems
(implement architecture model of autonomic
computing), computational Reflection (performed any
activity by a system on itself), Nature-inspired service
ecosystems (get inspiration from natural systems for

modeling and deployment of services), Process flow
(show step sequence an activity), Rulbase (a set of
rules to represent a dynamic behavior of software),
service composition (new new functionlities at
runtime), Sub System in Layers (a set of subsystems
that could performed one or more activity), Supervisor
System (responsible for monitoring the operation of
another system).

Figure 10 show relation between 6 catrgories and
type of knowledge.

Table 3. PART OF THE RA4SAS REQUIREMENT)

ID Requirement Concept

RS-1
The reference architecture must enable the development of SaS that has a mechanism to define
the adaptation level of software systems.

Ds

RS-2
The reference architecture must allow the development of SaS that are able to reflect on current
execution state, identifying their structure and behaviors.

Ds

RS-3
The reference architecture must enable the development of SaS that are able to keep their
representation after performed an adaptation activity.

RS

RS-4
The reference architecture must allow the development of SaS that are able to adapt by
modifying their structure and behavior

DS

RI-1

The reference architecture must enable the development of SaS
that are able to replace the software system (software entity) at runtime, which represents the
capacity to perform dynamic compilation and dynamic loading of software entities without
restarting the application or redeploying its components.

IS-CD

RI-2
The reference architecture must allow the development of SaS that are able to control the
adaptation number so that do not quickly increase in size, making unfeasible for future
adaptation.

IS-NA

RI-3
The reference architecture must enable the development of SaS that are able to establish an
action plan for software adaptation, which represents a sequence of steps so that the system
software is adapted at runtime.

IS-AP

RI-4
The reference architecture must allow the development of SaS that are able to identify and report
(diagnosis) problems occurring when an adaptation activity is being performed

IS

RI-5
The reference architecture must enable the development of SaS that are able to fix problems
(healing) at runtime when an adaptation activity is being performed.

IS

RI-6
The reference architecture must allow the development of SaS that has a mechanism able to
preserve its execution state (current information) when a software entity is being adapted

IS-RE

Figure 10. Representation & Type of knowledge

Step 2 established a set of architectural
requirements for RA4SaS.

Included Architectural requirements of Sas
domain and architectural requirements related to
infrastructure of SaS. Part of the RA4SaS
requirements show in Table 3.

First column show requirement identification.
R-S is abbreviation requirement related to self-
adaptive software domain. R-I is abbreviation
requirement related to infrastructure of adaptation.
second column is requirement description. Third
column is concepts related requirements. DS is
abbreviation development of SaS, RS is abbreviation
representation of SaS, IS is abbreviation
infrastructure of SaS, DC is abbreviation dynamic
compilation, NA is abbreviation number of
adaptations, AP is abbreviation action plan, RE is

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

13

abbreviation restoring execution.
Step 3 represent a Architectural design

composed a core for adaption (a set of modules that
is responsible for managing software entity adoption
at runtime) and Development module (provides a set
of guidelines for sas development. this guidelines
consist requirements analysys, design,
implementation and evolution), action plan module
(aims at assisting in the adoption activity of software
entities), adaptation rules module (Responsible for
automatically extracting adaptation rule of software
entity) and Infrastructure module (provide support for
software entity adoption at runtime).

Figure 11. General representation of RA4SaS

Step 4 is a reference for evaluation architecture

and improving the quality of RA4SaS.

3-5-- Self-adaptation of mobile system driven
DSPL (Dynamic Software Product Line)

manage the runtime variability of applications[7].
For availability of resources could decide best

functionality from architectural configuration and fast
algorithms.

DSPL is a single system that adopt system
behavior at runtime. Combine with automatic
computing (AC) to development of adaptation in
software systems.

Variation points modeled as part of the software
architecture that may change at runtime.

The runtime environment monitored to change
reflect in dynamic variation points.

System need analysed to defined new changes
or configuration then generate them at runtime and
modified architectural vartion points.

Now describe three cases SPL, CVL, GA
SPL is a software-intensive systems. DSPL use

of SPL to perform adoptation and move system to a
state safe and valid.

Figure 12. CVL approach

A language model choice to model the system

variability at different levels is common variability
language (CVL) because CVL is am OF-based
variability language and standard (submitted to the
OMG) State proposed by CVL show in figure 12.

CVL is a domain-independent language that use
a MOF-based meta model to specified variable over
any model.CVL Execution required variability model
and base model.

Variability model includes 1-variation points
(variable points and modify of base model).

2- variability specification tree (show tree
structure of elements) OCL Constrains (describe
constraint between elements of vspec tree) Genetic
Algorithms: GAs are a search heuristic that could
find solutions for optimizations problems and
generates a application configuration at run-time.

This approach propose a middleware that
consists Context Monitoring service (monitoring
environment and collect information) And Dynamic

Reconfiguration Service (analysis of information and
execution of the reconfiguration plans).

These perform covering the steps of the MAPE-
K loop. Main approach show in figure 13.

Knowledge represented dynamic variation
points (points of the base model), vspec Tree (tree
structure the elements), OCL Constraints, software
architecture, resource &utility information,
reconfiguration policy.

Monitor phase provides with CMS, DRS
information for evolution resources. Analysis phase
Received information and perform analyze for
adaption process if change is suitable. Defined
several reconfiguration policies as knowledge base.

Plan phase analyzer perform adopt for
application. Then DAGAME algorithm (this
algorithm find a nearly –optimal configuration) and
genetic algorithm (find nearly –optimal solution for
optimization problem) is executed. Uses VSPECS
Tree, context information, else to Generated new
plan.

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

14

Figure 13. Approach Self-adaptation of mobile system driven

In execute phase reconfiguration plan is

executed, add new components and connection and
perform compare between configurations.

Finally perform an adopt the running
architecture of the application.

Figure 14. Adaptive Framework

3-6-self adaptation by integrating adaptive
framework with architectural patterns

This approach integrate the adaptive framework
with Architectural patterns for perform dynamic self-
adaptation in software systems [8].

An adaptive framework include monitoring
(External and Internal), decision making and
reconfiguration. this framework uses external
monitoring (rules described in mechanism) and
control mechanism.

Properties a system at running write and
updated in ADL (a language for describing software
architecture) then monitored (uses rules in external
monitoring mechanism) and analyzed and build a
reconfiguration the architecture of the system with
architectural pattern (say a fundamental structural

organization schema for software system and are the
highest level patterns).

Finally new configuration is returned to the
running system.

This way is an approach for dynamic self-
adaption at running system. Adaptive framework
show in figure 14.

When a rule in system violated. system required
to new decision and reconfiguration.

This reconfiguration build on the architectural
patterns then reflect to the running system.

4-Discussion

The following tables shows all the important
factors of each project considered and compared with
each other.

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

15

Factor

plan se

lf
-m

an
ag

in
g

S
el

f-
 m

ai
nt

en
an

ce

se
lf

-c
on

tr
ol

se
lf

-o
rg

an
iz

at
io

n

se
lf

-c
on

fi
gu

ra
ti

on

se
lf

-h
ea

li
ng

S
el

f-
re

pa
ir

in
g

se
lf

-o
pt

im
iz

at
io

n

se
lf

-t
un

ni
ng

se
lf

-p
ro

te
ct

io
n

S
el

f-
A

w
ar

en
es

s

se
lf

-c
on

ta
in

ed

se
lf

-M
on

it
or

in
g

se
lf

-S
ui

te
d

Ecological Architecture

Factor
plan se

lf
-m

an
ag

in
g

S
el

f-
 m

ai
nt

en
an

ce

se
lf

-c
on

tr
ol

se
lf

-o
rg

an
iz

at
io

n

se
lf

-c
on

fi
gu

ra
ti

on

se
lf

-h
ea

li
ng

S
el

f-
re

pa
ir

in
g

se
lf

-o
pt

im
iz

at
io

n

se
lf

-t
un

ni
ng

se
lf

-p
ro

te
ct

io
n

S
el

f-
A

w
ar

en
es

s

se
lf

-c
on

ta
in

ed

se
lf

-M
on

it
or

in
g

se
lf

-S
ui

te
d

on decentralized self-
adaptation

Factor
plan se

lf
-m

an
ag

in
g

S
el

f-
 m

ai
nt

en
an

ce

se
lf

-c
on

tr
ol

se
lf

-o
rg

an
iz

at
io

n

se
lf

-c
on

fi
gu

ra
ti

on

se
lf

-h
ea

li
ng

S
el

f-
re

pa
ir

in
g

se
lf

-o
pt

im
iz

at
io

n

se
lf

-t
un

ni
ng

se
lf

-p
ro

te
ct

io
n

S
el

f-
A

w
ar

en
es

s

se
lf

-c
on

ta
in

ed

se
lf

-M
on

it
or

in
g

se
lf

-S
ui

te
d

RainBow Architecture

Factor
plan se

lf
-m

an
ag

in
g

S
el

f-
 m

ai
nt

en
an

ce

se
lf

-c
o

n
tr

ol

se
lf

-o
rg

an
iz

at
io

n

se
lf

-c
o

n
fi

gu
ra

ti
on

se
lf

-h
ea

li
ng

S
el

f-
re

pa
ir

in
g

se
lf

-o
pt

im
iz

at
io

n

se
lf

-t
un

n
in

g

se
lf

-p
ro

te
ct

io
n

S
el

f-
A

w
ar

en
es

s

se
lf

-c
o

n
ta

in
ed

se
lf

-M
on

it
or

in
g

se
lf

-S
u

it
ed

RA4SaS

Factor
plan se

lf
-m

an
ag

in
g

S
el

f-
 m

ai
nt

en
an

ce

se
lf

-c
on

tr
ol

se
lf

-o
rg

an
iz

at
io

n

se
lf

-c
on

fi
gu

ra
ti

on

se
lf

-h
ea

li
ng

S
el

f-
re

pa
ir

in
g

se
lf

-o
pt

im
iz

at
io

n

se
lf

-t
un

n
in

g

se
lf

-p
ro

te
ct

io
n

S
el

f-
A

w
ar

en
es

s

se
lf

-c
on

ta
in

ed

se
lf

-M
on

it
or

in
g

se
lf

-S
u
it

ed

self-Adaptaion of mobile
system driven

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

16

Factor
plan se

lf
-m

an
ag

in
g

S
el

f-
 m

ai
nt

en
an

ce

se
lf

-c
on

tr
ol

se
lf

-o
rg

an
iz

at
io

n

se
lf

-c
on

fi
gu

ra
ti

on

se
lf

-h
ea

li
ng

S
el

f-
re

pa
ir

in
g

se
lf

-o
pt

im
iz

at
io

n

se
lf

-t
un

ni
ng

se
lf

-p
ro

te
ct

io
n

S
el

f-
A

w
ar

en
es

s

se
lf

-c
on

ta
in

ed

se
lf

-M
on

it
or

in
g

se
lf

-S
ui

te
d

integrity adaptive
framework with
architectural patterns

Factor
plan se

lf
-m

an
ag

in
g

S
el

f-
 m

ai
nt

en
an

ce

se
lf

-c
on

tr
ol

se
lf

-o
rg

an
iz

at
io

n

se
lf

-c
on

fi
gu

ra
ti

on

se
lf

-h
ea

li
ng

S
el

f-
re

pa
ir

in
g

se
lf

-o
pt

im
iz

at
io

n

se
lf

-t
un

ni
ng

se
lf

-p
ro

te
ct

io
n

S
el

f-
A

w
ar

en
es

s

se
lf

-c
on

ta
in

ed

se
lf

-M
on

it
or

in
g

se
lf

-S
ui

te
d

Ecological Architecture

decentralized self-
adaptation

 Rainbow Architecture

 RA4SaS

self-Adaptation of
mobile system driven

 integration adaptive
framework with
architectural patterns

5- Conclusion
Systems and application programs and services

that requires running all the time.
These systems should be able to recognize

changes and errors in the environment and then
perform analysis, planning and monitoring to solve
failure in systems. A huge benefit of self-adaptive
systems is their ability to reduce dependency to
human resource and recover different events quickly.

Because of the complexity of software systems
task for managing them need to architecture with
determined framework.

Each one of these plans, attempts to improve
and provide the framework of self-adaptive software
systems.

All these plans and proposal in the future should
present optimal solutions for problems and fault to be
able to cover quality-attributes and evaluation of each
of these plans should based on mention attributes.

Self-adaptive system should designed in such
away be able support properties such as validation,

productivity, reliability, availability, maintainability,
dependability, performability and also share
information, reduce cost, agile, reusability, Rapid
responsivness to environmental changes, amend fault,
error and failure, recognize events and them reason,
interact components and devices, fault-tolerance,
solution deployment, utilization, resource, throught
put, safety, security management, quality of service,
reporting total, detail in all levels and distributed
environments.

References
1. Lanyon-Hogg, Richard, Devaprasad K. Nadgir,

and Amr F. Yassin. "A practical guide to the
IBM autonomic computing toolkit." (2004).

2. Baresi, Luciano, and Sam Guinea.
"Architectural Styles for Adaptive Systems: A
Tutorial."Self-Adaptive and Self-Organizing
Systems (SASO)”, 2012 IEEE Sixth
International Conference on. IEEE, 2012.

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

17

3. Zambonelli, Franco. "Self-management and the
many facets of nonself." IEEE Intelligent
Systems 21.2 (2006): 50-58.

4. Weyns, Danny, Sam Malek, and Jesper
Andersson. "On decentralized self-adaptation:
lessons from the trenches and challenges for the
future." Proceedings of the 2010 ICSE
Workshop on Software Engineering for
Adaptive and Self-Managing Systems. ACM,
2010.

5. Garlan, David, et al. "Rainbow: Architecture-
based self-adaptation with reusable
infrastructure." Computer 37.10 (2004): 46-54.

6. Affonso, Frank José, and Elisa Yumi
Nakagawa. "A Reference Architecture Based on
Reflection for Self-Adaptive Software."
Software Components, Architectures and Reuse
(SBCARS), 2013 VII Brazilian Symposium on.
IEEE, 2013.

7. Pascual, Gustavo G., Mónica Pinto, and Lidia
Fuentes. "Self-adaptation of mobile systems
driven by the Common Variability Language."
Future Generation Computer Systems (2014).

8. Krishnamurthy, Vallidevi, and Chitra Babu.
"Effective self adaptation by integrating
adaptive framework with architectural patterns."
Proceedings of the 1st Amrita ACM-W
Celebration on Women in Computing in India.
ACM, 2010.

9. Oreizy, Peyman, et al. "An architecture-based
approach to self-adaptive software." IEEE
Intelligent systems 14.3 (1999): 54-62.

10. Wang, Qianxiang. "Towards a rule model for
self-adaptive software." ACM SIGSOFT
Software Engineering Notes 30.1 (2005): 8.

11. Oreizy, Peyman, Nenad Medvidovic, and
Richard N. Taylor. "Runtime software
adaptation: framework, approaches, and styles."
Companion of the 30th international conference
on Software engineering. ACM, 2008.

12. Liao, Xiaofeng, Shiyue Lai, and Qing Zhou. "A
novel image encryption algorithm based on self-
adaptive wave transmission." Signal Processing
90.9 (2010): 2714-2722.

13. Brest, Janez, et al. "Performance comparison of
self-adaptive and adaptive differential evolution
algorithms." Soft Computing 11.7 (2007): 617-
629.

14. Perez-Palacin, Diego, and José Merseguer.
"Performance sensitive self-adaptive service-
oriented software using hidden markov models."
ACM SIGSOFT Software Engineering Notes.
Vol. 36. No. 5. ACM, 2011.

15. Perez-Palacin, Diego, et al. "Qos-based model
driven assessment of adaptive reactive systems."
Software Testing, Verification, and Validation

Workshops (ICSTW), 2010 Third International
Conference on. IEEE, 2010.

16. Perez-Palacin, Diego, Raffaela Mirandola, and
José Merseguer. "Software architecture
adaptability metrics for QoS-based self-
adaptation." Proceedings of the joint ACM
SIGSOFT conference--QoSA and ACM
SIGSOFT symposium--ISARCS on Quality of
software architectures--QoSA and architecting
critical systems--ISARCS. ACM, 2011.

17. Mejias, Boris, and Peter Van Roy. "From mini-
clouds to Cloud Computing." Self-Adaptive and
Self-Organizing Systems Workshop (SASOW),
2010 Fourth IEEE International Conference on.
IEEE, 2010.

18. Villegas, Norha M., et al. "A framework for
evaluating quality-driven self-adaptive software
systems." Proceedings of the 6th international
symposium on Software engineering for
adaptive and self-managing systems. ACM,
2011.

19. Chaudhuri, Surajit, and Vivek Narasayya. "Self-
tuning database systems: a decade of progress."
Proceedings of the 33rd international
conference on Very large data bases. VLDB
Endowment, 2007.

20. Stanfel, Zeljko, et al. "A self manageable rule
driven enterprise application." 29th
International Conference on Information
Technology Interfaces (ITI 2007). 2007.

21. Miede, André, et al. "A Comparison of Self-
Organization Mechanisms in Nature and
Information Technology." (2009).

22. Di Marzo Serugendo, Giovanna, John
Fitzgerald, and Alexander Romanovsky.
"MetaSelf: an architecture and a development
method for dependable self-* systems."
Proceedings of the 2010 ACM Symposium on
Applied Computing. ACM, 2010.

23. Prokopenko, Mikhail. "Design vs. Self-
organization." Advances in applied self-
organizing systems. Springer London, 2008. 3-
17.

24. Weyns, Danny, and Michael Georgeff. "Self-
adaptation using multiagent systems." Software,
IEEE 27.1 (2010): 86-91.

25. Rodríguez-Fernández, Carlos, and Jorge Jesús
Gómez-Sanz. "Self-management capability
requirements with SelfMML & INGENIAS to
attain self-organising behaviours." Proceedings
of the second international workshop on Self-
organizing architectures. ACM, 2010.

26. Jamont, Jean-Paul, Clément Raievsky, and
Michel Occello. "Handling Safety-Related Non-
Functional Requirements in Embedded Multi-
Agent System Design." Advances in Practical

 Researcher 2015;7(9) http://www.sciencepub.net/researcher

18

Applications of Heterogeneous Multi-Agent
Systems. The PAAMS Collection. Springer
International Publishing, 2014. 159-170.

27. Taranu, Stefan, and Jens Tiemann. "On
assessing self-adaptive systems." Pervasive
Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE
International Conference on. IEEE, 2010.

28. Rattani, Ajita, Gian Luca Marcialis, and Fabio
Roli. "Self adaptive systems: An experimental
analysis of the performance over time."
Computational Intelligence in Biometrics and
Identity Management (CIBIM), 2011 IEEE
Workshop on. IEEE, 2011.

29. Ferrante, Alberto, et al. "Self-adaptive Security
at Application Level: a Proposal." ReCoSoC.
2007.

30. Ferrante, Alberto, et al. "Self-adaptive Security
at Application Level: a Proposal." ReCoSoC.
2007.

31. Salehie, Mazeiar, and Ladan Tahvildari. "Self-
adaptive software: Landscape and research
challenges." ACM Transactions on Autonomous
and Adaptive Systems (TAAS) 4.2 (2009): 14.

32. Ramirez, Andres J., and Betty HC Cheng.
"Design patterns for developing dynamically
adaptive systems." Proceedings of the 2010
ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems. ACM,
2010.

33. Al-Shishtawy, Ahmad, et al. "A design
methodology for self-management in distributed
environments." Computational Science and
Engineering, 2009. CSE'09. International
Conference on. Vol. 1. IEEE, 2009.

34. Villegas, Norha M., et al. "A framework for
evaluating quality-driven self-adaptive software
systems." Proceedings of the 6th international
symposium on Software engineering for
adaptive and self-managing systems. ACM,
2011.

35. Balasubramanian, Sowmya, et al.
"Characterizing problems for realizing policies
in self-adaptive and self-managing systems."
Proceedings of the 6th International Symposium
on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2011.

36. Weyns, Danny, Sam Malek, and Jesper
Andersson. "FORMS: a formal reference model
for self-adaptation." Proceedings of the 7th
international conference on Autonomic
computing. ACM, 2010.

37. Cheng, Betty HC, et al. "Software engineering
for self-adaptive systems: A research roadmap."
Software engineering for self-adaptive systems.
Springer Berlin Heidelberg, 2009. 1-26.

38. Weyns, Danny, and Jesper Andersson. "On the
challenges of self-adaptation in systems of
systems." Proceedings of the First International
Workshop on Software Engineering for Systems-
of-Systems. ACM, 2013.

39. Cheng, Shang-Wen, and David Garlan. "Stitch:
A language for architecture-based self-
adaptation." Journal of Systems and Software
85.12 (2012): 2860-2875.

40. Said, Mouna Ben, et al. "Design patterns for
self-adaptive RTE systems specification."

41. Jha, Shantenu, Manish Parashar, and Omer
Rana. "Self-adaptive architectures for
autonomic computational science." Self-
Organizing Architectures. Springer Berlin
Heidelberg, 2010. 177-197.

42. Weyns, Danny, et al. "SOAR: Self-Organizing
Architectures." Joint Working IEEE/IFIP
Conference on Software Architecture &
European Conference on Software Architecture
(WICSA/ECSA 2009). 2009.

43. Weyns, Danny, Sam Malek, and Jesper
Andersson. "FORMS: Unifying reference model
for formal specification of distributed self-
adaptive systems." ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 7.1
(2012): 8.

8/31/2015

