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Abstract: To prohibit gas and/or water coning, it has been very common for wells to be completed over only a
portion of their productive zone. Such procedure causes an additional pressure drop termed as pseudo-skin that
reduces the well productivity. In order to figure out whether a partially-penetrated well required to be stimulated or
not, it’s crucial to both qualitatively and quantitatively determine different components of the total skin. Hence, in a
partially-penetrated well, accurate evaluation of pseudo-skin as one of the main components of total skin is
extremely essential. Many authors have proposed mathematical methods that can be used to estimate the pseudo-
skin factor due to partial completion. This paper aims to present a simple analytical model that can be used to
accurately predict the pressure behavior as well as the pseudo-skin factor in a partially-penetrated well. In this
model, the impacts of anisotropy and arbitrariness of the open interval location are taken into account. To better
illustrate the validity and reliability of the model for estimating the pseudo-skin factor, a comparison of the values
obtained by the presented model and those estimated by other available models with a numerical simulator as the
comparison base has been made. The results have shown that the assumptions on the basis of which the model is
developed are valid and furthermore, compared to other methods the analytical model has estimated the pseudo-skin
factor favorably so close to that obtained by the simulator.
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Introduction reservoir. His work was then extended by Brons and

For many years, it has been very usual for wells Marting (1961) to suggest an empirical correlation for
to be completed over only a portion of their productive the pseudo-skin factor due to partial completion. Their
zone in order to delay water and/or gas coning. In such results compared closely with the steady state
situations the well is referred to as a restricted entry or solutions of Muskat. Odeh (1968) used a finite cosine
partially-penetrated well. In comparison to fully transform to arrive at a solution for steady state flow
penetrated wells, flow lines in a partially penetrating of a slightly compressible fluid where the open
well are converged vertically toward the well. This interval was arbitrary within the producing formation.
distortion of flow pattern, results in an additional Streltsova-Adams (1979) employed Laplace and
pressure loss known as pseudo-skin effect due to Hankel transformations to solve partial completion
partial completion. In order to figure out whether a problem in a single-layered reservoir and derived an
partially-penetrated well should undergo stimulation expression for pseudo-skin factor in terms of infinite
or not, it’s crucial to both qualitatively and sine and cosine series for an arbitrary position of
quantitatively determine different components that perforations. She also investigated the effect of
form the total skin. Hence, in a partially-penetrated arbitrariness of perforation location on pseudo-skin
well, accurate evaluation of pseudo-skin as one of the factor and observed that the minimum value is for
main components of total skin is extremely essential. centrally-located open intervals. Kuchuk and Kirwan

Numerous authors have studied the effect of (1987) derived an analytical solution for the transient
partial penetration on pressure behavior and well pressure behavior of a partially penetrated well when
productivity losses. Using method of images, Muskat wellbore storage and skin effects were significant.
(1949, 1982) investigated the partial penetration effect They also presented a formula for pseudo-skin factor
on a single-layered homogeneous reservoir for assuming a uniform flux model that is only applicable
incompressible fluid and estimated productivity loss for perforations at the base or top of the producing
duo to partial completion. Nisle (1958) considered a formation. Vrbik (1986) used separation of variable
partially-penetrating well in an infinite slab and based technique to find a simple formula for the pseudo-skin
on point source solution technique, he used method of factor using equations for steady state flow of
images and constructed synthetic buildup pressure incompressible fluid and the assumption of uniform
transient responses in a single-layered homogeneous flow across the perforated length. Papatzacos (1987)
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solved partial penetration problem by the use of
method of images for a single-layered, homogeneous
reservoir and taking infinite conductivity into account
analytically derived an expression for pseudo-skin
factor in terms of dimensionless wellbore radius,
dimensionless open interval and its location within
productive zone.

In the following first we describe a physical
model including a partially-penetrated well with
arbitrary location of open interval. Then considering
some simplifying assumptions an analytical model is
developed for the physical model. Next the Laplace
and finite Fourier cosine transforms are applied
successively to arrive at a solution for dimensionless
pressure in the Laplace domain for both transient and
boundary-dominated flow. By the aid of a numerical
Laplace transform inverter, we return the solution
back to the time domain and then check the validity of
the assumptions of the model against a numerical
reservoir simulator.

The Laplace domain solution consists of a term
that accounts for apparent skin due to partial
completion of the well. To investigate the validity of
the predicted apparent skin, some base cases are
considered and the results obtained by the analytical

Z

model and other available models found in the
literature are all compared with that of the numerical
simulator as the comparison base.
1. Model Development
1.1 Physical Model

Referring to figurel, we consider a vertical
single-layered porous cylinder with drainage radius

of e and uniform thickness of L which is initially at a

uniform pressure of Pi (i.e., neglecting hydrostatic
pressure gradient). It is assumed that a centrally-

located well of radius '® is drilled through the

. . . y4 V4
formation and is partially completed. ~! and "2 are
respectively the distance from the top and bottom of

the open interval with length of h to the top of the
formation. the top and bottom boundaries of the

formation are impermeable to flow. At time! = 0 , oil

q,

is produced from the reservoir at a constant rate, ,
causing the pressure in the reservoir to be reduced

gradually to P below the equilibrium pressure.
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Figure 1. Physical model

1.2 Mathematical Model

The important physical processes taking place in
the above-described reservoir system can be
incorporated in a set of partial differential equations
with appropriate initial and boundary conditions. The
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following assumptions and conditions are taken into
account in order to allow a model development:

a. A homogeneous and anisotropic porous
medium of uniform thickness with constant
permeability (non-zero vertical permeability).
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b. The flow is considered as two dimensional,
radial-vertical Darcy’s flow of single-phase oil
through the reservoir.

c. The change in pore volume is negligible.

d. The fluid is slightly compressible with
constant viscosity.

e. The gravity effects and wellbore storage are

f. The flux into the well is uniformly distributed
over the perforated interval.

g. The geothermal gradient is ignored.

h. No skin effect from damage or stimulation is
considered.

Mathematically the problem could be stated as
that of finding a solution to the dimensionless form of

ignored. diffusivity equation:
L 0 (, ||, %Pp_0py
| or, \ 7 o, oz,> ot M
The dimensionless variables are defined by:
r
I, =—
g @
z |k,
Z,=— [—
r \k
w z (3)
, 4 k,
1D~ 4l
r \k
w z (4)
z, |k,
2D~ 4l7
r \'k
w z (5)
0.000264k t
D= 2
¢/’Ictrw (6)
_ D, — p(ra t)
Pp=7"" N
( q,Bu j
0.00708% L
g (7
Initial and boundary conditions are given by:
a. Initial condition
pp,=0 t, =0 r, =1 ®)
b. Inner boundary conditions(constant rate)
L
- Z,,=Zy=<Zyp, I”DZI, tD>'O
- L [k
o 0 O<zy,=<z,&z,,<z2,<—" k—’ r, =1, t, =0
r
w z (9)
¢. Outer boundary condition
%) L |k r
Po |- 0<z,<—- |-+, r, =—%, t, =0
Oor)y r, \k, r,
(10a)
Or
0 k
Polog  0<z,<—- |-, ro>w, 1, =0
(10b)
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d. Top and bottom boundary conditions

0 r L |k
[ﬁ =0 0<1, <-4, z, =0 & z, =—- |-+ t, =0
aZD rw rw kz (11)
Note that equations (10a) and (10b) are outer transforms with respect to dimensionless time and
boundary conditions for finite acting and infinite finite Fourier cosine transforms with respect

acting reservoirs, respectively.
1.3 Solution
The Laplace-domain solution for dimensionless

z . . .
to ~P coordinate from equations (2) to (9). The details
are given in the appendix. The solution for a finite and
an infinite reservoir are obtained as follows:

pressure, Pp , can be obtained by taking Laplace
i L [k
Pp(tp,2p,8,1)= Py + Py’ 0=<zp <= 7"
rW z (12)
Where p D is the Laplace transform of Pp . The parameters p g and by for a finite reservoir are:
KOO0 + 1, (NS )K (1,45
p =
T SVS [ K10V = K (o VL) | )
. Nz . Nnz
) [sm( )=sin } (K01 (158) + 1)K (1, )]
~””:—Z L cos(ﬂzj
" T Sné [K (O ()~ K (rpO ()] L)
As indicated in the appendix, for an infinite reservoir these parameters are obtained as:
S50(c.5.0) = KoloVS)_
D \Ipss
SVSK,(\S) s)
nrwz . nnz
. [sin( 2) —sin( ‘)}
py--tyl L L Ko(rD@cos(ﬂzj
hm 5 nSEK, (&) L (16)

Equation (12) consists of two terms in Laplace

~p
domain; the first term, Pp , accounts for the behavior
of a fully penetrating well (equat10n(13) and (15)) and
prr
D

the second term, , that accounts for apparent skin

. . N . .
due to partial penetration of the well, 7. This series
term acts as a modifier to pressure drop, taking into
account the effect of limited flow entry.

Equations (14) and (16) are functions of Z .
Hence, in order to obtain a uniform pressure
distribution along a perforated portion of the well;
these equations may be integrated with respect
to Z over the limits of the open interval. The results are
equations (17) and (18) describing the average pseudo-

. r, =1 .
skin at the wellbore ( P ), for the finite and
infinite reservoir, respectively.

_ 20 & [K & () + 1 (rp K, (rD@][ Z,. . oz }
e ;Sné[K V(&) — K, (r &)1, ()] in(=)=sin(=) -
2L2°°K<§>[ ;z}

Now with the aid of a numerical Laplace
inverter, one may obtain the average pseudo-skin and
consequently the solution for dimensionless wellbore

=1,z,,5,n) ) in

) . D (T
pressure (the inversion of Pp(®p
the dimensionless time domain.
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2. Model Validation

By the employment of the Stehfest algorithm
(1970) as a Laplace inverter, equation (12) was
programmed to obtain numerical answers. Referring to
table 1, 8 different cases were considered to examine
the validity of the model’s assumptions against a
numerical simulator (ECLIPSE). Note that the other
required data for these cases are common with the
base case described in table 3. As shown in figure 2 to
figure 9, the analytical model for all 8§ cases is in good
agreement with the results obtained by the simulation.

Table 1. List of cases studied to investigate the model
validity (* refers to the base case)

Table 3. The base case

Case ID Parameter studied value parameters Value
1 Base case * @ 0.2
2 ¢ 015 B, (bbifstb 105
3 7, ( ft ) 800 P 5
°(P)
4 L (ﬁ) 150 c pSfl 6.66%
5 b 0.3 ( ) '
6 Open interval location Centre k, ( md ) 20
7 q, (Stb/ day 200 k.omd) 20
8 kz ( md ) 2 b 0.1
Open interval location top
Table 2. List of cases studied for estimative of pseudo- v, ft 0.35
skin(Note that for each case 5 completion fractions are () i
considered and * refers to the base case) 7, ( ﬁ) 1000
k . .
Case ID 2( md ) Open interval location I ( ﬁ) 75
9 * *
10 20 Centre D (Stb/ day ) 100
11 2 Top :
; Ay
12 2 Centre Pi (7 5000
5000 5000
— ECLIPSE ——— ECLIPSE
4800 Analytical model 4800 s Analytical model
Z 4600 T 4600
E 4400 E 4400
4200 4200
4000 4000
0 10 20 30 40 0 10 20 30 40
time{day) time(day)

Figure 2. Verification-base case
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Figure 3. Verification-case2 (¢ )
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5000 5000
——— ECLIPSE ——ECLIPSE
4800 s+ Analytical model 4800 + Analytical model
Z 4600 T 4600 fedsssdessiia p T i
2 4400 2 #4400
4200 4200
4000 4000
0 10 20 30 40 0 10 20 30 40
time{day) time(day)
. . . 7 . . .
Figure 4. Verification- case3 ( ¢) Figure 5. Verification-case4 (L )
5000 5000
——— ECLIPSE ——— ECLIPSE
4800 +  Analytical model 4500 +  Analytical model
T 4600 3z
:g :;—: 4600
& 4400 &
L TYPPR
4200 4400
4000 4200
0 10 20 30 40 0 10 20 30 40
time{day) time(day)
Figure 6. Verification- case5 (b ) Figure 7. Verification-case6 (perforation location)
5000 5000
——— ECLIPSE ECLIPSE
4600 +  Analytical model 4300 s Analytical model
Z 4200 = 4600
L o
Z 3800 E 4400
3400 4200
\aaas
3000 4000
0 10 20 30 40 0 10 20 30 40
time{day) time(day)
. . q . e k
Figure 8. Verification- case7 (") Figure 9. Verification-case8 (" ?)
3. Model Comparison location on pseudo-skin factor, referred to table 2, four

Same as the analytical model, some available
models in the literature were programmed to be
compared against the numerical simulator for the
estimative of pseudo-skin factor due to partial
completion. For this purpose and also to better
illustrate the impacts of anisotropy and open interval
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different cases with certain completion percentages
were considered. Note that the other required data for
these cases are similar to the base case. Table 4 show
the values for the pseudo-skin obtained by different
techniques and the simulator. Taking the results of the
numerical simulator (ECLIPSE) as the comparison
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base, the analytical model and Streltsova-Adams
(1979) technique have had the best agreements.
Papatzacos’s (1987) has also predicted the pseudo-
skin factor relatively close to that of the simulator
while almost other techniques have either
underestimated or overestimated the pseudo-skin.
These differences are partly known as the result of not

taking the anisotropy and/or arbitrariness of the open
interval location into consideration. Furthermore, one
may propose that different mathematical solutions to
partial completion problem and simplifying
assumptions are the other reasons for deviations of the
models from that of the simulator.

Table 4. the pseudo-skin values obtained by different methods and the simulator for all four conditions listed in table
2 (0,B, M, S, P, V, K respectively stands for Odeh (1968), Brons&Marting (1961), McKinley (1984), Streltsova

1979), Papatzacos (1987), Vrbik (1986), Kuchuk&Kirwan (1987))
b o B M S P vV K Anglytical moglel énal)ttical 1¥10del ECLIPSE
(finite reservoir) | (infinite acting)
0.1 | 23.78 | 27.27 | 30.3 | 28.56 | 25.66 | 23.31 | 26.8 | 28.23 28.23 28.38
0.2 ] 12.14 | 14.02 | 1346 | 14.6 | 13.31 | 1237 | 14.02 | 145 14.5 14.52
o | 031775 |852 | 785 [9.03 | 828 |7.89 |8.69 | 899 8.99 9.01
2 104|536 | 569 [505 |59 |547 [543 [575 |59 5.94 5.97
S 05382 [377 [336 |4 369 [ 401 |386 |3.99 3.99 4.03
b o B M S P vV K Anaflytical mosiel énal)ttical I?mdel ECLIPSE
(finite reservoir) | (infinite acting)
0.1 | 23.05 | 21.03 | 30.3 | 22.54 | 23.57 | 23.31 | 26.8 | 22.11 22.11 22.9
02| 11.8 | 11.24 | 1346 | 11.89 | 12.63 | 12.37 | 14.02 | 11.75 11.75 11.92
S [03]756 |69 785 | 744 796 |7.89 |8.69 | 736 7.36 7.47
2 104|525 | 465 | 505 |494 | 533 |543 | 575 | 4.89 4.89 4.98
S 050376 [3.07 [336 [332 [3.64 [ 401 [3.86 [3.29 3.29 3.39
b o B M S P v K Anglytical mo.del énal)ttical 1¥10del ECLIPSE
(finite reservoir) | (infinite acting)
0.1 | 33.23 | 27.27 | 40.66 | 38.72 | 38.04 | 32.98 | 37.81 | 38.63 38.63 38.67
0.2 | 1697 | 14.02 | 18.07 | 19.16 | 1891 | 16.79 | 18.83 | 19.14 19.14 19.12
= [ 031085 | 852 | 1054 | 11.69 | 11.6 | 105 | 1148 | 11.68 11.68 11.73
$ 04751 |569 [677 |767 |7.66 |7.12 |7.56 | 7.67 7.67 7.75
S 05536 377 [451 [515 [518 [5.15 [505 [5.14 5.14 5.24
b o B M S P v K Anglytical mo.del énal)ttical 1¥10del ECLIPSE
(finite reservoir) | (infinite acting)
0.1 | 32.41 | 21.03 | 40.66 | 32.51 | 33.93 | 32.98 | 37.81 | 32.35 32.35 32.81
02166 | 11.24 | 18.07 | 16.39 | 17.23 | 16.79 | 18.83 | 16.35 16.35 16.46
Q 103]10.64 169 10.54 | 10.08 | 10.65 | 10.5 | 11.48 | 10.06 10.06 10.13
2 104739 [465 | 677 |664 |706 | 712 | 756 | 6.63 6.63 6.72
S 105529 [3.07 [451 [445 [479 [515 [505 | 445 4.45 4.55
Conclusion both were observed to predict the closest values for the

In this work:

e A simple analytical model was developed and
programmed to accurately predict the pressure
behavior and estimate the pseudo-skin factor due to
partial completion.

e A numerical simulator (ECLIPSE) was
employed to examine the validity of the model for a
particular base case.

e Same as the presented model, some analytical
and numerical methodologies found in the literature
were programmed and a comprehensive comparison of
them all was made against the numerical simulator to
find the most accurate ones for the estimative of
pseudo-skin factor due to partial completion.
Therefore the analytical model and Streltsova’s (1979)
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pseudo-skin factor to that of the numerical simulator.
Nomenclature

b- penetration ratio, dimensionless
Cl’ Cz’ Cz’ G,
21)

= constants in Eq.(A-8) and Eq.(A-

- total reservoir compressibility, p si”!

L = formation thickness, Jt

h length of the open interval, ft

“1 = distance between the top of the open interval and

the top of the reservoir, ft
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2~ distance between the bottom of the open interval
and the top of the reservoir, ft
" =reservoir permeability in radial direction, md
Z=reservoir permeability in vertical direction, md
p = pressure, psi
Pi initial equilibrium pressure, psi

Prr — pottom hole pressure, P!

D= well production rate, Stb/ day
Te reservoir drainage radius, ﬁ
"o = wellbore radius, Jt

N . . .
P = pseudo-skin factor due to partial penetration,
dimensionless

t=— time, hrs
Z = vertical coordinate, vertical depth measured from

the formation top, ﬁ

¥ = radial coordinate, radius, Jt

p dimensionless radius defined by Eq. (2)

“p— dimensionless vertical depth defined by Eq. (3)
I _ dimensionless time defined by Eq. (6)

Pp_ dimensionless pressure defined by Eq. (7)

Py the Laplace transform of dimensionless pressure
Zip= dimensionless variable defined by Eq. (4)

2D - dimensionless variable defined by Eq. (5)

bbl/sth

2 = oil formation volume factor,

S- the Laplace-domain variable
r . . . .
eD = dimensionless drainage radius

1, = the modified Bessel functions of first kind of
order zero

0= the modified Bessel function of second kind of
order zero

Il = the first order modified Bessel function of first
kind

1= the first order modified Bessel function of second
kind

I=(Lfr,)k,[k.

78
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Pp_ finite Fourier transform of Pp
Greek symbols

¢ reservoir porosity, fraction
H = ol viscosity, p
Superscripts

pp - partial penetration

P = complete penetration
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Appendix
Taking the Laplace transform from equation (1) and equation (8) to (11) yields:
2~ ~ 2~
0 by, 1Py 0Pp_
or,’ r, or, 0z,

Sﬁ[) _pD(rDao)

(A-1)
ICZpD(I”D,O)=O (A-2)
—L/h
o % Z,,=<Zp=2Z,p, r, =1, t, =0
BCI: ( ap D J - L
> 0 0<z,<z,& z,,<2,<—" fk— ry, =1, t, >0
T ‘ (A-3)
Be2:| Lo | o
GI”D pote
T (A-4)
BC3: —Zp 2| =0
V4
D 7zp=0 (A-5)
BC4:| Po =0
0z, N
ro ks (A-6)
Applying finite Fourier cosine transform with respect to “p coordinate for equations (A-1) to (A-6) results:
2 o~k ~k 2
0 L
r’ 0 pf +rD—pD - (Ej +8 |r)p, =0
or,, or,, [
(A-T)
Equation (A-7) is Bessel modified differential equation which has the general solution as:
Do :Cllo(é:rD)+C2K0(é:rD) (A-8)

I

K . . . .
0 and "0 are, respectively, the modified Bessel’s functions of the first and second kind of order zero. For the sake
of simplicity in derivations, the parameter in equation (A-8) is expressed by equation:

_ ﬂk_
-l

(A-9)

The transformed boundary conditions are:

~ % 2
BClI: Py L |k sin(ﬂzzj—sin(ﬂzlj

oz, ) Shr nz\ k, L L
p= (A-10)

BC2: (—zp 2 j =0

rD rp=r,/1, (A'l 1)

Using properties of Bessel function and applying boundary conditions to equation (A-8), one may obtain:
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. J;?L[ E s -2 ) e

hr,mw SnE[K (6 (Erp) =K, (Erp) ()] (A-12)
“r ) )
hr, 7 Sn&[K (O, (érp) - K, (érp)1(6)] (A-13)

1 K . . . .
I'and "1 are first order modified Bessel’s functions of the first and second kind, respectively.
Therefore the solution of dimensionless pressure in Fourier-domain becomes:

. Jk_—r{sin(”f j—sm( H[K(é o (Er) 4 1 (Er K ()]
k.

hr, Sné[K1(§)I1(§’;D)_Kl(‘freD)Il(‘f)] (A-14)

ﬁ;(rD,S,n)z

Applying the inverse finite Fourier cosine transform with respect to the “? coordinate for equation (A-14), the
solution for dimensionless pressure in Laplace-domain becomes:

- rolk | .«
pD(rD,zD,S,n)sz;{pD( ,S,n= O)+2ZpD(rD,S n)cos(C

n=l

D)} 0<z, <—
ko aas)
Pp(ry,5,0) and Pl D’S’n), The values

P (1558,0)

In equation (A-15) one needs to evaluate two terms including
of P »(7,5,0) and P p(7p>5,1) can be obtained from equation (A-14). To evaluate

needs to take the limit off’;(’” S,n)
5 (1..5.0) = \F [ K (S (Sr) + 1(VSr K, (VSr) |
o SVs K(f)l(frw) K,(JSr D)[(f)}

Therefore the dimensionless wellbore pressure can be obtained as:

= L |k
Pp(rp,2p,8,m)=pp + Py 0<z,<— /k_
SR (A-17)

Where

50 5= [K (NSt )L,(NST) + (VST K, (VST }
D rD’

’ SVS | K\(S)L(WSn) = K (V57 (S|

. nrw
ZLZ{SIH[L j—sm[ 7 H[K (Erp)l,(Ery) +1,(¢érp)K, (& )]COS(WTZD)
hr '3 Sng[Kl(g)ll(greD)_Kl(greD)Il(g)] l (A-19)

In the case of infinite acting reservoir the outer boundary condition becomes as:

, one

when n approaches to zero. Using L’ Hospital’s rule, one may obtain:

(A-16)

(A-18)

Pp (1p>2p,8,m) =

~ —0
(pD )rD—>oo (A-20)
The general solution is the same as the bounded reservoir case, equation (A-8).

ﬁD :C3[0(§FD)+C4K0(§FD) (A-21)
Considering properties of Bessel function and applying boundary conditions to equation (A-21), one may obtain:

C, =0 (A-22)
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r k.| . (nx . (nx
C4 - k_ Sin TZZ —Sin TZI
Shr,nmé K, (S) \ k. (A-23)

Following the same procedure as that for finite reservoir, the dimensionless wellbore pressure can be obtained as:

ﬁD(rDaZDaSan)=ﬁg+ﬁgp O-<ZD.<£ %
VR (A-24)
Where
57(r,,S) _ KISy
p Up>
SVSK,(JS) s
. (nrx . (nrx
N & {SIH(LZZJ_SIH(LZIH .

~ pp , ,S, = K b
Pp (l’b Zp l’l) ]’lﬂ'; Sn§K1(§) 0(§I’D)COS(—Z ) )
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