
Stem Cell 2011;2(1) http//www.sciencepub.net

11

MESUREMENT OF SOFTWARE TESTABILITY

Hari Om Sharan, Rajeev Kumar, Garima Singh, Mohammad Haroon

Department of Computer Science,
College of Engineering, Teerthanker Mahaveer University, Moradabad (U.P.), India

Email: rajeevphd@hotmail.com, sharan.hariom@gmail.com, garimasingh.0606@gmail.com

ABSTRACT: Building high quality and testable software is an essential requirement for software system. Software
testability is a critical aspect during the software development life cycle. Software that is easily testable is known as
testable software. Testability is an essential or distinctive aspect that is acquainted with the objective of predicting
efforts needed for testing the program. Designing testability is a very important issue in software engineering. It is
suggested to design software with high degree of testability. A program with high degree of testability illustrate that
a selected testing criterion could be achieved with less effort and the existing faults can be revealed more easily
during testing. This paper gives the concept of software testability, previously defined by The IEEE standard
Glossary, our measurement for testability and complexity and also shares our thought and understanding about the
testability in the object oriented system. [Hari Om Sharan, Rajeev Kumar, Garima Singh, Mohammad Haroon.
Mesurement of Software Testability. Stem Cell 2011;2(1):11-19]. (ISSN 1545-4570).

Keywords: Software Testing, Software Testability, Simplicity, Complexity.

INTRODUCTION

Development in object –oriented (OO)
languages and methodologies have helped in the design
of better and modular software, thereby reducing the
complexity and software development methodologies
reduce the incidence of error, but the need to test the
software remains. OO has a unique architecture, and
features like inheritance and dynamic binding
introduce new kind of errors. As a result, some of the
issues involved in the testing of OO software are
different from the issue evolved in conventional
software testing. However, conventional software
testing techniques are not adequate to handle all the
testing issue of OO software. New tools and techniques
are required or existing ones need to be adapted, to test
OO software more effectively.

As software applications grow more complex
and become a necessity in almost everyday activities,
more emphasis has been placed on software quality and
reliability. Effective testing is therefore required to
achieve adequate levels of software quality and
reliability. However, we are facing a dilemma:
software systems are growing in complexity and testing
resources are by definition limited. To maximize the
impact of testing, we need to design systems so that
their testability is optimal. Software testability is an
external software attribute that evaluates the
complexity and the effort required for software testing.
Software testability has been defined and described in
literature from different point of views.

Testable software is one that can be tested
easily, systematically and without following any ad-
hoc measures. Testable software need to possess two

characteristics i.e. observability and controllability.
During testing, there is a need to observe internal
details of execution to ensure the correctness of
processing and to diagnose errors. Observable software
makes it feasible for tester to observe the internal
behavior of software, to the required degree of detail.

Compared to structural development, object
oriented design is a comparatively new technology.
The metrics, which were useful for evaluating
structural development, may perhaps not affect the
design using OO language. As for example, the “Lines
of Code” metric is used in structural development
whereas it is not so much used in object oriented
design. Very few existing metrics (so called traditional
metrics) can measure object oriented design properly.

One study estimated corrective maintenance
cost saving of 42% by using object oriented metrics.
There are many object oriented metrics models
available and several authors have proposed ways to
measure object oriented design. The motivation of this
thesis is to give an overview of object oriented
software testability.

WHY TESTING

Testing is important for error detection and
continuous software evolution:

 The potential impact of software errors on
business, human life, and environment grows
as software controls more and more critical
functionality within technical products and
business processes. Unfortunately, software
development is an error prone process. Testing
is the most widely used technique to detect

Stem Cell 2011;2(1) http//www.sciencepub.net

12

errors.
 If user requirements change frequently, it is

important for the software developer that the
software system can be adapted and extended
easily. New functionality added to a system
should not break existing functionality.
Regression testing is one technique to assure,
that existing functionality remains intact after
implementation changes. Without the ability to
perform regression tests quickly and easily
after implementation changes, the risk of
undetected errors in the new software release
increases. Testing is therefore an enabling
factor for continuous and rapid software
evolution.

Software Testing

Programmers are human beings. Human
beings are prone to make errors during most of their
activities, and software development is no exception.
Thus the need arises for verification of the products of
software development. Software testing is the practice
of running a piece of software in order to verify that it
works as expected.

The errors made by programmers have the
potential of introducing faults in the program.
Typically faults are confined to a single program
statement, but more complex and distributed faults can
occur too. Faults in a program have the capability of
causing the program to fail. Failure happens when the
program produces an output that is different from the
expected output. In short, programmers make errors
and introduce faults in their programs, which become
prone to failure. The terms we use here are defined
more thoroughly by the IEEE [3].

Software testing occurs during multiple
phases of the construction of a software system.
Typically the software development methodology
determines both the kind of testing, and the phase(s)
during which testing is done.

The following overview of software testing is
based on the Software Engineering Body of
Knowledge (SWEBOK) [2].First, we look at the level
at which testing can take place.

Unit Testing is concerned with verifying the behavior
of the smallest isolated components of the system.
Typically, this kind of testing is performed by
developers or maintainers and involves using
knowledge of the code itself. In practice, it is often
hard to test components in isolation. Components often
tend to rely on others to perform their function.

Integration Testing is focused at the verification of
the interactions between the components of the system.
The components are typically subjected to unit testing
before integration testing starts. A strategy that
determines the order in which components should be
combined usually follows from the architecture of the
system.

System Testing occurs at the level of the system as a
whole. On the one hand, the system can be validated
against the non-functional requirements, such as
performance, security, reliability or interactions with
external systems. On the other hand, the functionality
implemented by the system can be compared to its
specification.

Second, testing can have several objectives.
Of course, the base objective of testing is verification
of the developed code; however, the reference to be
used for verification can be different.

Acceptance Testing is done to verify that the system
implements the customer's requirements correctly.
Usually the testing is done by (future) users of the
system. In addition to verifying whether or not the
required functionality is present in the system, (future)
users are also likely to be concerned about the user-
interface and performance characteristics.

Functional Testing is done to determine if the system
has correctly implemented the specification of
functionality. Typically, a team separate to the
development or maintenance teams would perform this
task.

Reliability Evaluation is sometimes done by
executing test cases obtained from a typical operational
profile for the system. The rate of failure observed
during such a test session can then be used to derive
statistical measures of the reliability of the system.

Regression Testing is performed to make sure that a
modification of a certain part of the system has not
inadvertently broken other parts of the system. For
example, a regression test could entail the execution of
every unit test. Larger projects will likely require a
more selective approach if regression testing is to
remain viable.

Finally, we discuss the ways in which test
cases can be selected.

White-Box Testing refers to the creation of test cases
by exploiting knowledge of the implementation (i.e. the
source code) of the system under test. Therefore,

Stem Cell 2011;2(1) http//www.sciencepub.net

13

white-box techniques are typically applied by the same
developers that wrote the code.
Several aspects of the source code can be targeted by
white-box techniques. For example, possible
techniques are based on the control- flow, data-flow or
call behavior of the code being tested. Observing the
effects of modifications made to certain parts of the
code, so-called mutation analysis can also be classified
as a white-box technique.

Black-box Testing is the opposite of white-box
testing, in the sense that no knowledge of the
implementation is used to generate test cases. Instead,
black-box testing focuses on the input/output behavior
of the system. This approach enables people without
knowledge of the internals of a system to apply these
techniques.
Many black-box techniques take the specification of
the system as a starting point. The specification should
provide information about the domains of inputs and
outputs of the system, and describe the implemented
functionality. Using this information, the tester should
be able to generate input/output pairs that represent
correct executions of the system. In other words, for
every pair, the system should result in the specified
output value when given the specified input value.
Clearly, one such pair exactly represents a test case.

Software Testability

A software system's testability is defined by
the ISO model [10] as “attributes of software that bear
on the effort needed to validate the software product."
In other words, the testability of a software system is
indicative of the amount of effort needed to test the
system.

What software testability is?

Software testability is an external software
attribute that evaluates the complexity and the effort
required for software testing. Software testability has
been defined and described in literature from different
point of views. The IEEE Standard Glossary defines
testability as the degree to which a system or
component facilitates the establishment of test criteria
and performance of tests to determine whether those
criteria have been met [3].

Testable software is one that can be tested
easily, systematically and externally at the user
interface level without any ad-hoc measure [4]
[5].Testability is an important attribute to the
maintainability of software. Testable software is easy
and less costly to maintain and testability represents an
important software quality characteristics. Testable

software need to possess two characteristics i.e.
observability and controllability.

Observability: In the process of testing, there is a
need to observe the internal details of software
execution, to ascertain correctness of processing and to
diagnose errors discovered during this process.
Observable software makes it feasible for the tester to
observe the internal behavior of the software, to the
required degree of details.

Controllability: During software testing, some
conditions like disk full, network link failure etc. are
difficult to test. Controllable software makes it possible
to initialize the software to desired states, prior to the
execution of various tests.

Other Definitions:

1. The relative ease and expense of revealing
software faults [6].

2. A set of attributes that bear on the effort
needed for validating the modified software
[7].

A software system is testable if 1) its components can
be tested separately, 2) test cases can be identified in a
systematic manner and repeated, and 3) the test result
can be observed [8].

Importance of Software Testability

Testability is important for software testers
and programmers because it helps them to keep the test
effort under control. Additionally it is relevant to
customers as well; customers benefit from higher
product quality and faster fixing of errors occurring at
the customer site when testability features like built-in-
tests, automatic failure reports, and built-in diagnostic
capabilities provide better and faster information to the
developers about the cause of failures which accelerates
problem fixing.

Several software development and testing
experts pointed out large systems the importance of
testability and design for testability, especially in the
context of large systems:

“During the design of new systems we do not
have only to answer the question ’can we build it?’ but
also the question ’can we test it? ‘Good testability of
systems is becoming more and more important.” [1].

“The absence of design for testability in large
systems can greatly reduce testing effectiveness.” [6]
 “Design for testability, although rarely the first
concern of smaller projects is of paramount importance
when successfully constructing large and very large
C++ systems.” [11].

Stem Cell 2011;2(1) http//www.sciencepub.net

14

 Factors contributing to importance of testability:
The importance of software testability for a

particular software system increases with
 The size and complexity of the system,
 The risks for life and business if errors remain

undetected
 The frequency of the test activities, and
 The life-time of the system (assuming that

maintenance and regression testing are
permanent tasks).

Fishbone of Testability

Software testability is a result of six factors:
 Characteristics of the representation
 Characteristics of the implementation

 Built in test capabilities
 The test suite (test cases and associated

information)
 The test support environment
 The software process in which testing is

conducted
These six factors are the spine of the testability
fishbone.

The Fishbone in More Detail
Figure 1, adapted from the fish-bone figure in [3], give
an overview of the facets that influence the test effort.

 Fig 1.The Testability Fishbone [3]

A major input of the test effort picture is the

degree of validity that the software is required to have.
In general, software that is required to have a high
degree of validity will need to be tested thoroughly
before it can be claimed the requirement is met.

For some software development projects the
required degree of validity may be known explicitly,
while for most others the software will simply be
expected to `work'. For example, safety-critical
systems are often required to meet very strict validity
requirements; maximally allowable failure rates are

typically stated explicitly. On the other hand, a word
processor application will likely not be required to
meet the same degree of validity.

Let's assume that a project intends to verify
the validity of the software by means of testing. If the
required degree of validity is specified, the goal of
testing is clear; to evaluate whether or not the software
meets the specified validity requirement. It will depend
on the other aspects of the project how much effort will
be required to complete the testing.

Stem Cell 2011;2(1) http//www.sciencepub.net

15

If the required degree of validity is not
specified, the project will need to agree on some kind
of testing criterion that indicates whether adequate
testing has been performed. In the context of white box
testing, such a criterion is typically called a code
coverage criterion, because it indicates the extent to
which a certain aspect of the code has been `covered'
by testing.

In practice, the moment that testing is
complete will typically is determined by the amount of
effort a project is capable of spending on testing. The
`spine' of Figure 1 would thus start at `available test
effort', and point upwards to `resulting validity'.

What is Software Testability Measurement?

Generally speaking, software testability
measurement refers to the activities and methods that
study, analyze, and measure software testability during
a software product life cycle. In the past, there were a
number of research efforts addressing software
testability measurement. Their focus was on how to
measure software testability at the beginning of a
software test phase. Once software is implemented, it is
necessary to make an assessment to decide which
software components are likely to be more difficult and
time-consuming in testing due to their poor component
testability. If such a measure could be applied at the
beginning of a software testing phase, much more
effective testing resources allocation and prioritizing
could be possible.

As we understand, the objective of software
testing is to confirm that the given software product
meets the specified requirements by validating the
function and nonfunctional requirements to uncover as
many program problems and errors as possible during a
software test process. Unlike software testing, the
major objective of software testability measurement is
to find out which software components are poor in
quality, and where faults can hide from software
testing.

How to Measure Software Testability

In the past few years, a number of methods have
been proposed to measure and analyze the testability of
software [16, 17, 18]. They can be classified into the
following groups:

 Program-based measurement methods for
software testability [17];

 Model-based measurement methods for
software testability [17, 18];

 Dependability assessment methods for
software testability [16].

 Program Based Testability Measurement

Since a fault can lie anywhere in a program, all
places in the source code are taken into consideration
while estimating the program testability. J.-C. Lin et al.
[17] proposed a program-based method to measure
software testability by considering the single faults in a
program. The faults are limited to single faults and are
limited to faults of arithmetic expressions and
predicates.

 Arithmetic Expressions: Limited to single
changes to a location. It is similar to
mutations in mutation testing;

 Assignment Predicates: An incorrect
variable/constant substitution, for example, a
variable substituted incorrectly for a constant,
a constant substituted incorrectly for variable,
or a wrong operator;

 Boolean Predicates: A wrong
variable/constant substitution, wrong
equality/ inequality operator substitution, or
exchanging operator and with operator or.

The basic idea of this approach is similar to
software mutation testing. To check software testability
at a location, a single fault is instrumented into the
program at this location. The newly instrumented
program is compiled and executed with an assumed
input distribution. Then, three basic techniques
(execution, infection, and propagation estimation
methods) are used to compute the probability of failure
that would occur when that location has a fault.

Model Based Testability Measurement

Another measurement approach of software
testability is proposed based on a well-defined model:
such as a data flow model [17]. This approach consists
of three steps:

 Step #1: Normalizing a program before the
testability measurement using a systematic
tool. Normalizing a program can make the
measurements of testability more precise and
reasonable. A program, after being
normalized, must have the same semantics as
the original one. This is done mechanically.
Two types of normalization are performed
here. They are structure normalization and
block normalization. In the structure
normalization, the program’s control flow
structure is reconstructed to make it regular to
facilitate analyzing and property measuring.

 Step #2: Identifying the testable elements of
the targeted program based on its normalized
data flow model. The elements include the
number of noncomment lines, nodes, edges,
p-uses, defs, uses, d-u paths (pairs), and
dominating paths.

Stem Cell 2011;2(1) http//www.sciencepub.net

16

 Step #3: Measuring the program testability
based on data flow testing criteria. These
data-flow testing criteria include: ALL-
NODES, ALL-EDGES, ALL-P-USES, ALL-
DEFS, ALL-USES, ALL-DU-PAIRS, and
ALL-DOMINATING PATH.

Though there is no correlation between the

measurements and the number of faults, this approach
can be used to check how easily software modules can
be tested

C. Robach and Y. Le Traon [18] also used the
data-flow model to measure program testability. Unlike
the previous approach, their method is developed for
co-designed systems.

Dependency Based Testability Measurement

Clearly, the two previous approaches need
program source code and/or a program-based model to
support software testability measurement. A. Bertolino
and L. Strigni [16] proposed a black-box approach,
where the software testability measurement is
performed based on the dependency relationships
between program inputs and outputs. The basic idea is
to perform an oracle in a manual (or systematic) mode
to decide whether a given program behave correctly on
a given test. The oracle decides the test outcome by
analyzing the behavior of the program against its
specification. In particular, an input/ output (I/O) oracle
only observes the input and the output of each test, and
looks for failures. A program is correct with respect to
its specification if it is correct on every input setting;
otherwise the program is faulty. If the program
generates an incorrect output, then the test has failed. If
the oracle output is approved, then the test is
successful.

REPRESENTATION:

Ideally there is more to a software system than
its source code. According to various industry
standards, documentation should cover the
requirements the software needs to implement and the
specification of the chosen solution. The quality of
these documents has its bearing on the test effort.

Requirements capture the expectations of the
customer, and thus are a crucial source of test cases
that determine whether the implementation is correct
and complete. From a testing viewpoint, good
requirements are unambiguous and quantifiable.

A specification details the architecture and
design of the solution that was selected to implement
the requirements. Complete and current specifications
describe the intended behavior of the implementation.
Knowing the intended behavior is valuable if one

wants to derive test cases that validate the
implementation.

The separation of concerns inherent in modern
software documentation raises the issue of traceability.
A software system and its documentation are traceable
if the relations between the components of the
requirements and those of the specification, and those
of the specification and implementation, are clear. In
other words, it should be easy to point to the
components involved in solving a certain requirement.
Vice versa, it should be clear which requirement a
certain component implements.

A non-traceable software system cannot be
effectively tested, since relations between required,
intended and current behaviors of the system cannot
easily be identified.

Test Suite:

Aspects of the test suite itself also determine
the effort required to test.

First, test cases should be created to allow for
automated execution. It should be possible to compare
observed output values to expect output values in an
automated way, preferably by employing a mechanism
called a test oracle. A test oracle is a simple abstraction
of the mapping from valid input values to correct
output values.

Second, reusing test suites for different
revisions and configurations of the system under test
must be possible. Test suites should thus be subject to
configuration management along with the software
itself.

Third, test cases that contain errors are as
harmful as buggy code. If they are to be of any use, test
suites had better be subject to a verification process of
their own. Finally, test suites need documentation
detailing the implemented tests, a test plan, test results
of previous test runs and reports.

Test Tools:

The presence of appropriate test tools can
alleviate many problems that originate in other parts of
the `fish bone' figure. For example, easy-to-use tools
will demand less of the staff responsible for testing.
Test case definition in the presence of graphical user
interfaces is another example where tooling can
significantly reduce the required effort.

Obviously, testing benefits from automation
of repetitive and error-prone tasks as much as any other
activity does. A good set of test tools is capable of
interoperating with related tools. For example, a test
runner that encounters a failed test is capable of
producing a trace which can subsequently be read be

Stem Cell 2011;2(1) http//www.sciencepub.net

17

debugger or profiler tools, which in turn are linked
with an editor, and so forth.

Process Capability:

The organizational structure, staff and
resources supporting a certain activity are typically
referred to collectively as a (business) process.
Properties of the testing process obviously have great
influence on the effort required to perform testing.
Important factors include a commitment of the larger
organization to support testing, through funding,
empowerment of those responsible, and provision of
capable staff.

In order for the process to perform effective
testing, i.e. testing the right thing, requirements and
specification should be taken as a starting point.

Heuristics of Software Testability

Heuristics of software testability are as
follows [9].

Controllability: The better we can control it, the more
the testing can be automated and optimized.

 A scriptable interface or test harness is
available.

 Software and hardware states and variables
can be controlled directly by the test engineer.

 Software modules, objects, or functional
layers can be tested independently.

Observability: What you see is what can be tested.

 Past system states and variables are visible or
queriable (e.g., transaction logs).

 Distinct output is generated for each input.
 System states and variables are visible or

queriable during execution.
 All factors affecting the output are visible.
 Incorrect output is easily identified.
 Internal errors are automatically detected and

reported through self-testing mechanisms.

Availability: To test it, we have to get at it.

 The system has few bugs (bugs add analysis
and reporting overhead to the test process).

 No bugs block the execution of tests.
 Product evolves in functional stages (allows

simultaneous development and testing) source
code is accessible

Simplicity: The simpler it is, the less there is to test.

 The design is self-consistent.
 Functional simplicity (e.g., the feature set is

the minimum necessary to meet requirements)

 Structural simplicity (e.g., modules are
cohesive and loosely coupled)

 Code simplicity (e.g. the code is not so
convoluted that an outside inspector can’t
effectively review it)

Stability: The fewer the changes, the fewer the
disruptions to testing.

 Changes to the software are infrequent.
 Changes to the software are controlled and

communicated.
 Changes to the software do not invalidate

automated tests.

Information: The more information we have, the
smarter we will test.

 The design is similar to other products we
already know.

 The technology on which the product is based
is well understood.

 Dependencies between internal, external and
shared components are well understood.

 The purpose of the software is well
understood.

 The environment in which the software will
be used is well understood.

 Technical documentation is accessible,
accurate, well organized, specific and detailed.

 Software requirements are well understood.

Testability Measurement

Several techniques have been made for
development of meaningful testability [4, 13, 14] but
here we are using the testability measurement
techniques of John McGregor and S. Srinivas
[15].They mentioned that Testability of a method into
the class depends upon the visibility component.
Testability of method is

 ή=constant*(ζ) Where ζ is
the visibility component

Testability of the class is
 θ=min (ή)

The definition of the visibility component (VC) is
 ζ= Possible
Output/Possible Input
Before doing implementation we are defining our
input, output and constant for testability analysis work
and also taking some assumption for this work.

Assumption:

1. Not consider system parameter
2. Consider only concrete class.

Stem Cell 2011;2(1) http//www.sciencepub.net

18

3. All method overloading and over ridding
allow.

4. Not consider static method but treat public
static void main as a starting point.

5. Not consider abstract method.
The input, output and constant for the java class

will be as follows
Input:
1. All parameter into the class.
2. Parameters pass into the method signature.
3. All class method parameter of the parent class

excluding system parameter.
4. All method of interface implementation.
Output:
1. The return value of the method
2. Any exception either checked or unchecked

by the method
3. All implicit parameter & object attribute

define in the class

4. Object reference in the method signature.
 Constant
1. Final
2. Literal
Static final variable is also effectively used as a

constant.

IMPLEMENTATION
Base Converter:
This program enables a user to convert from numbers
of different bases to numbers of different bases. The
number bases supported are decimal, binary,
hexadecimal, octal, and a user defined base. This
means that you can theoretically convert from any base
to any base if you so choose.

This project has only one class. The testability
analysis of this project is as follows:

S. No Class No. LOC Testability Complexity
1 1 589 10 15

Testability of Base Converter is = 1O

 Fig 2. Base converter testability and complexity graph

Result:

After analysis of testability and complexity of the
base converter we see that the result as shown in graph
fig 2 is satisfied our working definition “Testability of
a program is a degree of simplicity of the program”.

 Here the testability is 10 which is far greater
than the testability of the OES(which is
maximum 3)

 The reason of greater testability is that, if the
number of constant (In the case of base
converter project we have 10 constant) in the

Stem Cell 2011;2(1) http//www.sciencepub.net

19

class will increase than the testability is
automatically increased.

 So we can say that, constants are main factor
which increase the testability of the class.

 In the case of OES no constant is available so
the testability is varies between 1-3.

Benefits of Software Testability

There are a lot of other characteristics of design
that are related to testability. In particular the lists
below are benefits to testability [10].

 Understandability
 Modifiability
 Availability
 Flexibility
 Maintainability
 Reliability
 Usability
 Changeability
 Fault Tolerance

References:

(1) Martin Pol, Tim Koomen, and Andreas
Spillner. Management und Optimierung des
Testprozesses: Praktischer Leitfaden für
erfolgre- iches Software-Testen mit TPI und
Tmap . dpunkt.verlag, April 2000 ISBN 3-
932588-65-7.A. Bertolino. Software testing. In
The Guide to the Software Engineering Body
of Knowledge, chapter 5. IEEE Computer
Society, 2001. Public draft version 1.00,
available at http://www.swebok.org.

(2) “IEEE standard Glossary of Software
Engineering Terminology,”ANSI/IEEE
Standard 610-12-1990, IEEE Press, New
York, 1990.

(3) R. S. Freedman, “Testability of Software
Components”, IEEE Transactions on Software
Engineering, vol. 17, No. 6, June 1991, pp.
553-563.

(4) S. C. Gupta, M. K. Sinha: “Improving
Software Testability by Observability and
Controllability Measures”, 13th World
Computer Congress, IFIP, vol. 1, 1994, pp.
147-154.

(5) Binder, R.V., Design for Testability with
Object-Oriented Systems. Communications of
the ACM, 1994. 37(9): p. 87-101.

(6) ISO/IEC 9126-2. Software product quality-
external metrics.

(7) Bernd kahlbrandt.SoftwareEngineering:
Objektorientierte Software-Entwicklung mit
der Unified modeling language.springer,1998.

(8) James Bach, "Heuristics of Software
Testability", April 2003.

(9) Appendix D of Stefan Jungmayr’s thesis
Improving testability of object-oriented
systems.

(10) John Lakos. Large -scale C++ software
design. Addision Welsey, 1996, ISBN
0201633620.

(11) B. van Zeist, P. Hendriks, R. Paulussen, and J.
Trienekens. Quality of Software Products.
Software Engineering Research Center,
Utrecht, the Netherlands, 1996.

(12) J. Voas, PIE: A dynamic failure-based
technique, IEEE Transactions on Software
Engineering 18 (8) (1992) 717–727.

(13) J. Voas, K. Miller, Software testability: The
new verification, IEEE Software 12 (1995)
17–28.

(14) J. McGregor and S. Srinivas. A measure of
testing effort. In Proceedings of the
Conference on Object-Oriented Technologies,
pages 129{142}. USENIX Association, June
1996.

(15) Bertolino, A., and L. Strigini, “On the Use of
Testability Measurement for Dependability
Assessment,” IEEE Trans. on Software
Engineering, Vol. 22, No. 2, February 1996,
pp. 97–108.

(16) Lin, J.-C., I. Ho, and S.-W. Lin, “An
Estimated Method for Software Testability
Measurement,” Proc. of 8th International
Workshop on Software Technology and
Engineering Practice (STEP ’97), 1997.

(17) Robach, C., and Y. Le Traon, “Testability
Analysis of Co-Designed Systems,” Proc. of
4th Asian Test Symposium (ATS’95), 1995.

11/20/2011

