
 World Rural Observations 2018;10(1) http://www.sciencepub.net/rural

31

Agile Software Engineering

Ehsan Azizi Khadem1, Emad Fereshteh Nezhad2

1. MSc of Computer Engineering, Department of Computer Engineering, Lorestan University, Iran
2. MSc of Computer Engineering, Communications Regulatory Authority of I.R of Iran

emad_fereshtehnejad@yahoo.com

Abstract: Rapid development of hardware in computer systems caused a deep hole between software and hardware
usability and performance. Computer hardware has great growing in technology and tremendous increasing in speed
and accuracy. New hardware segments are too smaller and electronic circuits that used in them are very integrated.
Software must use capability of hardware in a computer system but software development is slower than hardware
growing. When a team want to implement a software product, it consumes long time and human power. One of the
reasons of this gap, is that we have not powerful methods to generate a software for several years. In 21th century,
many software development methodologies presented for improving software producing. Although it was a great
success and is saved time and software specialist effort, but unable to save time properly. Agile software engineering
is used for solving this problem and improving time consuming of a software project production. It has several
methods to implements rapid requirement capture, design, coding and testing a software project. in this paper, we
explain about agile methods definition and characteristics and compare it with traditional methods in software
engineering.
[Ehsan Azizi Khadem, Emad Fereshteh Nezhad. Agile Software Engineering. World Rural Observ 2018;10(1):31-
36]. ISSN: 1944-6543 (Print); ISSN: 1944-6551 (Online). http://www.sciencepub.net/rural. 4.
doi:10.7537/marswro100118.04.

Keywords: Agile, Software Engineering, Methodology

1. Introduction

A software system is the machine code, but what
is machine code? It is a description in binary from that
can read and understood by computer. A software
system is a source code that is written by
programmers that can be read and understood by a
compiler. We can continue in this manner to ask
similar questions about the design of a software
system in terms of subsystems, classes, interaction
diagrams, state chart diagrams and other artifacts. [1]
They are part of the system. Requirements, testing,
sales, production, installation and operations are part
of the system too. A system is all the artifact that it
takes to represent it in machine or human readable
form to the machines, the workers, and the
stakeholders. The machines are tools, compilers, or
target computers. Workers include management,
architects, developers, testers, marketers,
administrators, and others. Stakeholders are the
funding authorities, users, salespeople, project
managers, line managers, production people,
regulatory agencies, and so on. To support all of these
artifacts, we use a software engineering methodology.
A SE methodology direct all of process of software
system developments in any steps. [2] It define a
process that describes who is doing what when and
how to reach a certain goal. In software engineering
the goal is to build a software product or enhance an
existing one. An effective process providing
guidelines for the efficient development of quality

software. It captures and presents the best practices
that the current state of the art permits. In
consequence, it reduces risk and increases
predictability. The overall effect is to promote a
common vision and culture. We need such a process
to serve as a guide for all the participants, customers,
developers, and executive managers. Any old process
will not do. We need one that will be the best process
the industry is capable of putting together at this point
in its history. Finally, we need a process that will the
widely available so that all the stakeholders can
understand its roles in the development under
consideration. A Software development process
should be capable of evolving over many years.
During this evolution it should limit reach at any
given point in time to the realities that technologies,
tools, people, and organizational patterns permit.
Process must be built on technologies, programming
languages, operating systems, computer systems,
network capabilities, development environments, and
so on that are usable at the time the process is to be
used. For example, thirty years’ age visual modeling
was not really mainstream. It was too expensive. At
that time, a process builder almost had to assume that
hand drawn diagrams would be used. The assumption
greatly limited the degree to which a process
originator could build modeling into the process.
Process and tools must develop in parallel. Tools are
integral to process. To put it another way, a widely
used process can support the investment that creates

 World Rural Observations 2018;10(1) http://www.sciencepub.net/rural

32

the tools that support it. A process builder must limit
the skill set needed to operate the process to the skills
that current developers possess or target ones that
developers can be quickly trained to use. In many
areas it is now possible to embed techniques that once
required expensive skill, such as checking model
drawings for consistency, in computer-based tools.
While software developers may not be as
independently expert as symphony musicians. The
process builder has to adapt the process to today’s
realities the facts of virtual organizations. Working at
the distance through high speed lines. The mix of
partial owners, salaried employees, contract workers,
and outsourcing subcontractors and continuing
shortage of software developers. Process engineers
need to balance these four sets of circumstances.
Traditional processes and methodologies like SSADM
and RUP present frameworks for do all of these
activities but they may use for long term project for at
least six months. Today by increasing requests for
mobile and web application we need a rapid manner
to develop a software system and release it. Agile
methods provide this for us. [3]

Figure 1: Traditional vs Agile Process

2. What is Agile Software Engineering?

Engineered and other systems are under pressure
to adapt, from opportunities or competition, predators,
changing environment, and physical or cyberattack.
Ability to adapt well enough as conditions change,
especially in presence of uncertainty, is valued.
Systems (including developmental and life cycle
management) that adapt well enough, in time, cost,
and effectiveness, are sometimes called “agile”. As
environmental change or uncertainty increase, agility
can mean survival. [4]

Agile systems and agile systems engineering are
subjects of an INCOSE 2015-16 discovery project,
described elsewhere. This paper introduces the
underlying MBSE-based Agile Systems Engineering
Life Cycle Pattern being used to capture, analyze, and
communicate key aspects of systems being studied.
More than an ontology, this model helps us
understand necessary and sufficient conditions for
agility, different approaches to it, and underlying

relationships, performance couplings, and principles.
[5]

This paper introduces the framework, while
specific findings about methods and practicing
enterprises studied will be reported separately.
Iterative and incremental software development
methods can be traced back to 1957. Evolutionary
project management and adaptive software
development emerged in the early 1970s. During the
1990s, a number of lightweight software development
methods evolved in reaction to the prevailing
heavyweight methods that critics described as heavily
regulated, planned, and micro-managed. These
included: from 1991, rapid application development;
from 1994, the unified process and dynamic systems
development method (DSDM); from 1995, Scrum;
from 1996, Crystal Clear and extreme programming
(XP); and from 1997, feature-driven development.
Although these originated before the publication of
the Manifesto for Agile Software Development, they
are collectively referred to as agile software
development methods. At the same time, similar
changes were underway in manufacturing [13] and
aerospace. [6]

In 2001, seventeen software developers met at
the Snowbird resort in Utah to discuss these
lightweight development methods, among others Jeff
Sutherland, Ken Schwaber, and Alistair Cockburn.
Together they published the Manifesto for Agile
Software Development. [7]

In 2005, a group headed by Alistair Cockburn
and Jim Highsmith wrote an addendum of project
management principles, the Declaration of
Interdependence, to guide software project
management according to agile software development
methods. [8]

In 2009, a movement by Robert C Martin wrote
an extension of software development principles, the
Software Craftsmanship Manifesto, to guide agile
software development according to professional
conduct and mastery. [9]

In 2011 the Agile Alliance created the Guide to
Agile Practices (renamed the Agile Glossary in 2016)
an evolving open-source compendium of the working
definitions of agile practices, terms, and elements,
along with interpretations and experience guidelines
from the worldwide community of agile practitioners.
[10]

Agile software development refers to a group of
software development methodologies based on
iterative development, where requirements and
solutions evolve through collaboration between self-
organizing cross-functional teams. Agile methods or
Agile processes generally promote a disciplined
project management process that encourages frequent
inspection and adaptation, a leadership philosophy

 World Rural Observations 2018;10(1) http://www.sciencepub.net/rural

33

that encourages teamwork, self-organization and
accountability, a set of engineering best practices
intended to allow for rapid delivery of high-quality
software, and a business approach that aligns
development with customer needs and company goals.
Agile development refers to any development process
that is aligned with the concepts of the Agile
Manifesto. The Manifesto was developed by a group
fourteen leading figures in the software industry, and
reflects their experience of what approaches do and do
not work for software development. Read more about
the Agile Manifesto. [11]

3. Agile Methodology Properties

Projects that exhibit agile development success
seem to share several key characteristics that are
summarized below. For some methodologies these
correspond exactly with individual practices, whereas
for other methodologies there is a looser
correspondence. [12]

Agile software development methods have two
main units of delivery: releases and iterations. A
release consists of several iterations, each of which is
like a micro-project of its own. Features, defects,
enhancement requests and other work items are
organized, estimated and prioritized, then assigned to
a release. Within a release, these work items are then
assigned by priority to iterations. The result of each
iteration is working, tested, accepted software and
associated work items. [13]

Agile development projects thrive on the rhythm
or heartbeat of fixed-length iterations. The continuous
flow of new running, tested features at each iteration
provides the feedback that enables the team to keep
both the project and the system on track. Only from
the features that emerge from fixed-length (“time-
boxed”) iterations can you get meaningful answers to
questions like “How much work did we do last month
compared to what we predicted we would?” and
“How much work did we get done compared to the
month before?” and our personal favorite, “How many
features will we really get done before the deadline?”

The cruelty of several tight, fixed deadlines
within an agile development release cycle focuses
everyone’s mind. Face to face with highly-visible
outcomes from the last iteration (some positive, some
negative), the team finds itself focused on refining the
process for the next iteration. They are less tempted to
“gold-plate” features, to be fuzzy about scope, or to
let scope creep. Everyone can actually see and feel
how every week, every day, and every hour counts.
Everyone can help each other remain focused on the
highest possible business value per unit of time. [14]

The operating mechanics of an agile
development process are highly interdependent.

Figure 2: Traditional vs Agile Properties

Each day, the agile development team is

planning, working on, and completing tasks while the
software is being designed, coded, tested and
integrated for customer acceptance. Each iteration, the
team is planning, testing, and delivering working
software. Each release, the team is planning, testing,
and deploying software into production. In order to
coordinate and successfully deliver in such a highly
adaptive and productive process, team communication
and collaboration are critical throughout the entire
agile development process.

As the iterations go by the team hits its stride,
and the heartbeat of iteration deadlines is welcomed,
not dreaded. Suddenly, once the team gets the hang of
it, there is time for continuous process improvement,
continuous learning and mentoring, and other best
practices.

Delivering working, tested features are an agile
development team’s primary measure of progress.
Working features serve as the basis for enabling and
improving team collaboration, customer feedback, and
overall project visibility. They provide the evidence
that both the system and the project are on track. [3]

In early iterations of a new project, the team may
not deliver many features. Within a few iterations, the
team usually hits its stride. As the system emerges, the
application design, architecture, and business
priorities are all continuously evaluated. At every step
along the way, the team continuously works to
converge on the best business solution, using the latest
input from customers, users, and other stakeholders.
Iteration by iteration, everyone involved can see
whether or not they will get what they want, and
management can see whether they will get their
money’s worth. [4]

Consistently measuring success with actual
software gives an agile development project a very
different feeling than traditional projects.
Programmers, customers, managers, and other
stakeholders are focused, engaged, and confident. [6]

 World Rural Observations 2018;10(1) http://www.sciencepub.net/rural

34

Agile development methods focus rigorously on
delivering business value early and continuously, as
measured by running, tested software. This requires
that the team focuses on product features as the main
unit of planning, tracking, and delivery. From week to
week and from iteration to iteration, the team tracks
how many running, tested features they are delivering.
They may also require documents and other artifacts,
but working features are paramount. This in turn
requires that each “feature” is small enough to be
delivered in a single iteration. Focusing on business
value also requires that features be prioritized, and
delivered in priority order. [7]

Different agile development methodologies use
different terminology and techniques to describe
features, but ultimately they concern the same thing:
discrete units of product functionality.

It is a myth that agile methods forbid up-front
planning. It is true that agile methods insist that up-
front planning be held accountable for the resources it
consumes. Agile planning is also based as much as
possible on solid, historical data, not speculation. But
most importantly, agile methods insist that planning
continues throughout the project. The plan must
continuously demonstrate its accuracy: nobody on an
agile project will take it for granted that the plan is
workable. [8]

At project launch, the development team does
just enough planning to get going with the initial
iteration and, if appropriate, to lay out a high-level
release plan of features. And iterating is the key to
continuous planning. Think of each iteration as a
mini-project that receives “just-enough” of its own
planning. At iteration start, the team selects a set of
features to implement, and identifies and estimates
each technical task for each feature. Task estimation is
a critical agile skill. This same planning process
repeats for each iteration.

It turns out that agile development projects
typically involve more planning, and much better
planning, than waterfall projects. One of the criticisms
of “successful” waterfall projects is that they tend to
deliver what was originally requested in the
requirements document, not what the stakeholders
discover they actually need as the project and system
unfolds. Waterfall projects, because they can only
“work the plan” in its original static state, get married
in a shotgun wedding to every flaw in that plan. Agile
projects are not bound by these initial flaws.
Continuous planning, being based on solid, accurate,
recent data, enables agile projects to allow priorities
and exact scope to evolve, within reason, to
accommodate the inescapable ways in which business
needs continuously evolve. Continuous planning
keeps the team and the system honed in on maximum
business value by the deadline. [2]

In the agile community, waterfall projects are
sometimes compared to “fire and forget” weapons, for
which you painstakingly adjust a precise trajectory,
press a fire button, and hope for the best. Agile
projects are likened to cruise missiles, capable of
continuous course correction as they fly, and therefore
much likelier to hit the targeted feature-set and date
accurately. [1]

Continuous planning is much more accurate if it
occurs on at least two levels:

 At the release level, we identify and
prioritize the features we must have, would like to
have, and can do without by the deadline.

 At the iteration level, we pick and plan for
the next batch of features to implement, in priority
order. If features are too large to be estimated or
delivered within a single iteration, we break them
down further.

As features are prioritized and scheduled for an
iteration, they are broken down into their discrete
technical tasks.

This just-in-time approach to planning is easier
and more accurate than large-scale up-front planning,
because it aligns the level of information available
with the level of detail necessary at the time. We do
not make wild guesses about features far in the future.
We don’t waste time trying to plan at a level of detail
that the data currently available to us does not support.
We plan in little bites, instead of trying to swallow the
entire cow at once. [12]

Many agile development teams use the practice
of relative estimation for features to accelerate
planning and remove unnecessary complexity. Instead
of estimating features across a spectrum of unit
lengths, they select a few (3-5) relative estimation
categories, or buckets, and estimate all features in
terms of these categories. Examples include: [4]

 1-5 days
 1, 2, or 3 story points
 4, 8, 16, 40, or 80 hours
With relative estimation, estimating categories

are approximate multiples of one another. For
example, a 3-day feature should take 3 times as long
as a 1-day feature, just as a 40-hour feature is
approximately 5 times as time-consuming as an 8-
hour feature. The concepts of relative estimation
and/or predefined estimation buckets prevent the team
from wasting time debating whether a particular
feature is really 17.5 units or 19 units. While each
individual estimate may not be as precise, the benefit
of additional precision diminishes tremendously when
aggregated across a large group of features. The
significant time and effort saved by planning with this
type of process often outweighs any costs of imprecise
estimates. Just as with everything else in an agile

 World Rural Observations 2018;10(1) http://www.sciencepub.net/rural

35

project, we get better at it as we go along. We refine
our estimation successively. [8]

If a feature exceeds an agreed maximum
estimate, then it should be broken down further into
multiple features. The features generated as a result of
this planning ultimately need to be able to be
delivered within a single iteration. So if the team
determines that features should not exceed 5 ideal
days, then any feature that exceeds 5 days should be
broken into smaller features. In this way we
“normalize” the granularity of our features: the ratio
of feature sizes is not enormous. [9]

As opposed to spending weeks or months
detailing requirements before initiating development,
agile development projects quickly prioritize and
estimate features, and then refine details when
necessary. Features for an iteration are described in
more detail by the customers, testers, and developers
working together. Additional features can be
identified, but no feature is described in detail until it
is prioritized for an iteration.

With continuous testing we deterministically
measure progress and prevent defects. We crank out
the running, tested features. We also reduce the risk of
failure late in the project. What could be riskier than
postponing all testing till the end of the project? Many
waterfall projects have failed when they have
discovered, in an endless late-project “test-and-fix”
phase, that the architecture is fatally flawed, or the
components of the system cannot be integrated, or the
features are entirely unusable, or the defects cannot
possibly be corrected in time. By practicing
continuous testing in agile development, we more
easily avoid both the risk that this will occur, and the
constant dread of it. [5]

At both the unit level and acceptance feature
level, we write the tests as the code itself is written
beforehand. The most agile of agile development
projects strive to automate as many tests as possible,
relying on manual tests only when absolutely
necessary. This speeds testing and delivers software
that behaves predictably, which in turn gives us more
continuous and more reliable feedback. There is an
emerging wealth of new tools, techniques, and best
practices for rigorous continuous testing; much of the
innovation is originating in the Test-Driven
Development (TDD) community. [9]

When is a feature done? When all of its unit tests
and acceptance tests pass, and the customer accepts it.
This is exactly what defines a running, tested feature.
There is no better source of meaningful, highly-visible
project metrics.

We continuously refine both the system and the
project. By reflecting on what we have done using
both hard metrics like running, tested features and
more subjective measures, we can then adjust our

estimates and plans accordingly. But we also use the
same mechanism to successively refine and
continuously improve the process itself.

Especially at the close of major milestones
(iterations, releases, etc.), we may find problems with
iteration planning, problems with the build process or
integration process, problems with islands of
knowledge among programmers, or any number of
other problems. We look for points of leverage from
which to shift those problems.

We adjust the factory’s machines, and acquire or
invent new ones, to keep doing it a little better each
release. We keep finding ways to adapt the process to
keep delivering a little more value per unit time to the
customer, the team, and the organization. We keep
maturing and evolving, like any healthy organism.

Smaller agile development teams have been
proven to be much more productive than larger teams,
with the ideal ranging from five to ten people. If you
have to scale a project up to more people, make every
effort to keep individual teams as small as possible
and coordinate efforts across the teams. Scrum-based
organizations of up to 800 have successfully
employed a “Scrum of Scrums” approach to project
planning and coordination. [11]

With increments of production-ready software
being delivered every iteration, teams must also be
cross-functional in order to be successful. This means
that an agile development team needs to include
members with all of the skills necessary to
successfully deliver software, including analysis,
design, coding, testing, writing, user interface design,
planning, and management. We need this because,
again, each iteration is its own mini-project. [13]

Teams work together to determine how best to
take advantage of one another’s skills and mentor
each other. Teams transition away from designated
testers and coders and designers to integrated teams in
which each member helps do whatever needs doing to
get the iteration done. Individual team members
derive less personal identity from being a competitive
expert with a narrow focus, and increasingly derive
identity and satisfaction from being part of an
extraordinarily productive and efficient team. As the
positive reinforcement accumulates from iteration to
iteration, the team becomes more cohesive. Ambient
levels of trust, camaraderie, empathy, collaboration,
and job satisfaction increase. Software development
becomes fun again. These outcomes are not
guaranteed, but they are much likelier in well-
managed agile development projects than elsewhere.
[12]

4. Advantages of the Agile Methodology:

a. The Agile methodology allows for changes to
be made after the initial planning. Re-writes to the

 World Rural Observations 2018;10(1) http://www.sciencepub.net/rural

36

program, as the client decides to make changes, are
expected.

b. Because the Agile methodology allows you to
make changes, it’s easier to add features that will keep
you up to date with the latest developments in your
industry.

c. At the end of each sprint, project priorities are
evaluated. This allows clients to add their feedback so
that they ultimately get the product they desire.

d. The testing at the end of each sprint ensures
that the bugs are caught and taken care of in the
development cycle. They won’t be found at the end.

e. Because the products are tested so thoroughly
with Agile, the product could be launched at the end
of any cycle. As a result, it’s more likely to reach its
launch date. [11]

Figure 3: Advantage of Agile against Traditional
Methodologies

5. Disadvantages of the Agile Methodology:

a. With a less successful project manager, the
project can become a series of code sprints. If this
happens, the project is likely to come in late and over
budget.

b. As the initial project doesn’t have a definitive
plan, the final product can be grossly different than
what was initially intended. [9]

6. Conclusion:

Software engineering methodologies is an
important part of software system development. We
must use them for reduce cost and time and increasing
quality. A methodology determines workers, tasks,
required diagrams and activities, amount of progress
in project and so on. By using a methodology, we can
determine time of any activity and test in a software
development process. Traditional methodologies
designed for generating a software in six months at
least but today we must generate a software in short
time. Agile software engineering methods can resolve
this problem and allows for changes to be made after

the initial planning. it’s easier to add features that will
keep you up to date with the latest developments in
your industry but as the initial project doesn’t have a
definitive plan, the final product can be grossly
different than what was initially intended.

References:
1. Javidi, M.M.; Kuchaki Rafsanjani, M. and

Aliahmadipour, L. (2017). A Taxonomy of Game
Theory Approaches for Intrusion Detection in
MANETs. Researcher. Volume 9 - Issue 2. 88-96.

2. Hashim Ibrahim, B.; Adamu Yusuf, A. (2017).
Optimizing Databases for High Performance and
Efficiency. Report and Opinion. Volume 8 - Issue
9. 1-5.

3. Rothman, Johanna Rothman. "When You Have No
Product Owner At All". www.jrothman.com.
Retrieved 2014-06.

4. Fox, Alyssa. "Working on Multiple Agile Teams".
techwhirl.com/. Retrieved 2014-06-14.

5. May, Robert. "Effective Sprint Planning".
www.agileexecutives.org. Archived from the
original on 28 June 2014. Retrieved 2014-06-14.

6. Berczuk, Steve. "Mission Possible: ScrumMaster
and Technical Contributor".
www.agileconnection.com. Retrieved 2014-06-14.

7. Namta, Rajneesh. "Thoughts on Test Automation in
Agile". www.infoq.com. Retrieved 2014-06-14.

8. Band, Zvi. "Technical Debt + Red October".
Retrieved 8 June 2014.

9. Shore, James. "The Art of Agile Development:
Refactoring". www.jamesshore.com. Retrieved
2014-06-14.

10. Moran, Alan (2015). Managing Agile: Strategy,
Implementation, Organisation and People.
Springer. ISBN 978-3-319-16262-1.

11. Richet, Jean-Loup (2013). Agile Innovation. Cases
and Applied Research, n°31. ESSEC-ISIS. ISBN
978-2-36456-091-8.

12. Newton Lee (2014). "Getting on the Billboard
Charts: Music Production as Agile Software
Development," Digital Da Vinci: Computers in
Music. Springer Science+Business Media. ISBN
978-1-4939-0535-5.

13. Ebbage, Michael. "Setchu – Agile at Scale".
Retrieved 30 September 2015.

14. Leybourn, Evan (2013). Directing the Agile
Organisation: A Lean Approach to Business
Management. IT Governance Publishing. ISBN
978-1-849-28491-2.

15. Sutherland, Jeff; Brown, Alex. "Scrum At Scale:
Part 1". Retrieved 14 September 2015.

16. Beedle, Mike. "Enterprise Scrum". Retrieved 25
September 2015.

2/23/2018

