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Abstract: The main purpose of this study is a survey of present and future visions of Internet of Things (IoT). The 
internet of things (IoT) is the network of physical devices, vehicles, buildings and other items—embedded with 
electronics, software, sensors, actuators, and network connectivity that enable these objects to collect and exchange 
data. The vision of the internet of things has evolved due to a convergence of multiple technologies, ranging from 
wireless communication to the Internet and from embedded systems to micro-electromechanical systems. The 
proliferation of these devices in a communicating–actuating network creates the Internet of Things (IoT), wherein 
sensors and actuators blend seamlessly with the environment around us, and the information is shared across 
platforms in order to develop a common operating picture. To realize the broad vision of pervasive computing, 
underpinned by the “Internet of Things” (IoT), it is essential to break down application and technology-based silos 
and support broad connectivity and data sharing; the cloud being a natural enabler. The key enabling technologies 
and application domains that are likely to drive IoT research in the near future are discussed. Our contribution is to 
analyze the current state of cloud-supported IoT to make explicit the security considerations that require further 
work. 
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1. Introduction 

The Internet has enabled an explosive growth of 
information sharing. With the advent of embedded 
and sensing technology, the number of smart devices 
including sensors, mobile phones, RF identifications 
(RFIDs), and smart grids has grown rapidly in recent 
years. Ericsson and Cisco predicted that 50 billion 
small embedded sensors and actuators will be 
connected to the Internet by 2020 forming a new 
Internet paradigm called Internet of Things (IoT). IoT 
can support a wide range of applications in different 
domains, such as health care, smart cities, pollution 
monitoring, transportation and logistics, factory 
process optimization, home safety and security. 

This results in the generation of enormous 
amounts of data which have to be stored, processed 
and presented in a seamless, efficient, and easily 
interpretable form. This model will consist of services 
that are commodities and delivered in a manner 
similar to traditional commodities. Cloud computing 
can provide the virtual infrastructure for such utility 
computing which integrates monitoring devices, 
storage devices, analytics tools, visualization 
platforms and client delivery. In the past decade, 
many studies have contributed to the hardware, 
software, and protocol design of the smart devices, 
such as wireless sensor networks. Machine-to-
machine automation with wireless sensors is being 

widely deployed, but usually in islands of disparate 
systems. The evolution of IoT attempts to connect 
these existing systems to the cloud, which enables 
advanced data fusion, storage, and coordination 
capability for achieving higher data quality and 
energy efficiency. The upcoming challenge of IoT lies 
in handling volumes of data generated from enormous 
amount of devices, which is known as the big data 
problem. 

The wireless sensors in many IoT applications 
are battery powered, resulting in extreme energy 
constraints on their operations, such as sampling, data 
processing and radio communications. 

However, for the Internet of Things vision to 
successfully emerge, the computing paradigm will 
need to go beyond traditional mobile computing 
scenarios that use smart phones and portables, and 
evolve into connecting everyday existing objects and 
embedding intelligence into our environment. For 
technology to disappear from the consciousness of the 
user, the Internet of Things demands: (1) a shared 
understanding of the situation of its users and their 
appliances, (2) software architectures and pervasive 
communication networks to process and convey the 
contextual information to where it is relevant, and (3) 
the analytics tools in the Internet of Things that aim 
for autonomous and smart behavior. 
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To conserve energy and achieve longer network 
lifetime, the costs of sensor sampling, processing, and 
radio communications have to be minimized. It is 
often the case that sensor readings in the same spatial 
regions are highly correlated. Depending on the 
application, the sensor readings are temporally 
correlated as well. By leveraging the computation 
capability of the cloud, data fusion can be performed 
to increase the data quality by exploring the spatial 
and temporal correlation of data. The wireless sensors 
can be coordinated by the cloud to be ON and OFF 
according to the change in the environment. In this 
paper, we explore a seamless solution by integrating 
cloud and IoT to provide comprehensive data fusion 
and coordination of sensors to improve data quality 
and reduce energy consumption. 

Belief propagation (BP) is a technique for 
solving inference problems. In the IoT context, the 
belief of a sensor node is the data measurement of an 
event in the environment, and BP provides an iterative 
algorithm (also called the sum product algorithm) to 
infer the measurements of the sensor nodes, especially 
in cases where the data are missing, because of packet 
losses or because there are no data available at some 
selectively disabled sensor nodes (mainly to conserve 
energy and reduce radio inference). In BP, each sensor 

node determines its belief by incorporating its local 
measurement with the beliefs of its neighbor sensor 
nodes (spatial cooperation), and its beliefs obtained in 
the past (temporal cooperation). In such inference 
problems, the assumption that the data are 
spatiotemporally correlated significantly improves the 
accuracy of data inference using BP in WSNs. 

This paper presents the current trends in IoT 
research propelled by applications and the need for 
convergence in several interdisciplinary technologies. 
In monitoring applications for the IoT, the data are 
collected and put in an environment matrix (EM), 
where the data readings for each sensor node are 
stored in one row of the matrix and each column index 
represents a timestamp for the interval at which the 
data were sampled. Hence, an EM is a matrix of size 
N × T where N is the number of sensor nodes and T 
the number of time intervals, and the time dimension 
T is expanding as more data are collected. BP 
performs the inference iteratively from the stream of 
data that are stored in EM based on the current and 
past data. Therefore, unlike the compressed sensing 
(CS) approach, BP does not require a complete EM 
for the whole duration of the time interval to perform 
inference. 

 

 
Fig. 1. Network architecture in an IoT 

 
In this paper, we explore cloud-assisted adaptive 

sensing and data fusion to reduce energy consumption 
and improve data quality for the IoT. We propose an 
adaptive sensing BP protocol (ASBP), where the data 
are collected in several rounds (a round is a fixed time 
interval where the network repeats the same behavior) 
by active sensors (sensors that are collecting data in 
each round). We formulate and solve an optimization 

problem that selects the active sensors in each round, 
by maximizing the data utility while maintaining 
energy load balancing. We define data utility as the 
sum of the qualities of the path links from the selected 
active sensor nodes to the base station, subtracted by 
the sum of the correlations of the selected active 
sensors. 
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The creation of the Internet has marked a 
foremost milestone towards achieving ubicomp’s 
vision which enables individual devices to 
communicate with any other device in the world. The 
inter-networking reveals the potential of a seemingly 
endless amount of distributed computing resources 
and storage owned by various owners. If the selected 
active sensor nodes are located on a path with greater 
link quality, then the value of the data utility 
increases. Likewise, if the selected active sensor 
nodes result in a lower data correlation, then the data 
utility is increased. In each round of ASBP, the 
minimum number of selected active sensor nodes 
(which is a parameter of our sensor selection 
optimization problem) is adaptively tuned based on 
the performance of the BP inference (data prediction 
accuracy) throughout the previous round. In addition 
to BP, we also use data quantization to further 
compress the data and reduce the transmission costs. 

The advancements and convergence of micro-
electro-mechanical systems (MEMS) technology, 
wireless communications, and digital electronics has 
resulted in the development of miniature devices 
having the ability to sense, compute, and 
communicate wirelessly in short distances. These 

miniature devices called nodes interconnect to form a 
wireless sensor networks (WSN) and find wide 
ranging applications in environmental monitoring, 
infrastructure monitoring, traffic monitoring, retail, 
etc.  In our active sensor selection formulation, we 
consider nonlinear multihop routing protocol 
constraints. To model the sensor selection problem 
effectively, we use both constraint programming (CP) 
and heuristic-based greedy algorithm. 

To take full advantage of the available Internet 
technology, there is a need to deploy large-scale, 
platform-independent, wireless sensor network 
infrastructure that includes data management and 
processing, actuation and analytics. Cloud computing 
promises high reliability, scalability and autonomy to 
provide ubiquitous access, dynamic resource 
discovery and composability required for the next 
generation Internet of Things applications. Consumers 
will be able to choose the service level by changing 
the Quality of Service parameters. 

CP is a powerful framework to model and solve 
combinatorial problems. A CP model consists of 
variables, variable domains, and constraints, as well as 
objective function (if required), in which the 
constraints express the relation between the variables. 

 

 
Fig. 2. Internet of Things schematic 
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Integrated IoT and Cloud computing applications 
enabling the creation of smart environments such as 
Smart Cities need to be able to (a) combine services 
offered by multiple stakeholders scale to support a 
large number of users in a reliable and decentralized 
manner. They need to be able operate in both wired 
and wireless network environments and deal with 
constraints such as access devices or data sources with 
limited power and unreliable connectivity. The Cloud 
application platforms need to be enhanced to support 
(a) the rapid creation of applications by providing 
domain specific programming tools and environments 
and (b) seamless execution of applications harnessing 
capabilities of multiple dynamic and heterogeneous 
resources to meet quality of service requirements of 
diverse users. 

The core concept in CP is constraint propagation. 
Constraint propagation performs reasoning on a subset 
of variables, variable domains, and constraints to infer 
more restrictive variable domains, such that the 
restricted domains still contain all solutions to the 
problem. CP combines constraint propagation with 
search procedure to find a local or global optimum 
(using branch-and-bound search space exploration) to 
an optimization problem. 

The contributions of this paper are as follows. 
1) We present a novel data collection scheme 

(ASBP) that utilizes highly correlated spatio-temporal 
data in the network and uses BP to reconstruct the 
missing data due to packet losses and the sensor 
selection strategy. 

2) We formulate the active sensor selection 
optimization problem, and propose two approaches, 
namely CP and a heuristic-based greedy algorithm to 
solve the problem. The CP approach solves the 
problem to optimality. 

3) We conduct extensive simulation with a real 
deployment of a sensor network and the collected data 
to evaluate the impact of our proposed solution (for 
both CP and heuristic-based algorithm) on the overall 
energy consumption, data utility, and accuracy (error 
prediction of the missing data). 

Internet of Things can be realized in three 
paradigms—internet-oriented (middleware), things 
oriented (sensors) and semantic-oriented (knowledge). 
Although this type of delineation is required due to 
the interdisciplinary nature of the subject, the 
usefulness of IoT can be unleashed only in an 
application domain where the three paradigms 
intersect. 
Literature Review 

The information industry benefits greatly from 
the technological advancements brought by the IoT. 
The IoT creates a bridge between many available and 
recent technologies, such as WSNs, cloud computing, 
and information sensing. In monitoring and data 

acquisition IoT-based systems, it is necessary to 
collect data effectively and efficiently. The IoT 
provides a platform for WSNs to connect to Internet 
and benefit from the power of cloud computing and 
data fusion. Therefore, it is necessary to study data 
collection schemes that can seamlessly integrate with 
the cloud and IoT systems. Data collection has been 
widely studied for stationary WSNs. Gnawali et al. 
present the stateof- the-art routing protocol for a 
sensor network where the nodes are forwarding data 
directly to a sink. They consider stationary WSNs that 
have static routes from the wireless sensors to the 
sink. Madden et al. introduced a distributed query 
processing paradigm called acquisitional query 
processing (ACQP) for sensor network data 
collection. The goal was to ensure a flexible tasking of 
motes via a relational query interface, while providing 
lifetime constraints, data prioritisation, event batching, 
and rate adaptation. 

Prediction-based energy-efficient approaches 
aim at predicting the data to minimize the number of 
transmissions. Chou et al. proposed a distributed 
compression based on source coding, which highly 
relies on the correlation of the data, and it compresses 
the sensor readings with respect to the sensor past 
readings, and the reading measured by the other 
sensor nodes. They used adaptive prediction to track 
the correlation of the data, which is used to estimate 
the number of bits needed in source coding for data 
compression. Recent work in WSN addressed the use 
of compressive sensing. The authors use compressive 
sensing to exploit the temporal stability, spatial 
correlation, and the low-rank structure of the EM. 
They propose an environmental space–time-improved 
compressive sensing (ESTI-CS) algorithm to improve 
the missing data estimation. Although compressive 
sensing achieved good accuracy on the estimation of 
the missing data, it does only consider implicit spatio-
temporal correlation in the data. 

In our definition, we make the definition more 
user centric and do not restrict it to any standard 
communication protocol. This will allow long-lasting 
applications to be developed and deployed using the 
available state-of-the-art protocols at any given point 
in time. Our definition of the Internet of Things for 
smart environments is Interconnection of sensing and 
actuating devices providing the ability to share 
information across platforms through a unified 
framework, developing a common operating picture 
for enabling innovative applications. This is achieved 
by seamless ubiquitous sensing, data analytics and 
information representation with Cloud computing as 
the unifying framework. 

Furthermore, compressive sensing approaches 
rely on the construction of a data matrix and thus 
require the synchronization of the sensors on the data 
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collection. However, in our work, we present a BP 
approach for the prediction of missing data, where the 
spatio-temporal correlation is explicitly enforced and 
the inference is performed online and iteratively as the 
data are received at the base station. In addition to the 
above, to the best of our knowledge, there has been no 
work addressing a CP approach for energy-efficient 
sensor selection with dynamic routing, while 
considering the link quality and correlation of the 
data. 
Network Model 

In our IoT application, stationary sensor nodes 
collect environmental data, such as temperature, 
humidity, light intensity, and noise level. The network 
architecture of our data collection in IoT applications. 
We support heterogenous networks, where data can be 
collected from various devices. The network supports 
multihop routing and the gateways collect the data and 
forward the data to the cloud, where the data fusion is 
performed to further analyze the data, predict missing 
data, and store the data in the data centers. The 
computation power of the servers in the cloud is used 
to improve data quality and save energy of the sensor 
nodes using our ASBP protocol (to be discussed 
further in Section III-B). The sensor nodes 
periodically sample data, which is forwarded to the 
cloud using a multihop routing protocol. In this work, 
we use the real data collected at the Intel Berkeley 
Research Lab. The link thickness between the sensor 
nodes represents the value of the link quality 
aggregated throughout the experiment. 

The data are collected at the cloud using the 
gateways associated with different applications of 
IoT. The gateway only relays the data to the servers in 
the cloud, and it is at least aware of the routing tables 
of the sensor nodes. In this paper, we refer to the 
gateway and the base station as the same entity; 
however, the actual computations (the CP solver and 
greedy algorithm are performed on the cloud, and all 
coordination are relayed by the gateway. 

In our setup, the sensor nodes collect and report 
the data periodically (typically every 30 s). Our 
protocol operates in several rounds (a round is a time 
interval where the network repeats the same 
behavior), and each round includes two phases. The 
first phase is used to collect the minimum required 
information, which is used in the second phase to 
improve energy-efficiency, energy load balancing, 
and the data quality. 
Data Quantization 

Quantization is a classic technique in signal 
processing that has been widely used for data 
compression. Quantization of network data saves 
storage as it encodes the data into fewer bits. It 
requires fewer number of transmissions and smaller 
packet size. In many applications, a quantized 

measure is informative enough to represent aspects of 
the network. 

The ability to uniquely identify ‘Things’ is 
critical for the success of IoT. This will not only allow 
us to uniquely identify billions of devices but also to 
control remote devices through the Internet. The few 
most critical features of creating a unique address are: 
uniqueness, reliability, persistence and scalability. 

For example, many heating, ventilation, and air 
conditioning (HVAC) sensors only react if 
temperature or humidity falls within certain 
thresholds. In summary, quantized measures are less 
fine-grained and lossy; however, there are many 
advantages in using a quantized measure. 

1) A quantized measure is informative enough 
for describing the correlation between the data. 

2) A quantized measure can be encoded into a 
few bits, saving storage and transmission costs. 

3) A quantized measure is coarse and thus 
cheaper to obtain. It is also stable and highly 
adjustable to match the needs of the network 
application. 

Every element that is already connected and 
those that are going to be connected, must be 
identified by their unique identification, location and 
functionalities. The current IPv4 may support to an 
extent where a group of cohabiting sensor devices can 
be identified geographically, but not individually. The 
Internet Mobility attributes in the IPV6 may alleviate 
some of the device identification problems; however, 
the heterogeneous nature of wireless nodes, variable 
data types, concurrent operations and confluence of 
data from devices exacerbates the problem further. 

On the inference accuracy, we compared our BP-
based approach with the CS-based approach. In 
particular, modeled the estimation of the lost data as a 
problem of matrix completion, where an EM matrix is 
constructed by recording the data reading of a 
particular sensor at a particular time. The EM matrix 
is incomplete because some data are lost during 
transmission and some sensors are inactive, i.e., not 
selected, during some time periods. By applying the 
matrix completion techniques developed in CS, the 
missing data in the EM matrix can also be estimated. 
While interesting, a drawback of the matrix 
completion formulation is that in order to construct, 
data must be collected in different sensors regularly 
and in a synchronized way, so that the data in the time 
dimension are consistent. In contrast, our BP-based 
approach makes no such assumption and allows the 
sensors to collect data at irregular frequencies or even 
randomly. This is possible due to the explicit 
modeling of the data correlations in time and in space 
in the potential functions. 

The data have to be stored and used intelligently 
for smart monitoring and actuation. It is important to 
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develop artificial intelligence algorithms which could 
be centralized or distributed based on the need. Novel 
fusion algorithms need to be developed to make sense 
of the data collected. State-of-the-art non-linear, 
temporal machine learning methods based on 
evolutionary algorithms, genetic algorithms, neural 
networks, and other artificial intelligence techniques 
are necessary to achieve automated decision making. 
These systems show characteristics such as 
interoperability, integration and adaptive 
communications. 

Developing IoT applications using low-level 
Cloud programming models and interfaces such as 
Thread and MapReduce models is complex. To 
overcome this, we need an IoT application specific 
framework for rapid creation of applications and their 
deployment on Cloud infrastructures. 

The Dynamic Resource Provisioning component 
implements the logic for provisioning and managing 
virtualized resources in the private and public cloud 
computing environments based on the resource 
requirements as directed by the application scheduler. 
This is achieved by dynamically negotiating with the 
Cloud Infrastructure as a Service (IaaS) providers for 
the right kind of resource for a certain time and cost 
by taking into account the past execution history of 
applications and budget availability. This decision is 
made at runtime, when SaaS applications 
continuously send requests to the Aneka cloud 
platform. 

The proposed Cloud centric vision comprises a 
flexible and open architecture that is user centric and 
enables different players to interact in the IoT 
framework. It allows interaction in a manner suitable 
for their own requirements, rather than the IoT being 
thrust upon them. In this way, the framework includes 
provisions to meet different requirements for data 
ownership, security, privacy, and sharing of 
information. 
 
Conclusion: 

By exploring cloud computing with the IoT, we 
present a cloud-based solution that takes into account 
the link quality and spatio-temporal correlation of data 
to minimize energy consumption by selecting sensors 
for sampling and relaying data. We have presented a 
novel cloud-based ASBP protocol with energy-
efficient data collection for the IoT applications. 
ASBP solves an optimisation problem to select an 
optimal set of active sensor nodes that maximizes the 
data utility and achieves energy load balancing. In our 
protocol, BP iteratively infers the values of the 
missing data from the stream of active sensor 
readings. We have also compared our BP prediction 
results with the widely used compressive sensing 
technique, and show that our BP algorithm 

significantly outperforms compressive sensing. We 
formulate and solve the active sensor selection 
optimization problem using CP, and compare it with 
our heuristic-based greedy algorithm. We have 
evaluated the performance of our ASBP protocol by 
extensive simulations using real data collected at the 
Intel Berkeley Research Lab sensor deployment and 
their link quality estimates. The simulation results 
show that our ASBP protocol can greatly improve 
energy-efficiency up to 80%, with the optimal CP 
active sensor selection, while maintaining in average 
5% error in the BP data inference. 

As future work, we plan to extend our ASBP 
protocol to a fully distributed implementation for real 
deployment, and compare versus our current optimal 
results. We are also interested to integrate adaptive 
sampling rate into our current results, as well as 
investigating multisink scenarios. 
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