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Abstract: In this work we presented an experimental verification of a numerical simulation of wall effects on the 
terminal falling velocity of spherical particles moving along the axis of a cylindrical vessel filled with a Carreau 
model fluid. Using a finite element method, we obtained dependences of the wall correction factor FW on the sphere 
to tube ratio d/D and on the dimensionless Carreau model parameters m, Λ, and ηr and then we compared calculated 
data of the wall correction factor with the results of our falling sphere experiments. The experiments were carried 
out in six types of cylindrical Perspex columns (16 mm, 21 mm, 26 mm, 34 mm, 40 mm, and 90 mm in diameter) 
filled with aqueous solutions of polymers showing different degrees of shear thinning and elasticity. Seventeen types 
of spherical particles (1 to 8 mm in diameter) made of following materials: glass, ceramics, steel, lead, and tungsten 
carbide, were used for drop test. Measurements of the liquid flow curves, primary normal stress differences, 
oscillatory, creep and recovery, stress relaxation, and stress growth tests were carried out on the rheometer Haake 
MARS (Thermo Scientific). A good agreement between numerically and experimental FW data was observed. 
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1. Introduction 

Knowing about the terminal falling velocity of a 
rigid particle is necessary for the solution of numerous 
theoretical and practical problems such as, design 
calculations of thickeners, fluidized bed equipment, 
pipeline transport systems, falling particle viscometry, 
and so on. Studying the influence of fluid non-
Newtonian behavior of the fall of a particle 
(particularly a sphere) is one of the most important 
issues from the middle of the 20th century. Chhabra 
(2006), in his book, provided a comprehensive review 
of literature and an analysis of the present state of 
investigation of this problem along with a short 
review of the calculation of the drag coefficient of 
particles falling in Newtonian fluids. The majority of 
efforts have been paid to investigate creeping flow of 
purely viscous fluids around a sphere. In order to 
solve this flow, fluid viscosity models containing zero 
shear viscosity as a parameter are preferred. Such a 
widely used viscosity model is the four-parameter 
Carreau model with parameters η0 (zero-shear rate 
viscosity), η∞ (infinite shear rate viscosity), λ, and m:  

 
The benefit of above equation is the ability to 

describe the viscosity, η, in a wide range of shear rates 
with very good accuracy. 

The problem of the evaluation of the drag 
coefficient of a sphere falling freely in an unbounded 
Carreau model fluid has been solved numerically by 
Chhabra and Uhlherr (1980), Bush and Phan-Thien 

(1984), and Doleček et al. (1990). Impact of the 
dimensionless viscosity parameter 

  
On the drag of a sphere has been solved by 

Doleček et al. (2004). Calculating the sphere terminal 
falling velocity, based on relationships approximating 
the results determined by Doleček et al. (1990) for ηr 
= 1, was provided by Machač et al. (2000). 

It is well known that, the confining walls will 
cause an extra retardation force on a particle falling in 
a viscous fluid because of the upward flux of the fluid 
displaced by the particle. The effect of container walls 
is usually expressed using the wall correction factor 
FW which can be defined as:  

 
Where, U/U∞ is the ratio of the terminal falling 

velocity in a bounded fluid to that in an unbounded 
one. 

For a spherical particle moving slowly and 
axially through an incompressible Newtonian fluid in 
a cylindrical container, the wall correction factor, FW, 
is a function of the sphere to tube diameter ratio, β = 
d/D and for non-Newtonian fluids, additional 
dimensional groups appear depending on the selected 
rheological model. The majority of information on the 
wall effects, particularly for non- Newtonian fluids, is 
based mainly on experiments. 

Only limited theoretical and numerical 
investigations of the effects of containing walls on the 



 Researcher 2017;9(10)          http://www.sciencepub.net/researcher 

 

76 

sphere motion in purely viscous fluids without a yield 
stress have been conducted (Chhabra, 2006). Missirlis 
et al. (2001) conducted a numerical study of the wall 
effects on the terminal velocity of a sphere falling 
freely via a power-law fluid at the axis of a cylindrical 
tube in the creeping flow system. This solution has 
been adjusted by Song et al. (2009) for sphere 
Reynolds numbers of 1–100. To test the possibility of 
using the COMSOL Multiphysics software for steady 
non-Newtonian flows to solve the flow of purely 
viscous fluids around a solid obstacle, the effect of 
containing walls on sphere motion in a power-law 
fluid was recalculated by this software package 
(Strnadel & Machač, 2008). Their results were in very 
good agreement with the data published by Missirlis 
et al. (2001). Moreover, while the theory predicts a 
strong impact of the power law index, n, on the wall 
factor, the existing experimental data do not confirm 
this fact. Given that, the power law viscosity model 
can be successfully used for the approximation of the 
fluid viscosity function only in a quite narrow region 
of the shear rate, the creeping flow over a solid sphere 
in a cylindrical tube was solved for a Carreau model 
fluid using the finite element method benefitting the 
above mentioned COMSOL Multiphysics software 
(Strnadel & Machač, 2009a; Machač et al., 2009). The 
suitability of the relationship approximating the 
results of these numerical calculations obtained for β 
= 0 was tested for fall of spherical particles within 
viscoelastic fluids by Strnadel & Machač (2009b). In 
the paper, the relationships valid for 0 ≤ β ≤ 0.5 were 
suggested and their usability was tested by comparing 
the calculated wall factor data with the results of our 
new extensive set of falling sphere experiments in 
polymer solutions showing different degrees of shear 
thinning and elasticity.  

 
2. Material and Methods  
2.1. Principles  

Numerical solution of the mathematical model 
provided in (Strnadel & Machač, 2009a; Machač et al, 
2009) resulted in the velocity, pressure, and stress 
fields. The magnitude of the drag force, FD, on the 
sphere and the resulting drag coefficient, CD, were the 
main outputs for further investigation:  

 
Where d is the sphere diameter, ρ is the density 

of the fluid, and U is the sphere terminal falling 
velocity.  

The drag coefficient, CD, for the creeping flow of 
a Carreau model fluid around a sphere is expressed as: 

  
Where,  

 
Figure 1: Dependence of the wall correction factor 
FW on β, m, and Λ for ηr = 1 
 

 
Figure 2: Dependence of the wall correction factor FW 
on β, m, and Λ for ηr= 0.75 

 

 
is the Reynolds number based on the zero-shear 

rate viscosity and X is the corrective factor of drag 
coefficient depending on the Carreau model 
parameter, m, the dimensionless time parameter Λ, 
and the ratios ηr and β. By comparing Eq. (4) with Eq. 
(5) we have 

 
Then the wall correction factor, FW, (Eq. 3) is: 

 
To calculate factor X, an iterative solution was 

used for such velocity, U < U∞, where the drag force 
is FD = FD∞ (Strnadel & Machač, 2009a). 

Dependences of FW = f (β, m, Λ) calculated for 
ηr = 1 and 0.75 are exhibited in Figures 1 and 2. 

The wall correction factor, FW, is fully dependent 
on ratio β. The dependence of FW on m and Λ varies 
based on the value of the viscosity parameter ηr. For ηr 
→ 1, the theoretical estimates of FW are largely 
depended on m and Λ. At the same time, the wall 
effect becomes less significant with the decreasing 
values of m and increasing values of Λ. By the 
decrease of the values for ηr, the dependence of FW 
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on m and Λ decreases and the dependence of FW on 
Λ show a local maximum. 

 
Table 1: Composition of the model liquids 

Liquid 
symbol 

Polymer 
Composition/mass 
% 

L1 Carboxymethylcellulose (CMC) 1.2 

L2 
Hydroxyethylcellulose (Natrosol 
250 HHX) 

1.0 

L3 Methylcellulose (Tylose) 3.0 
L4 Polyacryl amide (Separan 45) 1.2 
L5 Polyacryl amide (Hercofloc 818) 0.8 

L6 
Polyacryl amide (Kerafloc 
KX4026) 

0.75 

L7 Polyacryl amide (Praestol 2540) 0.4 

L8 
Polyethelene oxide (Polyox WSR 
303) 

1.2 

L9 
Polyalkylene glycol (Emkarox 
HV45)/CMC 

35/0.02 

L10 
Polyalkylene glycol (Emkarox 
HV45)/CMC 

35/0.04 

L11 
Polyalkylene glycol (Emkarox 
HV45)/CMC 

35/0.08 

L12 
Polyalkylene glycol (Emkarox 
HV45)/CMC 

35/0.16 

 
When dimensionless time Λ → 0 or m = 1, then 

the calculated value for FW will be reduced to the 
Newtonian correlation, which is in accordance with 
the viscosity function since the Carreau model (Eq. 
(1)) predicts constant viscosity i.e. η = η0. The 
identical situation arises for high values of the 

product , when behavior of the Carreau liquid 
rheological approaches that of a Newtonian liquid 
with viscosity equal to η∞. Given this fact, the 
existence of the aforementioned maximum can be 
described as the wall factor values are lower for 
Newtonian fluids than for shear thinning liquids.  

For simplification of the computations to 
determine the wall factor, Fw, a relationship 
approximating the numerically calculated data X (ηr, 
m, Λ, β) was used. By optimizing the resulted 
numerical data, it was found that, the following 
relationship can be used to predict factor X in the 
intervals: 0.3 ≤ ηr ≤ 1, 0.3 ≤ m ≤ 1, 0.1 ≤ Λ ≤ 2000, 
and 0 ≤ β ≤ 0.5. 

 
The limiting values of X for Λ = 0 and Λ →∞ 

are as the following. 

 

 
Moreover, the parameters k1–k4 (Eq. (9) are as 

the following. 

 
   

 
 

 
 

 

 
The mean relative deviation between the data 

determined based on the Eq. (9) and Eq. (10) and 
those calculated numerically are only 0.8 %. The 
observed maximum deviations (6–9.3 %) were for ηr 
= 1, m = 0.3, and β > 0.3. 
2.2. Experimental setup 

Falling sphere experiments were performed in 
six cylindrical Perspex columns filled with aqueous 
solutions of different polymers. The columns were 
placed 

in thermostatic water bath and tempered at 
23.0◦C. Diameters of the columns were 16 mm, 21 
mm, 26 mm, 34 mm, 40 mm, and 90 mm, which lead 

to ratio β ∈ . Polymer solutions 
L1–L8 were prepared by dissolution of powdered 
polymers in demineralized water; solutions L9–L12 
by dissolution of the appropriate amount of powdered 
carboxy methyl cellulose (CMC) in aqueous solutions 
of poly alkylene glycol Emkarox HV45. Table 1 
shows the composition of the test liquids and their 
densities, and table 2 shows Carreau model 
parameters. Seventeen types of spherical particles of 
glass, ceramics, steel, lead, and tungsten carbide were 
used for the drop tests. Table 3 shows the 
characteristics of the test particles. 

The range of terminal falling velocities, Uexp, in 
these experiments was from 0.063 mm s−1 to 202 mm 
s−1, which is in agreement with the Reynolds number 
interval from 2.52 × 10−6 to 2.64 and to the 
dimensionless time parameter interval from 0.129 to 
1423. Time interval between individual drop tests was 
set at least five minutes to avoid the occurrence of a 
“depleted region” in the liquid. 

 
Table 2: Characteristics of the model liquids 

Liquid 
symbol 

Density Carreau model (Eq. (1)) parameters (23◦C) 

ρ/(kg m−3) Η0/(Pa s) 
η∞/(Pa 
s) 

λ/s m ηr 

L1 1002 6.103 0.001 2.16 0.509 1.000 
L2 1000 4.301 0.001 0.999 0.470 1.000 
L3 1006 6.965 0.001 0.290 0.610 1.000 
L4 1002 17.92 0.001 12.7 0.424 1.000 
L5 1000 63.50 0.001 34.5 0.310 1.000 
L6 1002 23.71 0.001 22.0 0.317 1.000 
L7 999.3 18.71 0.001 11.0 0.278 1.000 
L8 1000 3.864 0.001 4.08 0.512 1.000 
L9 1055 0.644 0.326 3.24 0.787 0.508 
L10 1055 0.876 0.284 2.04 0.752 0.676 
L11 1055 1.418 0.261 1.79 0.729 0.816 
L12 1047 1.675 0.116 1.57 0.691 0.931 
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Table 3: Characteristics of the test spherical particles 

Symbol 
Diameter 
D/mm 

Density 
Ρs/(kg 
m−3) 

Symbol 
Diameter 
D/mm 

Density 
Ρs/(kg 
m−3) 

S1 1.93 2525 S10 7.99 3908 
S2 3.13 2486 S11 0.99 15119 
S3 4.12 2597 S12 1.49 15119 
S4 4.93 2508 S13 1.99 15119 
S5 6.12 2495 S14 2.99 15119 
S6 1.99 3908 S15 0.99 7526 
S7 2.99 3908 S16 3.17 7789 
S8 3.99 3908 S17 2.00 11118 
S9 5.99 3908    

Assessment of liquid flow curves, primary 
normal stress differences, oscillatory, creep and 
recovery, stress relaxation, and stress growth tests 
were performed at 23.0◦C on a rheometer Haake 
MARS (Thermo Scientific, Germany). 

 
3. Results  
3.1. Rheological measurements 

Liquid viscosity functions calculated from 
experimentally obtained flow curves were estimated 
by the four-parameter Carreau model with a very good 
accuracy. Figure 3 shows an example of the viscosity 
function course of some model fluids.  

As it appear from the creep and recovery tests 
(Fig. 4), polymer solutions L1–L3 and L9–L12 show 
only slight linear elasticity. On the opposite side, 
fluids L4–L7 (poly acryl amide solutions) exhibited 
strong linear elasticity. Somewhat weaker elasticity 
was observed in fluid L8 (solution of polyethylene 
oxide). Similar results were obtained from the 
oscillatory and stress relaxation measurements. It is 
worth mentioning that, the degree of linear elasticity 
of the test fluids corresponds with the values of 
parameter λ of the Carreau viscosity model (Table 2). 
Measurements of the primary normal stress 
difference, N1, showed that, the rate of non-linear 
elasticity of the test fluids L1, L2, L4–L7, and L9–
L12 are in agreement with the above-mentioned fluid 
linear elasticity.  
3.2. Wall factor  

Values of U∞,exp of the terminal falling velocities 
in unbounded fluid were obtained by linear 
extrapolation of the experimental dependences Uexp 
vs. β to the value of β → 0. For extrapolation, interval 
β ∈ (0; 0.2) where the dependences of Uexp= f (β) 
were nearly linear, was selected. Using terminal 
falling velocities, U∞,exp, experimental values, FW,exp, 
of the wall correction factor were calculated from Eq. 
(3) and then compared with the corresponding values, 
FW,cal, obtained according to Equations (8)–(10). 

Figure 3: Dependence of the wall factor FW on 
the ratio β for model liquid L10, ηr=0.676, m = 0.512, 
∈Λ  (4.33; 271.2), n = 0.873; (○ – calculated values), 

(●– experimental values), (—- Haberman and Sayre 
(1958)), ( —- power law model). 

 

 
Results of the comparison for liquids L1, L5, and 

L10 are exhibited in Figures 3. These figures show 
that, experimental values of the wall factor were in a 
good agreement with the calculated results. Diagrams 
for the other test fluids were identical. The mean 
relative deviation between FW,exp and FW,cal data 
determined for the whole set of experiments was 3.9 
%. Higher amounts of deviations (6–23 %) were 
observed for the ratio of β > 0.37. They can be partly 
as the results of experimental errors in the terminal 
falling velocity measurements in narrow columns 
when the strictly axial position of falling spheres is 
not easily obtainable and partly by the previously 
mentioned lower accuracy of the approximation 
formula (Eq. (10)) for β > 0.3. It is also worth 
mentioning that, the elasticity of test liquids L4–L8 
did not largely affect the wall effects.  

For comparison, dependences FW = f (β) 
obtained from the relationship of Haberman and Sayre 
(1958): 

 
This relation is valid for Newtonian fluids. The 

following relationship  

 
estimates the dependence FW = f (β) calculated 

numerically for power law fluids by Missirlis et al. 
(2001) and Strnadel and Machač (2008) that displayed 
in Figures 6–8. Parameters a1 to a4 are given by the 
following polynomial functions (Strnadel & Machač, 
2008). 
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It is obvious that, container walls have smaller 
effect on the particle movement in shear thinning 
fluids than in Newtonian fluid. However, Eq. (12), 
based on the power law model, predicts for liquids 
characterized by flow index n < 0.8 higher values of 
FW compared to the experimental results.  

 
4. Discussions  

The results of our numerical simulation of the 
wall effects on the terminal falling velocity of 
spherical particles moving slowly (creeping flow 
system) in a cylindrical vessel filled with Carreau 
model fluid are presented. Via optimizing the obtained 
numerical data, the relationships (Eq. (9) and Eq. 
(10)) approximating the results of numerical solution 
of the drag coefficient corrective factor X were 
obtained. Validity of Eq. (9) and Eq. (10) was 
evaluated by comparing the wall factor data predicted 
using these equations with the results of our falling 
sphere experiments. The experiments were performed 
in six types of cylindrical Perspex columns filled with 
aqueous solutions of polymers showing different 
degrees of shear thinning and elasticity. Seventeen 
types of spherical particles of glass, ceramics, steel, 
lead, and tungsten carbide were used for the drop 
tests. A good agreement between the calculated and 
experimentally obtained FW data was observed, which 
confirms the applicability of the proposed relationship 
for the wall effects calculation. The mean relative 
deviation between these data was only 3.9 %. It was 
also shown that, the container walls have smaller 
effect on the particle movement in shear thinning 
fluids than in Newtonian fluids. similarily, it was seen 
that, elasticity of the viscoelastic test liquids does not 
largely affect the wall effects. 
Symbols 

 a1–a4 parameters, Eqs. (12) and (13) 
 CD sphere drag coefficient 
 d sphere diameter (m) 
 D test column diameter (m) 
 FD drag force (N) 
 FD,∞ drag force in an unbounded fluid (N) 
 FW wall correction factor 
 FW,cal calculated experimental wall correction 

factor 
 FW,exp experimental wall correction factor 
 J creep compliancy (Pa−1) 
 k1–k4 parameters, Eqs. (9) and (10) 
 m dimensionless parameter of the Carreau 

model 
 N1 first normal stress difference (Pa) 
 Re0 Reynolds number, Eq. (6) 
 t time (s) 
 U terminal falling velocity in a test column 

(m s−1) 

 U∞ terminal falling velocity in an unbounded 
fluid (m s−1) 

 Uexp experimental terminal falling velocity in 
a test column (m s−1) 

 U∞,exp experimental terminal falling velocity 
in an unbounded fluid (m s−1) 

 X drag coefficient corrective factor, Eqs. (5), 
(7), and (8) 

 X∞ drag coefficient corrective factor for the 
fall in an unbounded fluid, Eq. (8) 

  factor X for Λ = 0 

  factor X for Λ→ ∞ 
 β sphere to tube diameter ratio (= d/D) 
 γ˙ shear rate (s−1) 
 η shear viscosity (Pa s) 
 η0 Carreau model parameter (zero-shear rate 

viscosity) Pa s 
 ηr dimensionless relative viscosity (= 1 – 

η∞/η0) 
 η∞ Carreau model parameter (infinite shear 

rate viscosity) (Pa s) 
 Λ dimensionless time parameter (= 2λU∞/d) 
 λ Carreau model time parameter s 
 ρ liquid density kg m−3 
 ρs sphere density kg m−3 
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