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Abstract: To prohibit gas and/or water coning, it has been very common for wells to be completed over only a 
portion of their productive zone. Such procedure causes an additional pressure drop termed as pseudo-skin that 
reduces the well productivity. In order to figure out whether a partially-penetrated well required to be stimulated or 
not, it’s crucial to both qualitatively and quantitatively determine different components of the total skin. Hence, in a 
partially-penetrated well, accurate evaluation of pseudo-skin as one of the main components of total skin is 
extremely essential. Many authors have proposed mathematical methods that can be used to estimate the pseudo-
skin factor due to partial completion. This paper aims to present a simple analytical model that can be used to 
accurately predict the pressure behavior as well as the pseudo-skin factor in a partially-penetrated well. In this 
model, the impacts of anisotropy and arbitrariness of the open interval location are taken into account. To better 
illustrate the validity and reliability of the model for estimating the pseudo-skin factor, a comparison of the values 
obtained by the presented model and those estimated by other available models with a numerical simulator as the 
comparison base has been made. The results have shown that the assumptions on the basis of which the model is 
developed are valid and furthermore, compared to other methods the analytical model has estimated the pseudo-skin 
factor favorably so close to that obtained by the simulator.  
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Introduction 

For many years, it has been very usual for wells 
to be completed over only a portion of their productive 
zone in order to delay water and/or gas coning. In such 
situations the well is referred to as a restricted entry or 
partially-penetrated well. In comparison to fully 
penetrated wells, flow lines in a partially penetrating 
well are converged vertically toward the well. This 
distortion of flow pattern, results in an additional 
pressure loss known as pseudo-skin effect due to 
partial completion. In order to figure out whether a 
partially-penetrated well should undergo stimulation 
or not, it’s crucial to both qualitatively and 
quantitatively determine different components that 
form the total skin. Hence, in a partially-penetrated 
well, accurate evaluation of pseudo-skin as one of the 
main components of total skin is extremely essential. 

Numerous authors have studied the effect of 
partial penetration on pressure behavior and well 
productivity losses. Using method of images, Muskat 
(1949, 1982) investigated the partial penetration effect 
on a single-layered homogeneous reservoir for 
incompressible fluid and estimated productivity loss 
duo to partial completion. Nisle (1958) considered a 
partially-penetrating well in an infinite slab and based 
on point source solution technique, he used method of 
images and constructed synthetic buildup pressure 
transient responses in a single-layered homogeneous 

reservoir. His work was then extended by Brons and 
Marting (1961) to suggest an empirical correlation for 
the pseudo-skin factor due to partial completion. Their 
results compared closely with the steady state 
solutions of Muskat. Odeh (1968) used a finite cosine 
transform to arrive at a solution for steady state flow 
of a slightly compressible fluid where the open 
interval was arbitrary within the producing formation. 
Streltsova-Adams (1979) employed Laplace and 
Hankel transformations to solve partial completion 
problem in a single-layered reservoir and derived an 
expression for pseudo-skin factor in terms of infinite 
sine and cosine series for an arbitrary position of 
perforations. She also investigated the effect of 
arbitrariness of perforation location on pseudo-skin 
factor and observed that the minimum value is for 
centrally-located open intervals. Kuchuk and Kirwan 
(1987) derived an analytical solution for the transient 
pressure behavior of a partially penetrated well when 
wellbore storage and skin effects were significant. 
They also presented a formula for pseudo-skin factor 
assuming a uniform flux model that is only applicable 
for perforations at the base or top of the producing 
formation. Vrbik (1986) used separation of variable 
technique to find a simple formula for the pseudo-skin 
factor using equations for steady state flow of 
incompressible fluid and the assumption of uniform 
flow across the perforated length. Papatzacos (1987) 
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solved partial penetration problem by the use of 
method of images for a single-layered, homogeneous 
reservoir and taking infinite conductivity into account 
analytically derived an expression for pseudo-skin 
factor in terms of dimensionless wellbore radius, 
dimensionless open interval and its location within 
productive zone. 

In the following first we describe a physical 
model including a partially-penetrated well with 
arbitrary location of open interval. Then considering 
some simplifying assumptions an analytical model is 
developed for the physical model. Next the Laplace 
and finite Fourier cosine transforms are applied 
successively to arrive at a solution for dimensionless 
pressure in the Laplace domain for both transient and 
boundary-dominated flow. By the aid of a numerical 
Laplace transform inverter, we return the solution 
back to the time domain and then check the validity of 
the assumptions of the model against a numerical 
reservoir simulator. 

The Laplace domain solution consists of a term 
that accounts for apparent skin due to partial 
completion of the well. To investigate the validity of 
the predicted apparent skin, some base cases are 
considered and the results obtained by the analytical 

model and other available models found in the 
literature are all compared with that of the numerical 
simulator as the comparison base. 
1. Model Development 
1.1 Physical Model 

Referring to figure1, we consider a vertical 
single-layered porous cylinder with drainage radius 

of er and uniform thickness of L  which is initially at a 

uniform pressure of ip (i.e., neglecting hydrostatic 
pressure gradient). It is assumed that a centrally-

located well of radius wr is drilled through the 

formation and is partially completed. 1z  and 2z  are 
respectively the distance from the top and bottom of 

the open interval with length of h  to the top of the 
formation. the top and bottom boundaries of the 

formation are impermeable to flow. At time 0t , oil 

is produced from the reservoir at a constant rate, wq , 
causing the pressure in the reservoir to be reduced 

gradually to p below the equilibrium pressure. 

 

 
Figure 1. Physical model 

 
1.2 Mathematical Model 

The important physical processes taking place in 
the above-described reservoir system can be 
incorporated in a set of partial differential equations 
with appropriate initial and boundary conditions. The 

following assumptions and conditions are taken into 
account in order to allow a model development: 

a. A homogeneous and anisotropic porous 
medium of uniform thickness with constant 
permeability (non-zero vertical permeability). 
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b. The flow is considered as two dimensional, 
radial-vertical Darcy’s flow of single-phase oil 
through the reservoir. 

c. The change in pore volume is negligible. 
d. The fluid is slightly compressible with 

constant viscosity. 
e. The gravity effects and wellbore storage are 

ignored. 

f. The flux into the well is uniformly distributed 
over the perforated interval. 

g. The geothermal gradient is ignored. 
h. No skin effect from damage or stimulation is 

considered. 
Mathematically the problem could be stated as 

that of finding a solution to the dimensionless form of 
diffusivity equation: 
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Initial and boundary conditions are given by: 
a. Initial condition 

0                 0                     1D D Dp t r  
  (8) 

b. Inner boundary conditions(constant rate) 
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d. Top and bottom boundary conditions 

0        0 r ,              0 &             0
 

    
 

  eD r
D D D D

D w w z

rp kL
z z t

z r r k
  (11) 

Note that equations (10a) and (10b) are outer 
boundary conditions for finite acting and infinite 
acting reservoirs, respectively. 
1.3 Solution 

The Laplace-domain solution for dimensionless 

pressure, Dp , can be obtained by taking Laplace 

transforms with respect to dimensionless time and 
finite Fourier cosine transforms with respect 

to Dz coordinate from equations (2) to (9). The details 
are given in the appendix. The solution for a finite and 
an infinite reservoir are obtained as follows: 

(r , , , )                 0 z      cp pp r
D D D D D D

w z

kL
p z S n p p

r k
   (12) 

Where Dp is the Laplace transform of Dp . The parameters
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As indicated in the appendix, for an infinite reservoir these parameters are obtained as: 
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Equation (12) consists of two terms in Laplace 

domain; the first term,
cp
Dp , accounts for the behavior 

of a fully penetrating well (equation(13) and (15)) and 

the second term,
pp
Dp , that accounts for apparent skin 

due to partial penetration of the well, ps . This series 
term acts as a modifier to pressure drop, taking into 
account the effect of limited flow entry. 

Equations (14) and (16) are functions of z . 
Hence, in order to obtain a uniform pressure 
distribution along a perforated portion of the well; 
these equations may be integrated with respect 
to z over the limits of the open interval. The results are 
equations (17) and (18) describing the average pseudo-

skin at the wellbore (
1Dr 

), for the finite and 
infinite reservoir, respectively. 
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Now with the aid of a numerical Laplace 
inverter, one may obtain the average pseudo-skin and 
consequently the solution for dimensionless wellbore 

pressure (the inversion of
(r 1, , , )D D Dp z S n

) in 
the dimensionless time domain. 
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2. Model Validation 
By the employment of the Stehfest algorithm 

(1970) as a Laplace inverter, equation (12) was 
programmed to obtain numerical answers. Referring to 
table 1, 8 different cases were considered to examine 
the validity of the model’s assumptions against a 
numerical simulator (ECLIPSE). Note that the other 
required data for these cases are common with the 
base case described in table 3. As shown in figure 2 to 
figure 9, the analytical model for all 8 cases is in good 
agreement with the results obtained by the simulation. 
 
Table 1. List of cases studied to investigate the model 
validity (* refers to the base case) 
Case ID Parameter studied value 
1 Base case * 

2   0.15 

3 er ( ft ) 800 

4 L ( ft ) 150 

5 b  0.3 

6 Open interval location Centre 

7 wq (
stb day

) 200 

8 zk (md ) 2 

 
Table 2. List of cases studied for estimative of pseudo-
skin(Note that for each case 5 completion fractions are 
considered and * refers to the base case) 

Case ID zk (md ) Open interval location 

9 * * 
10 20 Centre 
11 2 Top 
12 2 Centre 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. The base case 
parameters Value 

  0.2 

oB (
bbl stb

) 1.05 

o ( cp ) 2 

tc (
1psi
) 6.66*e-6 

rk (md ) 20 

zk (md ) 20 

b  0.1 

Open interval location top 

wr ( ft ) 0.35 

er ( ft ) 1000 

L ( ft ) 75 

wq (
stb day

) 100 

ip (
psi

) 5000 

 
 

 

Figure 2. Verification-base case   Figure 3. Verification-case2 ( ) 
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Figure 4. Verification- case3 ( er )   Figure 5. Verification-case4 ( L ) 
 

 

Figure 6. Verification- case5 (b )   Figure 7. Verification-case6 (perforation location) 
 

 

Figure 8. Verification- case7 ( wq )   Figure 9. Verification-case8 ( zk ) 
 
3. Model Comparison 

Same as the analytical model, some available 
models in the literature were programmed to be 
compared against the numerical simulator for the 
estimative of pseudo-skin factor due to partial 
completion. For this purpose and also to better 
illustrate the impacts of anisotropy and open interval 

location on pseudo-skin factor, referred to table 2, four 
different cases with certain completion percentages 
were considered. Note that the other required data for 
these cases are similar to the base case. Table 4 show 
the values for the pseudo-skin obtained by different 
techniques and the simulator. Taking the results of the 
numerical simulator (ECLIPSE) as the comparison 
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base, the analytical model and Streltsova-Adams 
(1979) technique have had the best agreements. 
Papatzacos’s (1987) has also predicted the pseudo-
skin factor relatively close to that of the simulator 
while almost other techniques have either 
underestimated or overestimated the pseudo-skin. 
These differences are partly known as the result of not 

taking the anisotropy and/or arbitrariness of the open 
interval location into consideration. Furthermore, one 
may propose that different mathematical solutions to 
partial completion problem and simplifying 
assumptions are the other reasons for deviations of the 
models from that of the simulator. 

 
Table 4. the pseudo-skin values obtained by different methods and the simulator for all four conditions listed in table 
2 (O, B, M, S, P, V, K respectively stands for Odeh (1968), Brons&Marting (1961), McKinley (1984), Streltsova 
(1979), Papatzacos (1987), Vrbik (1986), Kuchuk&Kirwan (1987)) 

C
as

e 
9 

b O B M S P V K 
Analytical model 
(finite reservoir) 

Analytical model 
(infinite acting) 

ECLIPSE 

0.1 23.78 27.27 30.3 28.56 25.66 23.31 26.8 28.23 28.23 28.38 
0.2 12.14 14.02 13.46 14.6 13.31 12.37 14.02 14.5 14.5 14.52 
0.3 7.75 8.52 7.85 9.03 8.28 7.89 8.69 8.99 8.99 9.01 
0.4 5.36 5.69 5.05 5.96 5.47 5.43 5.75 5.94 5.94 5.97 
0.5 3.82 3.77 3.36 4 3.69 4.01 3.86 3.99 3.99 4.03 

C
as

e 
10

 

b O B M S P V K 
Analytical model 
(finite reservoir) 

Analytical model 
(infinite acting) 

ECLIPSE 

0.1 23.05 21.03 30.3 22.54 23.57 23.31 26.8 22.11 22.11 22.9 
0.2 11.8 11.24 13.46 11.89 12.63 12.37 14.02 11.75 11.75 11.92 
0.3 7.56 6.9 7.85 7.44 7.96 7.89 8.69 7.36 7.36 7.47 
0.4 5.25 4.65 5.05 4.94 5.33 5.43 5.75 4.89 4.89 4.98 
0.5 3.76 3.07 3.36 3.32 3.64 4.01 3.86 3.29 3.29 3.39 

C
as

e 
11

 

b O B M S P V K 
Analytical model 
(finite reservoir) 

Analytical model 
(infinite acting) 

ECLIPSE 

0.1 33.23 27.27 40.66 38.72 38.04 32.98 37.81 38.63 38.63 38.67 
0.2 16.97 14.02 18.07 19.16 18.91 16.79 18.83 19.14 19.14 19.12 
0.3 10.85 8.52 10.54 11.69 11.6 10.5 11.48 11.68 11.68 11.73 
0.4 7.51 5.69 6.77 7.67 7.66 7.12 7.56 7.67 7.67 7.75 
0.5 5.36 3.77 4.51 5.15 5.18 5.15 5.05 5.14 5.14 5.24 

C
as

e 
1

2 

b O B M S P V K 
Analytical model 
(finite reservoir) 

Analytical model 
(infinite acting) 

ECLIPSE 

0.1 32.41 21.03 40.66 32.51 33.93 32.98 37.81 32.35 32.35 32.81 
0.2 16.6 11.24 18.07 16.39 17.23 16.79 18.83 16.35 16.35 16.46 
0.3 10.64 6.9 10.54 10.08 10.65 10.5 11.48 10.06 10.06 10.13 
0.4 7.39 4.65 6.77 6.64 7.06 7.12 7.56 6.63 6.63 6.72 
0.5 5.29 3.07 4.51 4.45 4.79 5.15 5.05 4.45 4.45 4.55 

 
Conclusion 

In this work: 
 A simple analytical model was developed and 

programmed to accurately predict the pressure 
behavior and estimate the pseudo-skin factor due to 
partial completion. 

 A numerical simulator (ECLIPSE) was 
employed to examine the validity of the model for a 
particular base case. 

 Same as the presented model, some analytical 
and numerical methodologies found in the literature 
were programmed and a comprehensive comparison of 
them all was made against the numerical simulator to 
find the most accurate ones for the estimative of 
pseudo-skin factor due to partial completion. 
Therefore the analytical model and Streltsova’s (1979) 

both were observed to predict the closest values for the 
pseudo-skin factor to that of the numerical simulator. 
Nomenclature 

b = penetration ratio, dimensionless 

1C , 2C , 3C , 4C = constants in Eq.(A-8) and Eq.(A-
21) 

tc = total reservoir compressibility, 
1psi  

L = formation thickness, ft  

h = length of the open interval, ft  

1z  = distance between the top of the open interval and 

the top of the reservoir, ft  
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2z = distance between the bottom of the open interval 

and the top of the reservoir, ft  

rk = reservoir permeability in radial direction, md  

zk = reservoir permeability in vertical direction, md  
p  = pressure, psi  

ip = initial equilibrium pressure, 
psi

 

wfp = bottom hole pressure, 
psi

 

wq = well production rate, stb day  

er = reservoir drainage radius, ft  

wr = wellbore radius, ft  

ps  = pseudo-skin factor due to partial penetration, 
dimensionless 

t = time, hrs  
z = vertical coordinate, vertical depth measured from 

the formation top, ft  

r = radial coordinate, radius, ft  

Dr = dimensionless radius defined by Eq. (2) 

Dz = dimensionless vertical depth defined by Eq. (3) 

Dt = dimensionless time defined by Eq. (6) 

Dp = dimensionless pressure defined by Eq. (7) 


Dp = the Laplace transform of dimensionless pressure 

1Dz = dimensionless variable defined by Eq. (4) 

2Dz = dimensionless variable defined by Eq. (5) 

oB = oil formation volume factor, bbl stb  

S = the Laplace-domain variable 

eDr = dimensionless drainage radius 

0I = the modified Bessel functions of first kind of 
order zero 

0K = the modified Bessel function of second kind of 
order zero 

1I  = the first order modified Bessel function of first 
kind 

1I = the first order modified Bessel function of second 
kind 

( ) w r zl L r k k
 

 
2

( )    
  w r zn r L k k S

 
*
Dp = finite Fourier transform of 


Dp  

Greek symbols 

 = reservoir porosity, fraction 
 = oil viscosity, cp  
Superscripts 
pp = partial penetration 
cp = complete penetration 
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Appendix 
Taking the Laplace transform from equation (1) and equation (8) to (11) yields: 
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Applying finite Fourier cosine transform with respect to Dz coordinate for equations (A-1) to (A-6) results: 
22 * *

2 2 *

2
0

    
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 
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p p n
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r r l
   (A-7) 

Equation (A-7) is Bessel modified differential equation which has the general solution as: 
*

1 0 2 0( ) ( )D D Dp C I r C K r  
  (A-8) 

0I  and 0K  are, respectively, the modified Bessel’s functions of the first and second kind of order zero. For the sake 
of simplicity in derivations, the parameter in equation (A-8) is expressed by equation: 

2
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  (A-9) 

The transformed boundary conditions are: 
* 2
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*

BC2 : 0             


 
 

 



D e w

D

D r r r

p

r
  (A-11) 

Using properties of Bessel function and applying boundary conditions to equation (A-8), one may obtain: 
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 

2 1 12

1

1 1 1 1

sin sin ( )

( ) ( ) ( ) ( )

 


     

    
    

    


eD

r

z w eD eD

n n
z z K r

L Lk L
C

k hr Sn K I r K r I
  (A-12) 

 

2 1 12

2

1 1 1 1

sin sin ( )

( ) ( ) ( ) ( )

 


     

    
    

    


eD

r

w z eD eD

n n
z z I r

L LkL
C

hr k Sn K I r K r I
   (A-13) 

1I  and 1K  are first order modified Bessel’s functions of the first and second kind, respectively. 
Therefore the solution of dimensionless pressure in Fourier-domain becomes: 
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Applying the inverse finite Fourier cosine transform with respect to the Dz coordinate for equation (A-14), the 
solution for dimensionless pressure in Laplace-domain becomes: 
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In equation (A-15) one needs to evaluate two terms including 
* ( , , 0)D Dp r S

and 
* ( , , )D Dp r S n

. The values 

of
* ( , , 0)D Dp r S

and
* ( , , )D Dp r S n

 can be obtained from equation (A-14). To evaluate
* ( , , 0)D Dp r S

, one 

needs to take the limit of
* ( , , )D Dp r S n

when n approaches to zero. Using L’ Hospital’s rule, one may obtain: 

1 0 1 0*

1 1 1 1

( ) ( ) ( ) ( )
 ( , ,0)

( ) ( ) ( ) ( )

eD D eD D
r

D D

w z eD eD

K Sr I Sr I Sr K SrkL
p r S

r k S S K S I Sr K Sr I S

  
  



  (A-16) 
Therefore the dimensionless wellbore pressure can be obtained as: 
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  (A-19) 
In the case of infinite acting reservoir the outer boundary condition becomes as: 

  0
D

D r
p




  (A-20) 
The general solution is the same as the bounded reservoir case, equation (A-8). 

*
3 0 4 0( ) ( )D D Dp C I r C K r  

  (A-21) 
Considering properties of Bessel function and applying boundary conditions to equation (A-21), one may obtain: 

3 0C
  (A-22) 
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Following the same procedure as that for finite reservoir, the dimensionless wellbore pressure can be obtained as: 
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