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Abstract: The definition of stem cell is “an unspecialized cell that gives rise to a specific specialized cell, such as a 
blood cell”. Stem Cell is the original of life. All cells come from stem cells. Serving as a repair system for the living 
body, the stem cells can divide without limit to replenish other cells as long as the living body is still alive. When a 
stem cell divides, each new cell has the potential to either remain a stem cell situation or become another type of cell 
with a more specialized function, such as a muscle cell, a red blood cell, a bone cell, a nerve cell, or a brain cell. 
Stem cell research is a typical and important topic of life science. This material collects literatures on stem cell 
researches.  
[Smith MH. Stem Cell Research Review. Stem Cell 2014;5(1):77-91] (ISSN 1545-4570). 
http://www.sciencepub.net/stem. 7 
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Introduction 

Mouse embryonic stem cells were first 
discovered in 1981. Since then, they have been an 
invaluable tool of modern biology and medical 
research. They have provided models to study 
diseases, they have brought about the discovery of 
many genes associated with diseases and they have 
been used to cure certain human disorders in animal 
models. After 20 years of exciting research, the mouse 
embryonic stem cell has helped to establish the value 
of these cells in regenerative medicine, which is the 
creation of cells or organs to replace tissues lost to 
disease or injury. The discovery of human embryonic 
stem cells in 1998 triggered important ethical 
controversy and debate, yet scientists are convinced 
that they hold enormous potential for clinical 
applications. Many diseases plaguing the modern 
world may be improved, or even cured, with therapies 
using human stem cells. Whether human embryonic 
stem cells or adult stem cells are used in future 
therapies will depend on the type of disease or injury. 
There are specific advantages for each stem cell type. 
Thanks to the ease of growing them in the laboratory, 
human embryonic stem cells may one day become the 
source of artificial organs. Or scientists might one day 
be able to mobilize one’s own adult stem cells to 
repair tissue damage caused by trauma, disease, and 
even aging. To reach such goals, both human 
embryonic and adult stem cells will have to be 
extensively studied. The complementary information 
acquired from studying both stem cell types is the key 
to unlocking their full potential. 

A stem cell is the base building block of an entire 
family of cells that make up any organ. A common 
trait of stem cells is that they can maintain themselves 
indefinitely in a stem cell state, which is referred to as 
“self-renewal,” while also producing — through 

division — more specialized cells. For example, the 
blood stem cell can produce all the cells in the blood, 
including the red blood cells, white blood cells and 
platelets. 

Harnessing the power of human stem cells will 
revolutionize our health, our lives, and our society. In 
principle, any affliction involving the loss of cells, 
including many diseases, injuries and even aging, 
could be treated with stem cells. In the United States 
alone, more than 100 million people could benefit 
from therapies derived from stem cell research.  

Adult stem cells are more specialized stem cells 
living in the majority of tissues and organs in our 
bodies and generate the mature cell types within that 
tissue or organ. In tissues where adult stem cells have 
been found, they are extremely rare and very difficult 
to isolate. Once isolated, adult stem cells grow poorly 
in culture, and it is difficult to obtain enough of these 
cells for use in clinical trials. In addition, access to the 
tissues harboring these cells is problematic since most 
human tissue is not easily available. Two readily 
available sources of human adult stem cells are the 
bone marrow and the umbilical cord blood. In both 
these tissues are blood stem cells, as well as other rare 
types of stem cells, which can produce bone, muscle, 
blood vessels, heart cells and possibly more. 

The majority of stem cell clinical trials now 
underway use blood stem cells from the bone marrow 
or umbilical cord blood to treat blood disorders or 
diseases, such as leukemia, different types of anemia, 
systemic lupus, and certain other autoimmune 
diseases or deficiencies. A handful of clinical trials 
are evaluating the use of one’s own bone marrow stem 
cells to repair heart tissue and to improve blood flow 
or to help to repair bone and cartilage. Other adult 
stem cells being explored for use in the clinic include 
stem cells in the eye and the skin. Adult stem cells are 
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also thought to play a role in tissue transplants that 
have been performed for several years. For example, 
insulin-producing cells for type I diabetes, fetal 
neurons for Parkinson’s disease, and skin for bladder 
reconstruction have been transplanted successfully. It 
is possible that in cases where long-term regeneration 
has been achieved, stem cells contained in these 
tissues have contributed to regeneration. The 
widespread use of adult stem cell-derived therapies 
and treatments is complicated by several factors. First, 
available human tissue is scarce, with only 6000 
donors/year for more than 100 million Americans that 
could benefit from cellular therapy. Second, immune 
rejection caused by not using one’s own cells or tissue 
is a problem. On the other hand, using one’s own cells 
or tissue may become a problem for older patients, as 
evidence has been accumulating that adult stem cells 
age during the life of the body and lose their potential. 
Thus, stem cells isolated from a young adult may have 
a greater potential to produce numerous daughter cells 
than the cells of an older person.  

Human embryonic stem cells are like a blank 
slate and can produce all the cells of the body. They 
are obtained from the ICM (inner cell mass) of the 
blastocyst.The blastocyst is a very early stage of 
human development, which forms about 5 days after 
fertilization of an egg. It is approximately 1/10 the 
size of the head of a pin, almost invisible to the eye, 
and it has not yet implanted into the uterus. 

Once the blastocyst has implanted and a normal 
pregnancy can be detected, it is too late to derive 
human embryonic stem cells from the embryo. At the 
blastocyst stage, organ formation has not started and 
more specialized cells are not yet present, not even the 
beginning of the nervous system. To obtain human 
embryonic stem cells, blastocysts created in culture 
for in vitro fertilization (IVF) treatment by combining 
sperm and egg in a dish, are used. If they are not 
implanted into the uterus, the blastocysts are either 
discarded or frozen for later fertility cycles. They can 
also be donated to other patients or to research. If not 
donated, they will stay in the freezer as long as the 
storage fees are paid, otherwise they will be discarded. 
Because the cells obtained from the blastocyst have 
not yet specialized, they are considered highly 
valuable. They can generate cells that go on to form 
all the body’s tissues and organs. 

While grown in a dish, human embryonic stem 
cells can maintain their “stem-cellness” and provide 
an unlimited supply of more stem cells, as well as 
specialized cells that can be used for experiments and 
for the development of therapies. Apart from their 
potential to treat or cure diseases, human embryonic 
stem cells also provide a model to study very early 
human development and some of the disorders that 
lead to birth defects and childhood cancers. Many of 

these disorders develop in early pregnancy and are 
impossible to study in humans. Also, human 
embryonic stem cells also can be used to examine the 
genes that are turned “on” or “off” as stem cells 
generate more specialized cell types, permitting a 
unique understanding of the genetics of human 
development. The specialized cells derived from 
human embryonic stem cells also can be used to study 
the effectiveness of potential new drugs to treat 
diseases. This provides a human cellular model and 
can reduce animal experimentation and drug 
development costs. Additionally, embryonic stem 
cells can be derived from human blastocysts with 
specific genetic abnormalities. These types of 
blastocysts are identified through genetic diagnosis 
during IVF treatment, to screen out genetically 
abnormal blastocysts, and are usually discarded. The 
stem cells from them can provide a unique resource to 
understand genetic diseases and to develop cures. 
Human embryonic stem cells also could be used to 
understand the origin or causes of various diseases 
such as Alzheimer’s disease or Parkinson’s disease, 
which are currently unknown. Stem cells derived 
through nuclear transfer (more info below) from 
patients with such afflictions would provide special 
tools to study these diseases and possibly develop 
drugs for treatments. 

Embryonic stem cells have not yet been used in 
treating humans. But numerous animal studies have 
shown that many of the specialized cells derived from 
them can indeed integrate into damaged tissues and 
function properly. Thus, diseases such as myocardial 
infarction, severe immune deficiency, diabetes, 
Parkinson’s disease, spinal cord injury, and 
demyelination have been successfully treated in 
animal models. But the pathway from animal models 
to the clinic is still complex and burdened with 
obstacles to be overcome. First, not all specialized 
cells derived from human embryonic stem cells have 
been shown to integrate into animal tissue and 
function properly. This can be due to the poor quality 
of the specialized cells derived in culture, or to a lack 
of adequate communication between the human cells 
and the animal environment in which they are placed. 
Then there is the problem of scaling up to yield 
enough of the specialized cells to treat a human, since 
this requires many more cells than to treat a tiny 
mouse. Such cells will have to be produced under 
specific conditions to ensure safety for use in patients. 
Most human embryonic stem cells are still grown on a 
layer of mouse feeder cells, a potential source of 
contamination. Last, there’s the problem of immune 
rejection by the patient. While the drugs used in the 
organ transplantation field to suppress immune 
rejection have been improved over the years, rejection 
is still a major problem.  
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Literatures 
 Since the discovery of testicular carcinoma in 
situ (CIS) -- the precursor cell for the vast majority of 
germ cell tumours -- it has been proposed that CIS 
cells could be derived from transformed primordial 
germ cells or gonocytes. Here, we review recent 
discoveries not only substantiating that initial 
hypothesis but also indicating that CIS cells have a 
striking phenotypic similarity to embryonic stem cells 
(ESC). Many cancers have been proposed to originate 
from tissue-specific stem cells [so-called 'cancer stem 
cells' (CSC)] and we argue that CIS may be a very 
good example of a CSC, but with exceptional features 
due to the retention of embryonic pluripotency. In 
addition, considering the fact that pre-invasive CIS 
cells are transformed from early fetal cells, possibly 
due to environmentally induced alterations of the 
niche, we discuss potential risks linked to the 
uncontrolled therapeutic use of ESC [Almstrup, K., S. 
B. Sonne, et al. (2006). "From embryonic stem cells to 
testicular germ cell cancer-- should we be 
concerned?" Int J Androl 29(1): 211-8]. 
 Adoptive immunotherapy with antigen-
specific cytotoxic T lymphocytes (CTLs) has proven 
effective in restoring cellular immunity to 
cytomegalovirus (CMV) and preventing viral 
reactivation after allogeneic stem cell transplantation 
(SCT). In an effort to develop a cost-effective, 
relatively rapid method of CMV CTL expansion, we 
investigated the use of a pool of overlapping CMV 
peptides. Because the possibility exists of vaccinating 
CMV-seronegative donors, and these individuals may 
have T cell responses predominantly against IE-1, 
commercially available peptide mixes for pp65 as 
well as IE-1 were used to stimulate CTLs from 10 
seropositive donors. Of these 10 donors, 4 responded 
to pp65 only, 1 did not respond to either pp65 or IE-1, 
4 responded to both pp65 and IE-1, and 1 responded 
to IE-1 only. These CMV- specific T cells included a 
mixture of CD4(+) and CD8(+) effectors, and specific 
cytotoxicity correlated with interferon-gamma 
production. The costs associated with a 28-day 
maintenance course of intravenous ganciclovir, 
cidofovir, foscarnet, and valganciclovir, as well as the 
preparation and shipping a single dose of CTLs, were 
determined. The price of generating CMV CTLs using 
this method was comparable to or less expensive than 
a 28-day maintenance course for these agents, not 
including the costs associated with drug 
administration, supportive care, and the treatment of 
drug-related complications. Considering the relative 
ease, low cost, and the fact that CTL administration 
can result in CMV-specific immune reconstitution, 
this option should be considered for patients with 
CMV reactivation or for prophylaxis in patients at 
high risk for infection [Bao, L., K. Dunham, et al. 

(2008). "Expansion of cytomegalovirus pp65 and IE-1 
specific cytotoxic T lymphocytes for 
cytomegalovirus-specific immunotherapy following 
allogeneic stem cell transplantation." Biol Blood 
Marrow Transplant 14(10): 1156-62]. 
 Accessibility of human oocytes for research 
poses a serious ethical challenge to society. This fact 
categorically holds true when pursuing some of the 
most promising areas of research, such as somatic cell 
nuclear transfer and embryonic stem cell studies. One 
approach to overcoming this limitation is to use an 
oocyte from one species and a somatic cell from 
another. Recently, several attempts to capture the 
promises of this approach have met with varying 
success, ranging from establishing human embryonic 
stem cells to obtaining live offspring in animals. This 
review focuses on the challenges and opportunities 
presented by the formidable task of overcoming 
biological differences among species [Beyhan, Z., A. 
E. Iager, et al. (2007). "Interspecies nuclear transfer: 
implications for embryonic stem cell biology." Cell 
Stem Cell 1(5): 502-12]. 
 Stem cells provide fascinating prospects for 
biomedical applications by combining the ability to 
renew themselves and to differentiate into specialized 
cell types. Since the first isolation of embryonic stem 
(ES) cells about 30 years ago, there has been a series 
of groundbreaking discoveries that have the potential 
to revolutionize modern life science. For a long time, 
embryos or germ cell-derived cells were thought to be 
the only source of pluripotency--a dogma that has 
been challenged during the last decade. Several 
findings revealed that cell differentiation from (stem) 
cells to mature cells is not in fact an irreversible 
process. The molecular mechanism underlying 
cellular reprogramming is poorly understood thus far. 
Identifying how pluripotency maintenance takes place 
in ES cells can help us to understand how 
pluripotency induction is regulated. Here, we review 
recent advances in the field of stem cell regulation 
focusing on key transcription factors and their 
functional interplay with non-coding RNAs [Bosnali, 
M., B. Munst, et al. (2009). "Deciphering the stem cell 
machinery as a basis for understanding the molecular 
mechanism underlying reprogramming." Cell Mol 
Life Sci 66(21): 3403-20]. 
 The purpose of our study was to evaluate the 
incidence and clinical characteristics of febrile 
episodes during neutropenia following chemotherapy 
in children with cancer. A prospective, 3-year single-
center observational study of periods of neutropenia 
was performed. Epidemiology and clinical diagnoses 
of febrile episodes occurring during the neutropenic 
periods were evaluated, taking into consideration 
different categories of anticancer treatment based on 
the type of tumor and phase of therapy. RESULTS: A 
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total of 703 febrile episodes were observed during 614 
(34%) of 1792 neutropenic periods (34%), for a total 
of 28,001 days at risk, accounting for a rate of 0.76 
episodes per 30 days at risk. The highest proportions 
of neutropenic periods with primary febrile episodes 
were observed after autologous hemopoietic stem cell 
transplantation (58%), aggressive treatment for acute 
leukemia or non-Hodgkin lymphoma (48%), and 
allogeneic hemopoietic stem cell transplantation 
(44%); the lowest proportion (9%) was observed 
during maintenance chemotherapy for acute leukemia 
(P<.001). The most frequent clinical diagnosis was 
fever of unknown origin (in 79% of cases), followed 
by bacteremia (10%); invasive mycosis was diagnosed 
in only 2% of cases. The overall incidence of febrile 
neutropenia and severe infectious complications in 
children with cancer is low, with differences 
according to the aggressiveness of chemotherapy. 
This fact must be considered when designing clinical 
trials on the management of infectious complications 
in children with cancer [Castagnola, E., V. Fontana, et 
al. (2007). "A prospective study on the epidemiology 
of febrile episodes during chemotherapy-induced 
neutropenia in children with cancer or after 
hemopoietic stem cell transplantation." Clin Infect Dis 
45(10): 1296-304]. 
 In order to support drug research in the 
selection process for non-embryotoxic pharmaceutical 
compounds, a screening method for embryotoxicity is 
needed. The murine embryonic stem cell test (EST) is 
a validated in vitro test based on two permanent 
mouse cell lines and delivering results in 10-days. 
Implementation of this test within our laboratory, 
revealed variability in the differentiation potential of 
the embryonic stem cells and, as a consequence, a lot 
of assays needed to be rejected due the fact the 
acceptance criteria were not reached. In order to gain 
a better yield of contracting myocardial cells, we used 
(1) a stringent control of the cell growth during 
subcultivation and a standardised hanging drop culture 
method and (2) a non-enzymatic cell harvest instead 
of a trypsin/EDTA cell harvest. Implementing of these 
cell culture modifications resulted in a decreased 
variability in the size of embryonic bodies, an increase 
of the number of acceptable tests and a significant 
increase of the differentiation potential of embryonic 
cells into strong beating myocardium, which made 
scoring less time consuming. Testing of 6 reference 
compounds in the optimized EST showed that the cell 
culture modifications did not changed the in vitro 
classification [De Smedt, A., M. Steemans, et al. 
(2008). "Optimisation of the cell cultivation methods 
in the embryonic stem cell test results in an increased 
differentiation potential of the cells into strong beating 
myocard cells." Toxicol In Vitro 22(7): 1789-96]. 

 In vivo, stem cell factor (SCF) exists in both 
a bound and soluble isoform. It is believed that the 
bound form is more potent and fundamentally 
required for the maintenance of hematopoietic stem 
cells (HSCs). This theory is supported by the 
observation that steel-Dickie mice lacking the bound 
isoform of SCF are unable to maintain hematopoiesis 
and by the fact that bound SCF displayed on the 
surface of transgenic cells is better able to maintain c-
kit activation than soluble SCF. Further work has 
shown that recombinant SCF molecules, which 
include a surface-binding domain, are more potent 
than their soluble equivalent. It is generally assumed 
that such an elegant approach is necessary to provide 
the correct molecular orientation and avoid the pitfalls 
of random cross-linking or the denaturation associated 
with the adsorption of proteins to surfaces. However, 
in this work we demonstrate that SCF physisorbed to 
tissue culture plastic (TCP) is not only bioactive, but 
more potent than the soluble equivalent. By contrast, 
cross-linking of SCF via free amines is shown to 
compromise its bioactivity. These observations 
demonstrate that simple surface modification 
solutions cannot be discounted and with the advent of 
low-cost pharmaceutical grade proteins, they should 
not be [Doran, M. R., B. D. Markway, et al. (2009). 
"Surface-bound stem cell factor and the promotion of 
hematopoietic cell expansion." Biomaterials 30(25): 
4047-52]. 
 Neural stem cells (NSCs) are defined by their 
ability to self-renew while retaining differentiation 
potential toward the three main central nervous 
system (CNS) lineages: neurons, astrocytes, and 
oligodendrocytes. A less appreciated fact about 
isolated NSCs is their narrow repertoire for generating 
specific neuron types, which are generally limited to a 
few region-specific subtypes such as GABAergic and 
glutamatergic neurons. Recent studies in human 
embryonic stem cells have identified a novel neural 
stem cell stage at which cells exhibit plasticity toward 
generating a broad range of neuron types in response 
to appropriate developmental signals. Such rosette-
stage NSCs (R-NSCs) are also distinct from other 
NSC populations by their specific cytoarchitecture, 
gene expression, and extrinsic growth requirements. 
Here, we discuss the properties of R-NSCs within the 
context of NSC biology and define some of the key 
questions for future investigation. R-NSCs may 
represent the first example of a NSC population 
capable of recreating the full cellular diversity of the 
developing CNS, with implications for both basic 
stem cell biology and translational applications in 
regenerative medicine and drug discovery [Elkabetz, 
Y. and L. Studer (2008). "Human ESC-derived neural 
rosettes and neural stem cell progression." Cold 
Spring Harb Symp Quant Biol 73: 377-87]. 
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 While many regulatory mechanisms 
controlling the development and function of root and 
shoot apical meristems have been revealed, our 
knowledge of similar processes in lateral meristems, 
including the vascular cambium, is still limited. Our 
understanding of even the anatomy and development 
of lateral meristems (procambium or vascular 
cambium) is still relatively incomplete, let alone their 
genetic regulation. Research into this particular tissue 
type has been mostly hindered by a lack of suitable 
molecular markers, as well as the fact that thus far 
very few mutants affecting plant secondary 
development have been described. The development 
of suitable molecular markers is a high priority in 
order to help define the anatomy, especially the 
location and identity of cambial stem cells and the 
developmental phases and molecular regulatory 
mechanisms of the cambial zone. To date, most of the 
advances have been obtained by studying the role of 
the major plant hormones in vascular development. 
Thus far auxin, cytokinin, gibberellin and ethylene 
have been implicated in regulating the maintenance 
and activity of cambial stem cells; the most logical 
question in research would be how these hormones 
interact during the various phases of cambial 
development [Elo, A., J. Immanen, et al. (2009). 
"Stem cell function during plant vascular 
development." Semin Cell Dev Biol 20(9): 1097-106. 
 In this study, we have observed dental pulp 
stem cells (SBP-DPSCs) performances on different 
scaffolds, such as PLGA 85:15, hydroxyapatite chips 
(HA) and titanium. Stem cells were challenged with 
each engineered surface, either in plane cultures or in 
a rotating apparatus, for a month. Gingival fibroblasts 
were used as controls. Results showed that stem cells 
exerted a different response, depending on the 
different type of textured surface: in fact, 
microconcavities significantly affected SBP-DPSC 
differentiation into osteoblasts, both temporally and 
quantitatively, with respect to the other textured 
surfaces. Actually, stem cells challenged with concave 
surfaces differentiated quicker and showed nuclear 
polarity, an index of secretion, cellular activity and 
matrix formation. Moreover, bone-specific proteins 
were significantly expressed and the obtained bone 
tissue was of significant thickness. Thus, cells 
cultured on the concave textured surface had better 
cell-scaffold interactions and were induced to secrete 
factors that, due to their autocrine effects, quickly lead 
to osteodifferentiation, bone tissue formation, and 
vascularization. The worst cell performance was 
obtained using convex surfaces, due to the scarce cell 
proliferation on to the scaffold and the poor matrix 
secretion. In conclusion, this study stresses that for a 
suitable and successful bone tissue reconstruction the 
surface texture is of paramount importance [Graziano, 

A., R. d'Aquino, et al. (2008). "Scaffold's surface 
geometry significantly affects human stem cell bone 
tissue engineering." J Cell Physiol 214(1): 166-72]. 
 The discovery of microRNAs (miRNAs - 
small non-coding RNAs of approximately 22 nt) 
heralded a new and exciting era in biology. During 
this period miRNAs have gone from ignominy due to 
their origin mainly in 'junk DNA' to notoriety where 
they can be at once characterized as being all 
powerful (a single miRNA can target and potentially 
silence several hundred genes) and yet marginal (a 
given gene can be targeted by several miRNAs such 
that a given miRNA typically exerts a modest 
repression) [1-4]. The emerging paradox is 
exemplified by miRNAs that are prominently 
expressed in embryonic stem (ES) cells. The 
collective importance of miRNAs is firmly established 
by the fact that Dicer-/- mouse embryos die on day 7.5 
due to defects in differentiation [5]. However, 
oppositely correlated expression that is expected of 
conventional repressors is increasingly being defied in 
multiple systems in relation to miRNA-mRNA target 
pairs. This is most evident in ES cells where miR-290-
295 and 302 clusters the most abundant ES cell 
miRNAs are found to be driven by pluripotency genes 
Oct4, Nanog and Sox2 and also target these genes in 
'incoherent feed-forward loops' [7]. Here the miRNAs 
are co-expressed and positively correlated with these 
targets that they repress suggesting that one of their 
primary roles is to fine tune gene expression rather 
than act as ON/OFF switches. On the other hand, let-7 
family members that are notably low in ES cells and 
rapidly induced upon differentiation exhibit more 
conventional anti-correlated expression patterns with 
their targets [7-8]. In an intricately designed auto-
regulatory loop, LIN28, a key 'keeper' of the 
pluripotent state binds and represses the processing of 
let-7 (a key 'keeper' of the differentiated state) [9-11]. 
One of the let-7 family members, let-7g targets and 
represses LIN28 through four 3'-UTR binding sites 
[12]. We propose that LIN28/let-7 pair has the 
potential to act as a 'toggle switch' that balances the 
decision to maintain pluripotency vs. differentiation. 
We also propose that the c-Myc/E2F driven miR17-92 
cluster that together controls the G1 to S transition is 
fundamental for ES self-renewal and cell proliferation 
[13-18]. In that context it is no surprise that LIN28 
and c-Myc (and therefore let-7 and miR-17-92 by 
association) and more recently Oct4/Sox2 regulated 
miR-302 has been shown to be among a handful of 
factors shown to be necessary and sufficient to 
convert differentiated cells to induced pluripotent 
stem (iPS) cells [19-29]. It is also no surprise that 
activation of miR-17-92 (OncomiRs) and down-
regulation of let-7 (tumor suppressors) is a recurring 
theme in relation to cancers from multiple systems 
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[30-48]. We speculate that the LIN28/let-7; c-MYC-
E2F/miR-17-92 and Oct4/Sox2/miR-302-cyclin D1 
networks are fundamental to properties of 
pluripotency and self-renewal associated with 
embryonic stem cells. We also speculate that ES cell 
miRNA-mRNA associations may also regulate tissue 
homeostasis and regeneration in the fully developed 
adult. Consequently, the appropriate regulation of 
LIN28/let-7; c-MYC-E2F/miR-17-92 and 
Oct4/Sox2/miR-302-cyclin D1 gene networks will be 
critical for the success of regenerative strategies that 
involve iPS cells. Any perturbation in key ES cell 
miRNA-mRNA networks during any of the above 
processes maybe a hallmark of (CSCs) [Gunaratne, P. 
H. (2009). "Embryonic stem cell microRNAs: 
defining factors in induced pluripotent (iPS) and 
cancer (CSC) stem cells?" Curr Stem Cell Res Ther 
4(3): 168-77]. 
 Recent advances from our own group and 
others have defined a novel 
PML/PTEN/Akt/mTOR/FoxO signaling network, and 
highlighted its critical importance in oncogenesis as 
well as in the functional regulation of normal stem 
cell and cancer-initiating cell (CIC) biology. These 
findings are of great importance in cancer therapy in 
view of the fact that this network is amenable to 
pharmacological modulation at multiple levels. The 
integrated analysis of these data allows us to propose 
a new provocative working model whereby the 
aberrant superactivation of Akt/mTOR signaling 
elicits built-in cellular fail-safe mechanisms that could 
be effectively utilized for cancer treatment to 
extinguish the CICs pool. In this review, we will 
discuss these recent findings, this working model, and 
their therapeutic implications [Ito, K., R. Bernardi, et 
al. (2009). "A novel signaling network as a critical 
rheostat for the biology and maintenance of the 
normal stem cell and the cancer-initiating cell." Curr 
Opin Genet Dev 19(1): 51-9]. 
 Although O(2) concentrations are 
considerably lowered in vivo, depending on the tissue 
and cell population in question (some cells need 
almost anoxic environment for their maintenance) the 
cell and tissue cultures are usually performed at 
atmospheric O(2) concentration (20-21%). As an 
instructive example, the relationship between stem 
cells and micro-environmental/culture oxygenation 
has been recapitulated. The basic principle of stem 
cell biology, "the generation-age hypothesis," and 
hypoxic metabolic properties of stem cells are 
considered in the context of the oxygen-dependent 
evolution of life and its transposition to ontogenesis 
and development. A hypothesis relating the self-
renewal with the anaerobic and hypoxic metabolic 
properties of stem cells and the actual O(2) 
availability is elaborated ("oxygen stem cell 

paradigm"). Many examples demonstrated that the 
cellular response is substantially different at 
atmospheric O(2) concentration when compared to 
lower O(2) concentrations which better approximate 
the physiologic situation. These lower O(2) 
concentrations, traditionally called "hypoxia" 
represent, in fact, an in situ normoxia, and should be 
used in experimentation to get an insight of the real 
cell/cytokine physiology. The revision of our 
knowledge on cell/cytokine physiology, which has 
been acquired ex vivo at non physiological 
atmospheric (20-21%) O(2) concentrations 
representing a hyperoxic state for most primate cells, 
has thus become imperious [Ivanovic, Z. (2009). 
"Hypoxia or in situ normoxia: The stem cell 
paradigm." J Cell Physiol 219(2): 271-5]. 
 Cancer stem cells have been isolated from 
many tumors. Several evidences prove that 
neuroblastoma contains its own stem cell-like cancer 
cells. We chose to analyze 20 neuroblastoma tumor 
samples in the expression of 13 genes involved in the 
regulation of stem cell properties to evaluate if their 
misregulation could have a clinical relevance. In 
several specimens we detected the expression of genes 
belonging to the OCT3/SOX2/NANOG/KLF4 core 
circuitry that acts at the highest level in regulating 
stem cell biology. This result is in agreement with 
studies showing the existence of malignant stem cells 
in neuroblastoma. We also observed differences in the 
expression of some stemness-related genes that may 
be useful for developing new prognostic analyses. In 
fact, preliminary data suggests that the 
presence/absence of UTF1 along with differences in 
BMI1 mRNA levels could distinguish low grade 
neuroblastomas from IV stage tumors [ 
Melone, M. A., M. Giuliano, et al. (2009). "Genes 
involved in regulation of stem cell properties: studies 
on their expression in a small cohort of neuroblastoma 
patients." Cancer Biol Ther 8(13): 1300-6]. 
 So far, the major safety issue raised by the 
use of stem cells for cardiac repair has been the 
occurrence of ventricular arrhythmias, particularly 
after skeletal myoblast transplantation. Although one 
cannot refute a potential intrinsic arrhythmogenicity 
of stem cells, primarily related to their common lack 
of electromechanical integration into the recipient 
myocardium, it is also important to recognize that 
patients eligible for cell replacement therapy are prone 
to develop arrhythmias because of their underlying 
ischemic heart disease. Another confounding factor is 
the method used for the intramyocardial delivery of 
the cells, which can cause enough inflammatory tissue 
damage to further increase ventricular irritability on 
top of an already high baseline level. Thus any 
strategy designed to minimize the risk of stem cell-
associated ventricular arrhythmias should take into 
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account, besides the cell-specific ability to 
appropriately couple with host cardiomyocytes, the 
method of cell transfer and the nature of the 
myocardial environment targeted for cell engraftment. 
A more accurate characterization of the baseline risk 
of arrhythmias in these patients would thus be helpful 
for better assessing the respective contribution of the 
donor cells and the host myocardium to these 
complications. The risk-to-benefit ratio of stem cell 
therapy will finally have to be revisited in light of the 
fact that because this baseline risk is usually high, 
most of these patients will in any way be fitted with 
an implantable defibrillator [Menasche, P. (2009). 
"Stem cell therapy for heart failure: are arrhythmias a 
real safety concern?" Circulation 119(20): 2735-40]. 
 A paracrine regulation was recently proposed 
in human embryonic stem cells (hESCs) grown in 
mouse embryonic fibroblast (MEF)-conditioned 
media (MEF-CM), where hESCs spontaneously 
differentiate into autologous fibroblast-like cells to 
maintain culture homeostasis by producing TGF-beta 
and insulin-like growth factor-II (IGF-II) in response 
to basic fibroblast growth factor (bFGF). Although the 
importance of TGF-beta family members in the 
maintenance of pluripotency of hESCs is widely 
established, very little is known about the role of IGF-
II. In order to ease hESC culture conditions and to 
reduce xenogenic components, we sought (i) to 
determine whether hESCs can be maintained stable 
and pluripotent using CM from human foreskin 
fibroblasts (HFFs) and human mesenchymal stem 
cells (hMSCs) rather than MEF-CM, and (ii) to 
analyze whether the cooperation of bFGF with TGF-
beta and IGF-II to maintain hESCs in MEF-CM may 
be extrapolated to hESCs maintained in allogeneic 
mesenchymal stem cell (MSC)-CM and HFF-CM. We 
found that MSCs and HFFs express all FGF receptors 
(FGFR1-4) and specifically produce TGF-beta in 
response to bFGF. However, HFFs but not MSCs 
secrete IGF-II. Despite the absence of IGF-II in MSC-
CM, hESC pluripotency and culture homeostasis were 
successfully maintained in MSC-CM for over 37 
passages. Human ESCs derived on MSCs and hESCs 
maintained in MSC-CM retained hESC morphology, 
euploidy, expression of surface markers and 
transcription factors linked to pluripotency and 
displayed in vitro and in vivo multilineage 
developmental potential, suggesting that IGF-II may 
be dispensable for hESC pluripotency. In fact, IGF-II 
blocking had no effect on the homeostasis of hESC 
cultures maintained either on HFF-CM or on MSC-
CM. These data indicate that hESCs are successfully 
maintained feeder-free with IGF-II-lacking MSC-CM, 
and that the previously proposed paracrine mechanism 
by which bFGF cooperates with TGF-beta and IGF-II 
in the maintenance of hESCs in MEF-CM may not be 

fully extrapolated to hESCs maintained in CM from 
human MSCs [Montes, R., G. Ligero, et al. (2009). 
"Feeder-free maintenance of hESCs in mesenchymal 
stem cell-conditioned media: distinct requirements for 
TGF-beta and IGF-II." Cell Res 19(6): 698-709]. 
 Advances in infertility treatment had the 
most extraordinary breakthrough with the birth of the 
first in vitro fertilization baby in 1978. Fourteen years 
later, intracytoplasmic sperm injection has been 
introduced for the treatment of male factor infertility. 
Intra cytoplasmic sperm injection in combination with 
testicular sperm extraction has allowed men with 
azoospermia to father children. In fact, as long as a 
fully developed spermatozoon is identified, it can be 
utilized or can even be duplicated to inseminate 
several oocytes while providing information on its 
genomic content. There are, however, men who are 
suffering from spermatogenic arrest, where no post-
meiotic germ cells are retrieved, and therefore, unable 
to generate their own offspring. More recently, the 
successful isolation and cultivation of spermatogonial 
stem cells has allowed the exploration of their 
biological characteristics and their application in 
therapeutic approaches following transplantation or in 
vitro maturation. Finally, men diagnosed with germ 
cell aplasia can only be treated by donor or de novo 
generated gametes. In the past several years, we have 
attempted to manufacture gametes by inducing 
haploidization of somatic cells and more recently, 
generating sperm-like cells through embryonic stem 
cell differentiation [Neri, Q. V., T. Takeuchi, et al. 
(2009). "Treatment options for impaired 
spermatogenesis: germ cell transplantation and stem-
cell based therapy." Minerva Ginecol 61(4): 253-9]. 
 Post-transplant lymphoproliferative disorder 
(PTLD) is one of the most important complications of 
solid organ transplantation or hematopoietic stem cell 
transplantation. Most PTLDs are associated with 
Epstein-Barr virus (EBV) infection. Although post-
transplant Hodgkin lymphoma (HL) is included in 
PTLD, there have been no studies in the literature on 
adult cases of post-transplant HL after cord blood 
stem cell transplantation (CBSCT). Three years and 
eight months after CBSCT, the enlarged cervical 
lymph node was histologically diagnosed as EBV 
associated post-transplant HL, which showed 
immunophenotypes of classical HL and latency type 
II EBV infection. She underwent chemotherapy, and 
has survived 4 years and 6 months after CBSCT. 
Differential diagnosis of post-transplant HL with good 
prognosis and HL-like PTLD with aggressive 
behavior is important, and immunohistochemical 
methods were useful and essential for it. The source of 
EBV associated HL in this case will be discussed 
[Okuno, K., Y. Horie, et al. (2009). "Epstein-Barr 
virus associated post-transplant Hodgkin lymphoma in 
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an adult patient after cord blood stem cell 
transplantation for acute lymphoblastic leukemia." J 
Clin Exp Hematop 49(1): 45-51]. 
 CD34+ peripheral blood hematopoietic stem 
cells (HSC) are usually collected following 
mobilization therapy accomplished by using growth 
factors (GF) such as rHuG-CSF or rHuGM-CSF with 
or without chemotherapy. A target dose of yielded 
CD34+ is usually prescribed by the attending 
physician depending on different protocols, which 
may include single or double transplantation. HSC 
collection usually is performed when at least 20 
CD34+ HSC/microL are detected by means of flow 
cytometry. A cumulative dose of at least 2 x 
10(6)/Kg/bw CD34+ HSC has been considered as the 
threshold to allow a prompt and persistent 
hematopoietic recovery. Unfortunately, this goal is not 
achieved by the totality of patients undergoing 
mobilization regimen. In fact, 5-46% of patients who 
underwent mobilization therapy fail HSC collection 
due to very low peripheral blood HSC CD34+ count. 
Patients' characteristics, including age, sex, stage of 
the underlying disease (complete or partial remission), 
diagnosis, previously administered 
radio/chemotherapy regimens, time-lapse from last 
chemotherapy before mobilization and mobilization 
schedule (including dose of GF) were considered as 
possibly predictive of poor or failed mobilization. We 
performed a retrospective analysis in 2177 patients 
from three large Italian academic institutions to assess 
the incidence of poor mobilizers within our patients' 
series. Therefore, a patient who fails a first 
mobilization (and when an HLA-compatible related 
on unrelated donor is not available) could undergo a 
second attempt either with different mobilization 
schedule or by using different GF, such as stem cell 
factor, growth hormone (GH), or more recently newly 
introduced drugs such as AMD3100, alone or in 
combination with rHuG- or -rHuGM-CSF. Thus, we 
investigated the fate of those who failed a first 
mobilization and subsequently underwent a second 
attempt or alternative therapeutic approaches 
[Perseghin, P., E. Terruzzi, et al. (2009). 
"Management of poor peripheral blood stem cell 
mobilization: incidence, predictive factors, alternative 
strategies and outcome. A retrospective analysis on 
2177 patients from three major Italian institutions." 
Transfus Apher Sci 41(1): 33-7]. 
 Mesenchymal stem cells (MSCs) have been 
isolated from a variety of human tissues, e.g., bone 
marrow, adipose tissue, dermis, hair follicles, heart, 
liver, spleen, dental pulp. Due to their 
immunomodulatory and regenerative potential MSCs 
have shown promising results in preclinical and 
clinical studies for a variety of conditions, such as 
graft versus host disease (GvHD), Crohn's disease, 

osteogenesis imperfecta, cartilage damage and 
myocardial infarction. MSC cultures are composed of 
heterogeneous cell populations. Complications in 
defining MSC arise from the fact that different 
laboratories have employed different tissue sources, 
extraction, and cultivation methods. Although cell-
surface antigens of MSCs have been extensively 
explored, there is no conclusive evidence that unique 
stem cells markers are associated with these adult 
cells. Therefore the aim of this study was to examine 
expression of embryonic stem cell markers Oct4, 
Nanog, SOX2, alkaline phosphatase and SSEA-4 in 
adult mesenchymal stem cell populations derived 
from bone marrow, adipose tissue, dermis and heart. 
Furthermore, we tested whether human mesenchymal 
stem cells preserve tissue-specific differences under in 
vitro culture conditions. We found that bone marrow 
MSCs express embryonic stem cell markers Oct4, 
Nanog, alkaline phosphatase and SSEA-4, adipose 
tissue and dermis MSCs express Oct4, Nanog, SOX2, 
alkaline phosphatase and SSEA-4, whereas heart 
MSCs express Oct4, Nanog, SOX2 and SSEA-4. Our 
results also indicate that human adult mesenchymal 
stem cells preserve tissue-specific differences under in 
vitro culture conditions during early passages, as 
shown by distinct germ layer and embryonic stem cell 
marker expression patterns. Studies are now needed to 
determine the functional role of embryonic stem cell 
markers Oct4, Nanog and SOX2 in adult human 
MSCs [Riekstina, U., I. Cakstina, et al. (2009). 
"Embryonic stem cell marker expression pattern in 
human mesenchymal stem cells derived from bone 
marrow, adipose tissue, heart and dermis." Stem Cell 
Rev 5(4): 378-86]. 
 In order to monitor CsA serum levels after 
SCT, trough levels (C0) are widely used. The aim of 
this study was to estimate the population and 
individual PK parameters for patients receiving 
intravenous CsA after SCT. In 27 pediatric patients 
after SCT receiving CsA (3 mg/kg/day) every 12 h, a 
total of 289 CsA concentrations was obtained. To 
describe the PK parameters of CsA, a two-
compartment model with first order elimination was 
used. Covariate analysis identified body weight, age, 
and the co-administration with itraconazole and 
tobramycine as factors influencing the Cl. The 
statistical comparison of AUC, trough level, and C2 
indicates a correlation between AUC and C2, but no 
correlation between the AUC and C0, r = 0.24 (p = 
0.146) vs. r = 0.526 (p = 0.000692), respectively. Our 
results underscore the fact that CsA trough levels do 
not reflect the drug exposure in patients receiving 
intravenous CsA after SCT. By contrast, CsA blood 
levels measured 2-6 h after CsA infusion showed a 
better correlation with the AUC. Our data provide 
new information to optimize the balancing act 
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between GvHD-prophylaxis, graft vs. leukemia effect, 
and CsA side-effects after SCT [Schrauder, A., S. 
Saleh, et al. (2009). "Pharmacokinetic monitoring of 
intravenous cyclosporine A in pediatric stem-cell 
transplant recipients. The trough level is not enough." 
Pediatr Transplant 13(4): 444-50]. 
 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) is known to cause 
parkinsonism in humans and this fact is a major 
incentive for using this toxin as an animal model to 
study the pathogenesis of Parkinson's disease (PD). 
Although the monkey MPTP model remains the best, 
most studies have been performed in mice. The so-
called acute and sub-acute regimens are commonly 
used. Both induce tissue striatal dopamine (DA) 
depletion and nigral neuron death. Tissue striatal DA 
depletion does not necessarily correlate with 
impairment of striatal dopaminergic functioning. In 
freely moving mice, systemic acute or sub-acute 
MPTP directly induces prolonged release of striatal 
DA. Such DA release may be considered the first step 
in MPTP-induced striatal DA depletion. Reportedly, 
neural stem cells improve symptoms in the MPTP 
model of PD by interacting with the MPTP-induced 
pathological nigrostriatal milieu [Serra, P. A., S. 
Pluchino, et al. (2008). "The MPTP mouse model: 
cues on DA release and neural stem cell restorative 
role." Parkinsonism Relat Disord 14 Suppl 2: S189-
93]. 
 High-dose melphalan and autologous 
hematopoietic stem cell transplantation (HSCT) is a 
standard treatment for myeloma, but very little is 
known about the psychosocial or quality-of-life 
difficulties that these patients encounter during 
treatment. Data regarding older patients is particularly 
scarce. Using a prospective design, this investigation 
evaluated 94 patients at stem cell collection and again 
after high-dose therapy and transplantation. Outcomes 
included quality-of-life (FACT-BMT) and 
psychosocial adjustment (ie, Brief Symptom 
Inventory, Impact of Events Scale, and Satisfaction 
with Life Scale). Findings were compared with age- 
and sex-adjusted population norms and with 
transplantation patient norms. At stem cell collection, 
physical deficits were common, with most patients 
scoring 1 standard deviation below population norms 
for physical well-being (70.2%) and functional well-
being (57.5%), and many reporting at least moderate 
fatigue (94.7%) and pain (39.4%). Clinically 
meaningful levels of anxiety (39.4%), depression 
(40.4%), and cancer-related distress (37.0%) were 
evident in a notable proportion of patients. After 
transplantation, there was a worsening of transplant-
related concerns (P < .05), depression (P < .05), and 
life-satisfaction (P < .001); however, pain improved 
(P < .01), and social functioning was well preserved. 

Overall, the declines in functioning after 
transplantation were less pronounced than anticipated. 
Older patients were not more compromised than 
younger ones; in multivariate analyses, they reported 
better overall quality of life (P < .01) and less 
depression (P < .05) before transplantation. Our 
findings emphasize the importance of early screening 
and intervention [Sherman, A. C., S. Simonton, et al. 
(2009). "Changes in quality-of-life and psychosocial 
adjustment among multiple myeloma patients treated 
with high-dose melphalan and autologous stem cell 
transplantation." Biol Blood Marrow Transplant 
15(1): 12-20]. 
 Given their self-renewing and pluripotent 
capabilities, human embryonic stem cells (hESCs) are 
well poised as a cellular source for tissue regeneration 
therapy. However, the host immune response against 
transplanted hESCs is not well characterized. In fact, 
controversy remains as to whether hESCs have 
immune-privileged properties. To address this issue, 
we used in vivo bioluminescent imaging to track the 
fate of transplanted hESCs stably transduced with a 
double-fusion reporter gene consisting of firefly 
luciferase and enhanced GFP. We show that survival 
after transplant is significantly limited in 
immunocompetent as opposed to immunodeficient 
mice. Repeated transplantation of hESCs into 
immunocompetent hosts results in accelerated hESC 
death, suggesting an adaptive donor-specific immune 
response. Our data demonstrate that transplanted 
hESCs trigger robust cellular and humoral immune 
responses, resulting in intragraft infiltration of 
inflammatory cells and subsequent hESC rejection. 
Moreover, we have found CD4(+) T cells to be an 
important modulator of hESC immune-mediated 
rejection. Finally, we show that immunosuppressive 
drug regimens can mitigate the anti-hESC immune 
response and that a regimen of combined tacrolimus 
and sirolimus therapies significantly prolongs survival 
of hESCs for up to 28 days. Taken together, these data 
suggest that hESCs are immunogenic, trigger both 
cellular and humoral-mediated pathways, and, as a 
result, are rapidly rejected in xenogeneic hosts. This 
process can be mitigated by a combined 
immunosuppressive regimen as assessed by molecular 
imaging approaches [Swijnenburg, R. J., S. Schrepfer, 
et al. (2008). "Immunosuppressive therapy mitigates 
immunological rejection of human embryonic stem 
cell xenografts." Proc Natl Acad Sci U S A 105(35): 
12991-6]. 
 Immune-mediated cytopenias after allogeneic 
stem cell transplantation can be categorized as either 
alloimmune when host or donor immunity reacts 
against donor or host elements, respectively, or 
autoimmune when donor immunity reacts against 
donor hematopoietic tissue, owing to poorly 
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understood mechanisms that result in severe 
impairment of central and peripheral tolerance. 
Immune cytopenias are manifested as monolineage or 
more rarely as bilineage cytopenias, and are usually 
mediated through humoral immune mechanisms. On 
the contrary, immune-mediated pancytopenia is a rare 
event with only few cases reported in the literature. 
The exact pathogenesis of immune pancytopenia is 
not well known although it is possible that cellular 
immunity may play a significant role. The importance 
of these syndromes lies in the fact that they can cause 
severe morbidity and mortality. Differential diagnosis 
from other causes of post-transplant pancytopenia is 
of extreme value because these disorders can respond 
to various treatment modalities [Tsirigotis, P. D., I. B. 
Resnick, et al. (2009). "Post-hematopoietic stem cell 
transplantion immune-mediated cytopenias." 
Immunotherapy 1(1): 39-47]. 
 Stem cell transplantations from related or 
unrelated donors are used to cure leukaemia and other 
blood diseases. When a patient dies after an 
unsuccessful transplantation, interested unrelated 
donors are informed about the failure by their donor 
centre. Studies focussing on failed related donations 
show that donors undergo an intense grieving process. 
Questionnaires were sent to 395 unrelated donors who 
received the news of their recipients' deaths between 
November 2005 and August 2006. In addition, twelve 
in-depth interviews with selected donors were carried 
out. Unrelated donors were emotionally affected by 
the recipients' deaths, and it is appropriate to speak 
about a "Donor Grief" phenomenon, as the results of 
325 returned questionnaires (return rate 82.3%) and 
in-depth interviews show. Donors demonstrated a 
range of feelings such as sadness, disappointment, 
grief, and helplessness. These feelings were often 
unexpectedly intense given the fact that the recipient 
was a stranger. Although the news caused grief, 
donors underlined that they nevertheless wanted to be 
informed. They preferred knowledge of the failure to 
uncertainty. The method of providing the information 
is only of secondary importance. Most donors 
favoured the way of communication they had 
experienced. This result indicates that both phone and 
letter communication can be justified. However, 
phone communication seems to be superior with 
respect to aspects of sensitivity. In spite of 
transplantation failure and the associated negative 
feelings, most donors were happy to have donated and 
would be willing to do so again. Our results underline 
the special responsibility of donor centres for 
informing and supporting unrelated volunteer donors 
in case their recipients have died [Wanner, M., S. 
Bochert, et al. (2009). "Losing the genetic twin: donor 
grief after unsuccessful unrelated stem cell 
transplantation." BMC Health Serv Res 9: 2]. 

 Previous studies described that neurons could 
be generated in vitro from human umbilical cord 
blood cells. However, there are few data concerning 
their origin. Notably, cells generating neurons are not 
well characterized. The present study deals with the 
origin of cord blood cells generating neurons and 
mechanisms allowing the neuronal differentiation. We 
studied neuronal markers of both total fractions of 
cord blood and stem/progenitor cord blood cells 
before and after selections and cultures. We also 
compared neuronal commitment of cord blood cells to 
that observed for the neuronal cell line SK-N-BE(2). 
Before cultures, neuronal markers are found within 
the total fraction of cord blood cells. In CD133+ 
stem/progenitor cell fraction only immature neuronal 
markers are detected. However, CD133+ cells are 
unable to give rise to neurons in cultures, whereas this 
is achieved when total fraction of cord blood cells is 
used. In fact, mature functional neurons can be 
generated from CD133+ cells only in cell-to-cell close 
contact with either CD133- fraction or a neurogenic 
epithelium. Furthermore, since CD133+ fraction is 
heterogenous, we used several selections to precisely 
identify the phenotype of cord blood-derived neuronal 
stem/progenitor cells. Results reveal that only CD34- 
cells from CD133+ fraction possess neuronal 
potential. These data show the phenotype of cord 
blood neuronal stem/progenitor cells and the crucial 
role of direct cell-to-cell contact to achieve their 
commitment. Identifying the neuron supporting 
factors may be beneficial to the use of cord blood 
neuronal stem/progenitor cells for regenerative 
medicine [Zangiacomi, V., N. Balon, et al. (2008). 
"Cord blood-derived neurons are originated from 
CD133+/CD34 stem/progenitor cells in a cell-to-cell 
contact dependent manner." Stem Cells Dev 17(5): 
1005-16. 
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