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Abstract: Cloud computing has been recognized as one of the prominent new computing paradigm. The ability of 
cloud to provide on demand access to software (SaaS), application platform (PaaS) and infrastructure (IaaS) in the 
form of scalable services has attracted considerable interest in the industry. With the current scenario there is no 
doubting the incredible impact that mobile technologies have had on both business and personal applications. 
Employees preferred to use smart phones not just for communication or entertainment purposes, but also to access 
the company’s key applications. The integration of mobile applications and emerging cloud computing concept is 
Mobile Cloud Computing (MCC). It has been introduced to be a potential technology for mobile service. A 
prominent challenge by using mobile devices and the mobile cloud (Andreas.k et. al, 2010) is resource constraints of 
these handheld devices. Comparing to the desktop computers the key issues in the mobile devices are smaller screen 
size, less memory capacity, lower processing capacity and low battery backup. Due to these resource limitations 
most of the processing and data handlings are carried out in the cloud, which is known as SaaS cloud. The smart 
phones are used to access cloud resources by using the browser. Performance of this mobile cloud is impaired by the 
time varying characteristics such as, latency, jitter and bandwidth of the wireless channel. In this research we 
proposed a modified task scheduling mechanism called Ant Colony Optimization (ACO) to address the issues 
related to the performance of the mobile devices (L.Liu et. al, 2011) when used in a cloud environment and Hadoop. 
However there are bottlenecks related to the existing task scheduling techniques in MCC model which uses the built 
in FIFO algorithm for large amount of tasks. The proposed Ant Colony Optimization algorithm improve the task 
scheduling process by dynamically scheduling the tasks and improve the throughput and quality of service (QoS) of 
MCC.  
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1. Introduction 

It’s the earliest of days of smart phone cloud 
computing. But its time has arrived as demonstrated 
by a group of researchers who have sowed how smart 
phones can be used to create a self contained cloud 
computing network (Rajkumar et. al, 2009). When 
smart phones are used to create a cloud infrastructure, 
each smart phone has a function of the processing 
power as that of server elements in a remote cloud 
also; there are benefits of using mobile devices over a 
network. Mobile users accumulate rich experience of 
various services from mobile applications, which run 
on the device and/or on remote servers via wireless 
network. The wireless devices are facing many 
challenges due to their resources and the 
characteristics of the communication channel. The 
limited resources significantly impede the 
improvement of service qualities. Cloud computing 
(Rajkumar et. al, 2009) has been widely recognized as 
one of the next generation computing infrastructure 
(IaaS) and software (SaaS) provided by the cloud 
providers (Google, Amazon and Salesforce), based on 

the end users demand with the explosion of mobile 
applications and the support of cloud computing 
(Rajkumar et. al, 2009) for a verity of services for 
mobile users, mobile cloud computing is introduced as 
an integration of cloud computing (Rajkumar et. al, 
2009) and mobile communication technology to 
explore new types of services and facilities for mobile 
users to take full advantages of cloud computing. The 
key challenges for MCC are; 

 Higher network throughput required for the 
real time data transmission between the master and the 
slave. 

 Lower delay characteristics of the network 
such as latency and jitter which cannot be tolerable by 
certain applications. 

 Segregating the application functions across 
the cluster and the wireless device to optimally utilize 
the resources.  

 In a cloud the Hadoop typically run on server. 
Data and file transmission from the client and the 
master requires a very high bandwidth of the order of 
gigabits per second, which is many times more than 
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that of the bandwidth of the WiFi links. This results 
the MapReducer (H.C. Yang et. al, 2007) job on a 
wireless mobile cluster (J. Dean and S. Ghemawat 
2004) would be expected to perform much worse than 
a traditional cluster.  

Under the mobile cloud computing environment 
in regard to multi-user with small amount of task 
scheduling from master to slave nodes Hadoop based 
architecture is used. This has certain advantages and it 
also uses FIFO algorithm for scheduling the tasks. 
Being next generation MCC platform needs with large 
amount of different granularity concurrent tasks to be 
processed in both master and slave nodes. The static 
task scheduling like FIFO is not suitable to these types 
of applications. Dynamic task scheduling is one of the 
solutions to mitigate these problems. The purpose of 
this research is to implement a dynamic job scheduling 
technique using Ant Colony Optimization as an 
effective algorithm to schedule the tasks for mobile 
cloud computing infrastructure on Hadoop (Andreas.k 
et. al, 2010, White T, 2009). This is an 
accomplishment of MapReduce (H.C. Yang et. al, 
2007) by Google. Rest of this paper is organized as 
follows: In section 2 we explained the related work 
about mobile cloud computing (MCC), in section 3 an 
overview of the Mobile Cloud Computing (MCC), 
section 4 explore the MapReduce. We then detail our 
design and analysis Ant Colony Optimization 
algorithm in section 5. Section 6 gives the details of 
results and performance evaluation. The section 6 
concludes. 

 
2. Related work 

In (Andreas.k et. al, 2010) and White T, 2009) 
the author explained the objectives of Apache Hadoop. 
It is an open source frame work in the form of 
MapReduce parallelization (H.C. Yang et. al, 2007). It 
was provided as a protocol, to list and evaluate a huge 
number of web contents. By default all the tasks 
scheduled by Hadoop, is using FIFO queue. This 
mechanism is very inefficient. The modified scheduler 
in Hadoop is Hadoop on Demand (HoD) is to address 
this concern by providing a private MapReduce (H.C. 
Yang et. al, 2007) scheduling system. This technique 
also failed because it desecrated the design features 
like data locality of the initial MapRedcue scheduler 
and added an additional overhead. In (L. Bianchi et. al, 
2002) and (M. Dorigo et. al, 2006) the author analyzed 
the implementation of ACO for parallel problem 
solving and computational intelligence. ACO is one of 
the efficient techniques with strong job distribution 
capability, scalability and parallelism. In the existing 
Hadoop cloud computing system, if the number of 
nodes entering into the cloud increases, it degrades its 
performance and also there is a probability of failure. 
We combined the advantages of ACO into MCC to 

achieve an efficient and scalable job scheduling 
mechanism.  

 
3. Mobile cloud computing 

MCC refers to an infrastructure whereas both the 
data storage and the data processing happen outside 
the mobile device. Mobile device applications (A. 
Garcia and H. Kalva 2011) move the computing power 
and data storage away from mobile phones and into 
the cloud. i.e, in MCC the data processing and storage 
are moved from the mobile device to powerful 
centralized computing platforms located in cloud. 
These centralized applications are then accessed over 
the wireless connection based on a thin native client or 
web browser on the mobile devices. The key benefits 
of MCC we have included on the following section; 
3.1 Extended battery life  

Battery is one of the main resources in any 
mobile device. The CPU manufacturer and software 
developer have introduced several solutions to 
enhance the performance of the mobile devices and to 
reduce the power consumption. However these 
solutions require changes in the structure of mobile 
devices, or it requires an upgrading in the hardware. 
Computation off loading technique is one of the 
techniques introduced with the objective of migrating 
the large computation and complex processing from 
resource limited devices like mobile devices to 
resourceful machines (i.e., server in cloud). This 
avoids taking a long application execution time on 
mobile devices which results in large amount of power 
consumption (E. Vartiainen and K.V. Mattila, 2010). 
The cloud computing can save the energy 
significantly.  
3.2 Improved data storage capacity and 
processing power 

Mobile devices (L. Liu et. al, 2011) have limited 
storage capacity. MCC is developed to enable mobile 
users to store/ access the large data on the cloud 
through wireless networks. Users can upload the data 
to the cloud and can access them from any devices 
with the cloud user can save considerable amount of 
storage space on their mobile devices. 
3.3 Improving reliability  

Storing user’s data or running applications on 
clouds is an effective way to improve the reliability of 
the systems, because the data and applications are 
stored and backed up on a number of computers. This 
reduces the chances of data and application lost on the 
mobile devices.  
3.4 The other advantages are 

3.4.1 Dynamic provisioning  
Dynamic on demand provisioning of resources, it 

is a flexible way for service providers and mobile 
users to run their applications with advanced 
reservation of resources.  
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3.4.2 Scalability 
The deployment of mobile applications can be 

performed and scaled to meet the unpredictable user 
demands due to flexible resource provisioning. Any up 
gradation or modification of the applications by the 
service providers can be done easily without or with 
little constraint on the resource usage. 

3.4.3 Multi-tenancy  
Service providers (network operators and data 

center owners) can share the resources and costs to 
support a variety of applications and large number of 
users. 

3.4.4 Ease of integration  
Cloud helps to integrate the different services 

from service providers without much difficulty 
through the Internet to meet the end users 
requirements. 

 
4. Mapereduce 

MapReduce (H.C. Yang et. al, 2007) address the 
programming challenges, large data processing and 
scheduling in a cloud environment. It was initially 
proposed by Google for large scale data processing in 
a distributed computing environment. MapReduce 
model provides a simple programming abstraction that 
hide low level details from the programmer at runtime, 
tuned to the basic architecture. In this the user simple 
specify a Map function that processes data to generate 
a set of intermediate key/value pairs, and a Reduce 
function that processes all intermediate values 
associated with the same intermediate key. 

The system consists of a master server and 
several wireless client terminals. The server monitors 
and keeps track of the user data and applications, task 
scheduling and assigning them to the respective 
clients. The clients are responsible for requesting work 
from the server, retrieving the proper modules and 
data, then performing the execution on them and 
returning the results to the server. In this client-server 
environment, the data gets passed from the device over 
wireless network to the cluster where it gets processed 
and the result is sent back to the device. The common 
issues in the wireless channels are; the network is 
quite slow and causing latency. The requirements for 
this type of wireless networks to how MapReduce 
(H.C. Yang et. al, 2007) would work with the data 
being kept close to the device. In some situations, then 
it is also found that the data could be processed faster 
using the smart phone cluster. But, if a node goes 
down, the quality of the network decreases 
considerably. 

One of the main challenges of implementing 
MapReduce on cell phones is that in a regular cloud 
with servers, the failure rate is very low, and the 
latency of a signal transmitted between the nodes is 
relatively low. This may not in the case of cell phones. 

It means that among other things as the failure rate of 
any one node in the system decreases the performance 
of the entire network exponentially. The MapReduce 
(H.C. Yang et. al, 2007) is a simple programming 
framework. In which we have to write the map and 
reduce functions. The system will automatically 
handle the distribution of codes, distribution of data, 
executing the tasks in parallel, work scheduling and all 
other complicated and distribution systems issues. The 
MapReduce approach has been proved to be an 
effective programming approach for developing 
machine learning, data mining, and search application 
in cloud data centers. Its advantage is that it allows 
programmers to abstract from the issues of scheduling, 
penalization, partitioning replication and focus on 
developing their applications. 

In the MapReduce (H.C. Yang et. al, 2007) mode 
shown below map and reduce are the data processing 
functions. The parallel map tasks are run on input data 
which is partitioned in to fixed size blocks and 
produce intermediate output as a collection of <key, 
value> pairs. These pairs are shuffled across different 
reduce tasks based on <key, value> pairs. Each reduce 
tasks accept only one key at a time and process data 
for that key and output the result as <key, value> 
pairs. Hadoop MapReduce architecture consists of one 
job tracker (Master) and many Task Trackers 
(workers) (B. Rochwerger et. al, 2009, W. Tsai and J. 
Balasooriya, 2010). The job tracker receive the job as 
an input submitted from user, divides it into map and 
reduce tasks, assigns these tasks to the task trackers, 
monitors the progress of the task tracers, and finally 
when all the tasks are completed, the user will get the 
job completion report.  

Each Task Tracker has a fixed number of maps 
and reduces tasks slots that determine how many map 
and reduce tasks it can run at a time.  

In cloud computing large amount of different 
granularity concurrent tasks are to be processed. Using 
only static job scheduling technique like FIFO used in 
Hadoop is not suitable to this application. Dynamic 
job scheduling algorithm has great stochastic 
performance in this scope. The presence of master 
node mechanisms overall task scheduling Hadoop 
(White T, 2009) can split the input file into many 
blocks and dispatch them to different slave nodes and 
implement data locality to avoid large scale of data 
shuttle and save lots of processing time and 
input/output time. Hadoop includes a built in FIFO 
algorithm which sequentially execute the tasks 
according to the priority parameters and the arrival 
time. This results into a larger waiting time for small 
granularity tasks, when large granularity tasks are 
under execution. This disadvantage would turn out 
many resource fragments, under utilization and poor 
flexibility. The first solution to this problem was 
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Hadoop on Demand (HoD) White T, 2009) which 
provides private MapReduce clusters over a large 
physical cluster. In an infrastructure based wireless 
cloud (MCC), the master node has higher performance 
than slave nodes. The objective of job scheduling is to 

dispatch parallel jobs to slave nodes according to 
scheduling policy and priority constraints to reduce 
total execution time and minimizing the computation 
cost, which intern improve the performance and the 
Quality of service (QoS). 

 

 
Fig.1. Hadoop MapReduce 

 
 

 
Fig.2. MapRedcue work flow 

 
5. Ant colony optimization 

Ants are insects which live together; they find the 
shortest path from nest to food with the aid of 
pheromone. It is a chemical material deposited by the 
ants, which serve as a critical communication media 
among ants, their by guiding the determination of the 
next movement. On the other hand ants find the 
shortest path based on the intensity of pheromone 
deposited on different paths. The intensity of 
deposited pheromone is one of the most important 
factors for ants. In the algorithm routing information is 

organized in pheromone table ij
kP

 it is a two 

dimensional matrix. An entry ij
kP

of this pheromone 
table contains information about the route from node i 
to destination d, over neighbor j. This information 

includes the pheromone value ij
kP  which is a value 

indicating the relative goodness of going over node j 
when travelling from node i to the destination node d, 
as well as statistical details about the path and possible 
virtual pheromone. Apart from a pheromone table 

DFS Push 
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each node also maintains a neighbored in which it 
keeps track of which nodes it has wired or wireless 
links to. 

To begin the communication process, the source 
node of the session, controls its pheromone table, to 
find the routing information available for the requested 
destination. If it does not it starts a reactive route setup 
process, in which it sends an ant packet out over the 
network to find the route to the destination. Such an 
ant packet is called a reactive forward ant. Each 
intermediate node receiving a copy of the reactive 
forward ant forwards it. This is done via uni-casting in 
case the node has routing information about the ant’s 
destination in its pheromone table, and via 
broadcasting otherwise. Reactive forward ants store 
the full array of nodes that they have visited on their 
way to the destination. The first copy of the reactive 
forward ant to reach the destination is converted into a 
reactive backward ant; this retraces the exact path that 
was followed by the forward ant back to the source. 
On its way it collects the information about each of the 
links of the path. At each intermediate node and at the 
source, and then it updates the routing tables based on 
this information. This is how the first route between 
the source and destination is established at 
computation of the reactive route setup processes.  
5.1 ACO algorithm and Analysis 

The task scheduling issue is addressed as 
follows. If there are n tasks, it needs to be dispatched 
from n wireless Nodes (Smart phones) to the cloud, 
where one smart phone takes one task at a time. So 
different dispatch plans have different execution cost 
and resource consumption. The proposed algorithm is 
to find the plan to allot the tasks smoothly to ensure 
availability and optimality of the resources.  

Under the same processor performance condition 
task complexity is the key factor of influence 
processing time. Complex task require higher 
processing time than simple jobs. The different 
parameters considered for optimization and scheduling 
is discussed below.  

The processing cost for a 
thi  node to complete 

thj
 task is; 

Cost matrix: nnjijinn CCCC **** |{ 
 

nj

ni

C ji

...........3,2,1

...........3.2.1

;0*







 
These values in the matrix are derived from the 

requested task complexity and processor performance. 

nnijijnn TTTT ** |{ 
 

These values in the matrix represents the 

pheromone of that the 
thj  task was dispatched to 

thi  
node. 

The matrix is initialized to constant matrix or 0 
before scheduling. 

Performance matrix: 

nnijijnn VVVV ** |{ 
 

These values in the matrix represents that the 
thj

 task was dispatched to 
thi  node. The matrix is 

initialized as jjC *

1

 that is to say this matrix is 

reverse ratio to cost 
thi Task scheduling matrix: 

nk

nj

ni

RijRRR mn
kk

ij
k

nn
k

..........3,2,1

..........3,2,1

...........3,2,1

|{ **









 
This represents the task scheduling plan that the 

thk ant implements task scheduling. The matrix is 
initialized as 0, and the value of elements in this 

matrix is 1 or 0. When, 
,1ijR thj  task is dispatched 

to 
thi  node. 

,0ijR thj
 task is dispatched to 

thi  
node. 

The task dispatching matrix nnR *  represents how 
to dispatch the task to the slave node to complete all 
the submitted tasks with the minimum cost. If there 
are N ants to complete all the submitted tasks, ant’s in 
one trip stands for one task dispatching procedure in 
which they need N walks which demonstrates 
dispatching of one task. These walks are tagged as‘s’. 
When, all the ants complete one trip, and then it can be 
thought as one loop in completed.  

cN
 - is the times of loops. 

}........,2,1{

}........,.2,1{

nodennodenodenode

taskntasktaskTask





 

Let us introduce an ‘n’ dimension vector n
NnD  

which has elements k
NnD  that is n

N
k

N cn DD 
 to 

stand for the 
thk  ant’s cost vector during the 

th

cN
 

algorithm loop. The initial value of n
NnD  is 0. The 

key probability matrix mn
kP *  which has elements 

ij
kP  that is mn

k
ij

k PP *  to stand for the 
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probability of dispatching 
thj  jobs to 

thi  slave node, 

and ij
kP

 has relations to its pheromone matrix and its 
tasks performance matrix with their relationship is; 





n

j

ijij

ijij

ij
k

jVT

VT
P

1

*

*





 
The task arrival and completion moment are 

tagged as )(iat  and )(iet  respectively with each job 
has it’s priority, which is tagged with a 

),(Pr tiiority  meaning the priority of task i  at the 

moment t . The algorithm is described as below; 
If M tasks are arrived during a given period and 

there are N tasks which are submitted and k tasks are 
returned due to time out. There are some indexes of 
QoS as follows; 

Average task Execution Time (AET); 





n

i

NtatietAET
1

/))}()(({
 

Task weighting Average execution time 
(WAET);  











n

i

n

i

ietiiority

ietiioritytatietWAET

1

1

))(,(Pr

/)))}(,(Pr*))()(({

 

The task’s losing rate )/( Mkls   
The slave node work load ratio which is sampled 

at every period.  
 

6. Result and performance evaluation  
To verify the efficiency of our ACO algorithm 

we simulated the performance and other QoS 
parameter against Hadoop’s built in FIFO on MCC 
environment White T, 2009). The master node is a 
high performing computing device with Linux 
operating system as the platform and the slave nodes 
are the smart phones with Android operating systems. 
The performance is evaluated for Hadoop FIFO 
scheduling and by the proposed dynamic scheduling 
technique using ACO algorithm for scheduling the 
tasks.  

The static and dynamic scheduling performance 
comparison is done by simulating the system using 
NS2. The simulation system includes 10 wireless 
nodes and submitted an equal amount of jobs for both 
Hadoop FIFO algorithm and ACO based dynamic 
scheduling mechanism. Table (1) represents in ACO 
based dynamic scheduling the total execution time and 
loop time, which approximately half of that for the 

static is scheduling. The simulated result is validated 
by comparing the Hadoop FIFO and ACO dynamic 
scheduling White T, 2009). The FIFO algorithm 
results a best performance for small granularity jobs to 
achieve local optimization. For large amount of jobs 
and to attain global optimization, dynamic scheduling 
using ACO algorithm results better performance. 
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Fig. 3 ACO Algorithm 
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In Fig. (4), graph represents the comparison 
between the processing time and the number of nodes, 
by varying values of percentage parallelism (P) 
between the wireless clients and the servers. The 
graphs are plotted by considering the differences in the 
slope of the processing time and the task time versus 
the number of nodes connected. Graphs in fig. (5) & 
(6) represents the variations of data transfer time with 
respect to the size of the packets, of small and large 
jobs. The transfers of the small granular jobs are more 
costly in terms of number of bytes per second, 
particularly for the wireless links, because of the 
additional information provided for small packets 
becomes an overhead to establish the connection. Fig. 
(7) Shows the average execution time (AET) for the 
two algorithms is approximately equal with less 

number of jobs. As the number of jobs inflow to the 
system increases the graph representing ACO 
indicates the enhancement in execution time. In Fig. 
(8) the graph represents the single job WAET is 
decreasing along the increasing of the number of jobs, 
also an improvement in the performance of ACO over 
FIFO systems. The job losing rate for both ACO and 
FIFO algorithms are indicated in fig. (9), the dropping 
curve of ACO represents that there is decrease in the 
job loss by using ACO algorithm as the number of 
jobs are increased. The job queue includes jobs with 
smaller and larger granularity. FIFO algorithm results 
higher performance for small granularity jobs. The 
simulation result indicates that ACO algorithm is more 
adaptable for small and large granularity jobs 
submitted.  

 
Table 1. Experimental result of job scheduling 

 FIFO Scheduling ACO based dynamic scheduling 
Trials Sum of loops Sum of execution time Loop time Execution time 
1 19 31ms 8 16ms 
2 17 29ms 9 14ms 
3 15 26ms 7 13ms 

 

 
Fig. 4 varying execution time with percentage 
parallelism. 

 

 
Fig. 5. Network transfer time for small granularity 
jobs 

 

 
Fig. 6. Network transfer time for large granularity jobs  

 

 
Fig. 7. Varying execution time with number of jobs 
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Fig. 8. Single job WAET with the number of jobs 

 

 
 Fig. 9. Percentage job loss as the number of jobs 
increases 
 
7. Conclusion 

In this paper we presented a new paradigm of 
offering and utilizing the characteristics of cloud 
computing model and identifying the limitations of 
Hadoop build in FIFO technique of dealing with the 
task scheduling for Mobile Cloud Computing model. 
The proposed Ant Colony Optimization algorithm 
bridges the gap under Hadoop platform for scheduling 
the tasks dynamically and enhancing the performance 
of MCC model for scheduling large number of tasks. 
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