
 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

72

Dynamic Job Scheduling Using Ant Colony Optimization for Mobile Cloud Computing

Rathnakar Achary1, Dr. V. Vityanathan1, Dr. Pethur Raj2, S. Nagarajan1

1Department of CSE, SASTRA UNIVERSITY, Thanjavur, India
2Infrastructure Architect, IBM Global Cloud CoE IBM, India, Bangalore

a.rathnakar@gmail.com

Abstract: Cloud computing has been recognized as one of the prominent new computing paradigm. The ability of
cloud to provide on demand access to software (SaaS), application platform (PaaS) and infrastructure (IaaS) in the
form of scalable services has attracted considerable interest in the industry. With the current scenario there is no
doubting the incredible impact that mobile technologies have had on both business and personal applications.
Employees preferred to use smart phones not just for communication or entertainment purposes, but also to access
the company’s key applications. The integration of mobile applications and emerging cloud computing concept is
Mobile Cloud Computing (MCC). It has been introduced to be a potential technology for mobile service. A
prominent challenge by using mobile devices and the mobile cloud (Andreas.k et. al, 2010) is resource constraints of
these handheld devices. Comparing to the desktop computers the key issues in the mobile devices are smaller screen
size, less memory capacity, lower processing capacity and low battery backup. Due to these resource limitations
most of the processing and data handlings are carried out in the cloud, which is known as SaaS cloud. The smart
phones are used to access cloud resources by using the browser. Performance of this mobile cloud is impaired by the
time varying characteristics such as, latency, jitter and bandwidth of the wireless channel. In this research we
proposed a modified task scheduling mechanism called Ant Colony Optimization (ACO) to address the issues
related to the performance of the mobile devices (L.Liu et. al, 2011) when used in a cloud environment and Hadoop.
However there are bottlenecks related to the existing task scheduling techniques in MCC model which uses the built
in FIFO algorithm for large amount of tasks. The proposed Ant Colony Optimization algorithm improve the task
scheduling process by dynamically scheduling the tasks and improve the throughput and quality of service (QoS) of
MCC.
[R. Achary, Vityanathan, Pethur Raj, S. Nagarajan. Dynamic Job Scheduling Using Ant Colony Optimization for
Mobile Cloud Computing. World Rural Observ 2019;11(4):72-79]. ISSN: 1944-6543 (Print); ISSN: 1944-6551
(Online). http://www.sciencepub.net/rural. 12. doi:10.7537/marswro110419.12.

Keywords: Mobile Cloud Computing (MCC), Ant Colony Optimization (APO), Hadoop, Quality of Service (QoS),
Software as a Service (SaaS)

1. Introduction

It’s the earliest of days of smart phone cloud
computing. But its time has arrived as demonstrated
by a group of researchers who have sowed how smart
phones can be used to create a self contained cloud
computing network (Rajkumar et. al, 2009). When
smart phones are used to create a cloud infrastructure,
each smart phone has a function of the processing
power as that of server elements in a remote cloud
also; there are benefits of using mobile devices over a
network. Mobile users accumulate rich experience of
various services from mobile applications, which run
on the device and/or on remote servers via wireless
network. The wireless devices are facing many
challenges due to their resources and the
characteristics of the communication channel. The
limited resources significantly impede the
improvement of service qualities. Cloud computing
(Rajkumar et. al, 2009) has been widely recognized as
one of the next generation computing infrastructure
(IaaS) and software (SaaS) provided by the cloud
providers (Google, Amazon and Salesforce), based on

the end users demand with the explosion of mobile
applications and the support of cloud computing
(Rajkumar et. al, 2009) for a verity of services for
mobile users, mobile cloud computing is introduced as
an integration of cloud computing (Rajkumar et. al,
2009) and mobile communication technology to
explore new types of services and facilities for mobile
users to take full advantages of cloud computing. The
key challenges for MCC are;

 Higher network throughput required for the
real time data transmission between the master and the
slave.

 Lower delay characteristics of the network
such as latency and jitter which cannot be tolerable by
certain applications.

 Segregating the application functions across
the cluster and the wireless device to optimally utilize
the resources.

 In a cloud the Hadoop typically run on server.
Data and file transmission from the client and the
master requires a very high bandwidth of the order of
gigabits per second, which is many times more than

 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

73

that of the bandwidth of the WiFi links. This results
the MapReducer (H.C. Yang et. al, 2007) job on a
wireless mobile cluster (J. Dean and S. Ghemawat
2004) would be expected to perform much worse than
a traditional cluster.

Under the mobile cloud computing environment
in regard to multi-user with small amount of task
scheduling from master to slave nodes Hadoop based
architecture is used. This has certain advantages and it
also uses FIFO algorithm for scheduling the tasks.
Being next generation MCC platform needs with large
amount of different granularity concurrent tasks to be
processed in both master and slave nodes. The static
task scheduling like FIFO is not suitable to these types
of applications. Dynamic task scheduling is one of the
solutions to mitigate these problems. The purpose of
this research is to implement a dynamic job scheduling
technique using Ant Colony Optimization as an
effective algorithm to schedule the tasks for mobile
cloud computing infrastructure on Hadoop (Andreas.k
et. al, 2010, White T, 2009). This is an
accomplishment of MapReduce (H.C. Yang et. al,
2007) by Google. Rest of this paper is organized as
follows: In section 2 we explained the related work
about mobile cloud computing (MCC), in section 3 an
overview of the Mobile Cloud Computing (MCC),
section 4 explore the MapReduce. We then detail our
design and analysis Ant Colony Optimization
algorithm in section 5. Section 6 gives the details of
results and performance evaluation. The section 6
concludes.

2. Related work

In (Andreas.k et. al, 2010) and White T, 2009)
the author explained the objectives of Apache Hadoop.
It is an open source frame work in the form of
MapReduce parallelization (H.C. Yang et. al, 2007). It
was provided as a protocol, to list and evaluate a huge
number of web contents. By default all the tasks
scheduled by Hadoop, is using FIFO queue. This
mechanism is very inefficient. The modified scheduler
in Hadoop is Hadoop on Demand (HoD) is to address
this concern by providing a private MapReduce (H.C.
Yang et. al, 2007) scheduling system. This technique
also failed because it desecrated the design features
like data locality of the initial MapRedcue scheduler
and added an additional overhead. In (L. Bianchi et. al,
2002) and (M. Dorigo et. al, 2006) the author analyzed
the implementation of ACO for parallel problem
solving and computational intelligence. ACO is one of
the efficient techniques with strong job distribution
capability, scalability and parallelism. In the existing
Hadoop cloud computing system, if the number of
nodes entering into the cloud increases, it degrades its
performance and also there is a probability of failure.
We combined the advantages of ACO into MCC to

achieve an efficient and scalable job scheduling
mechanism.

3. Mobile cloud computing

MCC refers to an infrastructure whereas both the
data storage and the data processing happen outside
the mobile device. Mobile device applications (A.
Garcia and H. Kalva 2011) move the computing power
and data storage away from mobile phones and into
the cloud. i.e, in MCC the data processing and storage
are moved from the mobile device to powerful
centralized computing platforms located in cloud.
These centralized applications are then accessed over
the wireless connection based on a thin native client or
web browser on the mobile devices. The key benefits
of MCC we have included on the following section;
3.1 Extended battery life

Battery is one of the main resources in any
mobile device. The CPU manufacturer and software
developer have introduced several solutions to
enhance the performance of the mobile devices and to
reduce the power consumption. However these
solutions require changes in the structure of mobile
devices, or it requires an upgrading in the hardware.
Computation off loading technique is one of the
techniques introduced with the objective of migrating
the large computation and complex processing from
resource limited devices like mobile devices to
resourceful machines (i.e., server in cloud). This
avoids taking a long application execution time on
mobile devices which results in large amount of power
consumption (E. Vartiainen and K.V. Mattila, 2010).
The cloud computing can save the energy
significantly.
3.2 Improved data storage capacity and
processing power

Mobile devices (L. Liu et. al, 2011) have limited
storage capacity. MCC is developed to enable mobile
users to store/ access the large data on the cloud
through wireless networks. Users can upload the data
to the cloud and can access them from any devices
with the cloud user can save considerable amount of
storage space on their mobile devices.
3.3 Improving reliability

Storing user’s data or running applications on
clouds is an effective way to improve the reliability of
the systems, because the data and applications are
stored and backed up on a number of computers. This
reduces the chances of data and application lost on the
mobile devices.
3.4 The other advantages are

3.4.1 Dynamic provisioning
Dynamic on demand provisioning of resources, it

is a flexible way for service providers and mobile
users to run their applications with advanced
reservation of resources.

 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

74

3.4.2 Scalability
The deployment of mobile applications can be

performed and scaled to meet the unpredictable user
demands due to flexible resource provisioning. Any up
gradation or modification of the applications by the
service providers can be done easily without or with
little constraint on the resource usage.

3.4.3 Multi-tenancy
Service providers (network operators and data

center owners) can share the resources and costs to
support a variety of applications and large number of
users.

3.4.4 Ease of integration
Cloud helps to integrate the different services

from service providers without much difficulty
through the Internet to meet the end users
requirements.

4. Mapereduce

MapReduce (H.C. Yang et. al, 2007) address the
programming challenges, large data processing and
scheduling in a cloud environment. It was initially
proposed by Google for large scale data processing in
a distributed computing environment. MapReduce
model provides a simple programming abstraction that
hide low level details from the programmer at runtime,
tuned to the basic architecture. In this the user simple
specify a Map function that processes data to generate
a set of intermediate key/value pairs, and a Reduce
function that processes all intermediate values
associated with the same intermediate key.

The system consists of a master server and
several wireless client terminals. The server monitors
and keeps track of the user data and applications, task
scheduling and assigning them to the respective
clients. The clients are responsible for requesting work
from the server, retrieving the proper modules and
data, then performing the execution on them and
returning the results to the server. In this client-server
environment, the data gets passed from the device over
wireless network to the cluster where it gets processed
and the result is sent back to the device. The common
issues in the wireless channels are; the network is
quite slow and causing latency. The requirements for
this type of wireless networks to how MapReduce
(H.C. Yang et. al, 2007) would work with the data
being kept close to the device. In some situations, then
it is also found that the data could be processed faster
using the smart phone cluster. But, if a node goes
down, the quality of the network decreases
considerably.

One of the main challenges of implementing
MapReduce on cell phones is that in a regular cloud
with servers, the failure rate is very low, and the
latency of a signal transmitted between the nodes is
relatively low. This may not in the case of cell phones.

It means that among other things as the failure rate of
any one node in the system decreases the performance
of the entire network exponentially. The MapReduce
(H.C. Yang et. al, 2007) is a simple programming
framework. In which we have to write the map and
reduce functions. The system will automatically
handle the distribution of codes, distribution of data,
executing the tasks in parallel, work scheduling and all
other complicated and distribution systems issues. The
MapReduce approach has been proved to be an
effective programming approach for developing
machine learning, data mining, and search application
in cloud data centers. Its advantage is that it allows
programmers to abstract from the issues of scheduling,
penalization, partitioning replication and focus on
developing their applications.

In the MapReduce (H.C. Yang et. al, 2007) mode
shown below map and reduce are the data processing
functions. The parallel map tasks are run on input data
which is partitioned in to fixed size blocks and
produce intermediate output as a collection of <key,
value> pairs. These pairs are shuffled across different
reduce tasks based on <key, value> pairs. Each reduce
tasks accept only one key at a time and process data
for that key and output the result as <key, value>
pairs. Hadoop MapReduce architecture consists of one
job tracker (Master) and many Task Trackers
(workers) (B. Rochwerger et. al, 2009, W. Tsai and J.
Balasooriya, 2010). The job tracker receive the job as
an input submitted from user, divides it into map and
reduce tasks, assigns these tasks to the task trackers,
monitors the progress of the task tracers, and finally
when all the tasks are completed, the user will get the
job completion report.

Each Task Tracker has a fixed number of maps
and reduces tasks slots that determine how many map
and reduce tasks it can run at a time.

In cloud computing large amount of different
granularity concurrent tasks are to be processed. Using
only static job scheduling technique like FIFO used in
Hadoop is not suitable to this application. Dynamic
job scheduling algorithm has great stochastic
performance in this scope. The presence of master
node mechanisms overall task scheduling Hadoop
(White T, 2009) can split the input file into many
blocks and dispatch them to different slave nodes and
implement data locality to avoid large scale of data
shuttle and save lots of processing time and
input/output time. Hadoop includes a built in FIFO
algorithm which sequentially execute the tasks
according to the priority parameters and the arrival
time. This results into a larger waiting time for small
granularity tasks, when large granularity tasks are
under execution. This disadvantage would turn out
many resource fragments, under utilization and poor
flexibility. The first solution to this problem was

 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

75

Hadoop on Demand (HoD) White T, 2009) which
provides private MapReduce clusters over a large
physical cluster. In an infrastructure based wireless
cloud (MCC), the master node has higher performance
than slave nodes. The objective of job scheduling is to

dispatch parallel jobs to slave nodes according to
scheduling policy and priority constraints to reduce
total execution time and minimizing the computation
cost, which intern improve the performance and the
Quality of service (QoS).

Fig.1. Hadoop MapReduce

Fig.2. MapRedcue work flow

5. Ant colony optimization

Ants are insects which live together; they find the
shortest path from nest to food with the aid of
pheromone. It is a chemical material deposited by the
ants, which serve as a critical communication media
among ants, their by guiding the determination of the
next movement. On the other hand ants find the
shortest path based on the intensity of pheromone
deposited on different paths. The intensity of
deposited pheromone is one of the most important
factors for ants. In the algorithm routing information is

organized in pheromone table ij
kP

 it is a two

dimensional matrix. An entry ij
kP

of this pheromone
table contains information about the route from node i
to destination d, over neighbor j. This information

includes the pheromone value ij
kP which is a value

indicating the relative goodness of going over node j
when travelling from node i to the destination node d,
as well as statistical details about the path and possible
virtual pheromone. Apart from a pheromone table

DFS Push

 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

76

each node also maintains a neighbored in which it
keeps track of which nodes it has wired or wireless
links to.

To begin the communication process, the source
node of the session, controls its pheromone table, to
find the routing information available for the requested
destination. If it does not it starts a reactive route setup
process, in which it sends an ant packet out over the
network to find the route to the destination. Such an
ant packet is called a reactive forward ant. Each
intermediate node receiving a copy of the reactive
forward ant forwards it. This is done via uni-casting in
case the node has routing information about the ant’s
destination in its pheromone table, and via
broadcasting otherwise. Reactive forward ants store
the full array of nodes that they have visited on their
way to the destination. The first copy of the reactive
forward ant to reach the destination is converted into a
reactive backward ant; this retraces the exact path that
was followed by the forward ant back to the source.
On its way it collects the information about each of the
links of the path. At each intermediate node and at the
source, and then it updates the routing tables based on
this information. This is how the first route between
the source and destination is established at
computation of the reactive route setup processes.
5.1 ACO algorithm and Analysis

The task scheduling issue is addressed as
follows. If there are n tasks, it needs to be dispatched
from n wireless Nodes (Smart phones) to the cloud,
where one smart phone takes one task at a time. So
different dispatch plans have different execution cost
and resource consumption. The proposed algorithm is
to find the plan to allot the tasks smoothly to ensure
availability and optimality of the resources.

Under the same processor performance condition
task complexity is the key factor of influence
processing time. Complex task require higher
processing time than simple jobs. The different
parameters considered for optimization and scheduling
is discussed below.

The processing cost for a
thi node to complete

thj
 task is;

Cost matrix: nnjijinn CCCC **** |{ 

nj

ni

C ji

...........3,2,1

...........3.2.1

;0*







These values in the matrix are derived from the

requested task complexity and processor performance.

nnijijnn TTTT ** |{ 

These values in the matrix represents the

pheromone of that the
thj task was dispatched to

thi
node.

The matrix is initialized to constant matrix or 0
before scheduling.

Performance matrix:

nnijijnn VVVV ** |{ 

These values in the matrix represents that the
thj

 task was dispatched to
thi node. The matrix is

initialized as jjC *

1

 that is to say this matrix is

reverse ratio to cost
thi Task scheduling matrix:

nk

nj

ni

RijRRR mn
kk

ij
k

nn
k

..........3,2,1

..........3,2,1

...........3,2,1

|{ **









This represents the task scheduling plan that the

thk ant implements task scheduling. The matrix is
initialized as 0, and the value of elements in this

matrix is 1 or 0. When,
,1ijR thj task is dispatched

to
thi node.

,0ijR thj
 task is dispatched to

thi
node.

The task dispatching matrix nnR * represents how
to dispatch the task to the slave node to complete all
the submitted tasks with the minimum cost. If there
are N ants to complete all the submitted tasks, ant’s in
one trip stands for one task dispatching procedure in
which they need N walks which demonstrates
dispatching of one task. These walks are tagged as‘s’.
When, all the ants complete one trip, and then it can be
thought as one loop in completed.

cN
 - is the times of loops.

}........,2,1{

}........,.2,1{

nodennodenodenode

taskntasktaskTask





Let us introduce an ‘n’ dimension vector n
NnD

which has elements k
NnD that is n

N
k

N cn DD 
 to

stand for the
thk ant’s cost vector during the

th

cN

algorithm loop. The initial value of n
NnD is 0. The

key probability matrix mn
kP * which has elements

ij
kP that is mn

k
ij

k PP * to stand for the

 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

77

probability of dispatching
thj jobs to

thi slave node,

and ij
kP

 has relations to its pheromone matrix and its
tasks performance matrix with their relationship is;





n

j

ijij

ijij

ij
k

jVT

VT
P

1

*

*





The task arrival and completion moment are

tagged as)(iat and)(iet respectively with each job
has it’s priority, which is tagged with a

),(Pr tiiority meaning the priority of task i at the

moment t . The algorithm is described as below;
If M tasks are arrived during a given period and

there are N tasks which are submitted and k tasks are
returned due to time out. There are some indexes of
QoS as follows;

Average task Execution Time (AET);





n

i

NtatietAET
1

/))}()(({

Task weighting Average execution time
(WAET);











n

i

n

i

ietiiority

ietiioritytatietWAET

1

1

))(,(Pr

/)))}(,(Pr*))()(({

The task’s losing rate)/(Mkls 
The slave node work load ratio which is sampled

at every period.

6. Result and performance evaluation
To verify the efficiency of our ACO algorithm

we simulated the performance and other QoS
parameter against Hadoop’s built in FIFO on MCC
environment White T, 2009). The master node is a
high performing computing device with Linux
operating system as the platform and the slave nodes
are the smart phones with Android operating systems.
The performance is evaluated for Hadoop FIFO
scheduling and by the proposed dynamic scheduling
technique using ACO algorithm for scheduling the
tasks.

The static and dynamic scheduling performance
comparison is done by simulating the system using
NS2. The simulation system includes 10 wireless
nodes and submitted an equal amount of jobs for both
Hadoop FIFO algorithm and ACO based dynamic
scheduling mechanism. Table (1) represents in ACO
based dynamic scheduling the total execution time and
loop time, which approximately half of that for the

static is scheduling. The simulated result is validated
by comparing the Hadoop FIFO and ACO dynamic
scheduling White T, 2009). The FIFO algorithm
results a best performance for small granularity jobs to
achieve local optimization. For large amount of jobs
and to attain global optimization, dynamic scheduling
using ACO algorithm results better performance.

max

minmin

cosmin

*

1

max

1

min

)1(*

inflim

10

1

cos

:

);;1(

),(PrPr

cos

1

Pr

),(Pr

);;1(

);;1(

,,1

:lg

NcNcuntil

NcNc

DDIf

DD

elementimumtheFind

pTT

ofincrementinitetheit

topparametervolatileset

End

TTTsetandRIs

matrixRantkthe

toaccordingand
DNCK

Q
T

inverslyttogainedis

pheromoneantsandTpheromone

inIncrementupdatePheromone

Begineknkkfor

End

End

tiiorityiorityjtaskforwait

else

CDDvectortset

tfromTasksetaskjtheDelete

nodesetfromnodeitheDelete

RSet

PasitTag

Pobabilityaattaskj

thecomputetonodeitheselectRamdomely

tiioritytaggedistaskthe

If

Beginesnssfor

BegineknkKfor

Do

NodeTaskNInitialize

schedulingjobDynamicorithmA

cc

cc

cc

NN

n
N

vectortamong�
N

ijijij
k

nn
kth

n

k

ijk
N

k
N

ij
k

ij
k

ij
kth

c




































Fig. 3 ACO Algorithm

 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

78

In Fig. (4), graph represents the comparison
between the processing time and the number of nodes,
by varying values of percentage parallelism (P)
between the wireless clients and the servers. The
graphs are plotted by considering the differences in the
slope of the processing time and the task time versus
the number of nodes connected. Graphs in fig. (5) &
(6) represents the variations of data transfer time with
respect to the size of the packets, of small and large
jobs. The transfers of the small granular jobs are more
costly in terms of number of bytes per second,
particularly for the wireless links, because of the
additional information provided for small packets
becomes an overhead to establish the connection. Fig.
(7) Shows the average execution time (AET) for the
two algorithms is approximately equal with less

number of jobs. As the number of jobs inflow to the
system increases the graph representing ACO
indicates the enhancement in execution time. In Fig.
(8) the graph represents the single job WAET is
decreasing along the increasing of the number of jobs,
also an improvement in the performance of ACO over
FIFO systems. The job losing rate for both ACO and
FIFO algorithms are indicated in fig. (9), the dropping
curve of ACO represents that there is decrease in the
job loss by using ACO algorithm as the number of
jobs are increased. The job queue includes jobs with
smaller and larger granularity. FIFO algorithm results
higher performance for small granularity jobs. The
simulation result indicates that ACO algorithm is more
adaptable for small and large granularity jobs
submitted.

Table 1. Experimental result of job scheduling

 FIFO Scheduling ACO based dynamic scheduling
Trials Sum of loops Sum of execution time Loop time Execution time
1 19 31ms 8 16ms
2 17 29ms 9 14ms
3 15 26ms 7 13ms

Fig. 4 varying execution time with percentage
parallelism.

Fig. 5. Network transfer time for small granularity
jobs

Fig. 6. Network transfer time for large granularity jobs

Fig. 7. Varying execution time with number of jobs

 World Rural Observations 2019;11(4) http://www.sciencepub.net/rural WRO

79

Fig. 8. Single job WAET with the number of jobs

 Fig. 9. Percentage job loss as the number of jobs
increases

7. Conclusion

In this paper we presented a new paradigm of
offering and utilizing the characteristics of cloud
computing model and identifying the limitations of
Hadoop build in FIFO technique of dealing with the
task scheduling for Mobile Cloud Computing model.
The proposed Ant Colony Optimization algorithm
bridges the gap under Hadoop platform for scheduling
the tasks dynamically and enhancing the performance
of MCC model for scheduling large number of tasks.

8. Acknowledgement

I would like to thank the Vice-Chancellor of
SASTRA UNIVERSITY for the opportunity and the
support provided for this research.

References
1. Andreas Klein, Christian Mannweiler, Joerg

Schneider, and Hans D. Schotten. “Access
schemes for mobile cloud computing”. Eleventh
International Conference on (MDM-, 2010,
pages 387–392.

2. L. Bianchi, L. M. Gambardella, M. Dorigo “An
ant colony optimization approaches to the

probabilistic traveling salesman problem”. In
Proceedings of PPSN-VII, Seventh International
Conference on Parallel Problem Solving from
Nature, Lecture Notes in Computer Science.
Springer Verlag, Berlin, Germany – 2002, pp
883-892.

3. J. Dean and S. Ghemawat. MapReduce:
“Simplified data processing on large clusters”.
OSDI-2004.

4. A. Garcia and H. Kalva, “Cloud transcoding for
mobile video content delivery,” in Proceedings of
the IEEE International Conference on Consumer
Electronics (ICCE), pp. 379, March 2011.

5. L. Liu, R. Moulic, and D. Shea, “Cloud Service
Portal for Mobile Device Management,” in
Proceedings of IEEE 7th International
Conference on e-Business Engineering (ICEBE),
pp. 474, January 2011.

6. Marco Dorigo, Mauro Birattari, and Thomas
St¨utzle “Ant Colony Optimization Artificial Ants
as a Computational Intelligence Technique”
Universit ´ e Libre de Bruxelles, BELGIUM.

7. Rajkumar Buyya, Chee Shin Yeo, Srikumar
Venugopal, James Broberg, and Ivona Brandic.
“Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computing Systems -25(6):599–616, 2009.

8. B. Rochwerger, D. Breitgand, E. Levy, A. Galis,
K. Nagin, L. Llorente, R. Montero, Y. Wolfsthal,
E. Elmroth, J. Caceres, M. Ben-Yehuda, W.
Emmerich, and F. Galan. “The RESERVOIR
Model and Architecture for Open Federated
Cloud Computing”. IBM Journal of Research
and Development, 53(4): 2009.

9. W. Tsai, X. Sun, and J. Balasooriya, “Service-
Oriented Cloud Computing Architecture,” in
Proceedings of the 7th International Conference
on Information Technology: New Generations
(ITNG), pp. 684-689, July 2010.

10. E. Vartiainen, and K. V. -V. Mattila, “User
experience of mobile photo sharing in the
cloud,” In the Proceedings of the 9th
International Conference on MUM-2010,
December 2010.

11. H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S.
Parker. MapReduce-merge: simplified relational
data processing on large clusters. SIGMOD-
2007, pages 1029–1040.

12. White, T.: Hadoop: The Definitive Guide.
O’Reilly, Sebastopol (2009)

12/25/2019

