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Abstract: The liver in an animal adult healthy body maintains a balance between cell renew and cell loss. The cell 
damage can stimulate the new cell growth and in liver it is hepatocyte self-replication. The transplanted hepatocyte 
can undergo clonal expansion which shows that the hepatocytes themselves can play the function as stem cells in the 
liver. Severe liver injury can activate a potential stem cell compartment located within the intrahepatic biliary tree, 
giving rise to cords of bipotential within the lobules that can differentiate into hepatocytes and biliary epithelial cells. 
A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells 
can contribute to regeneration and restore normal liver function.  
[Ma H, Young M, Yang Y. Hepatic Stem Cell. Stem Cell. 2015;6(1):5-12] (ISSN 1545-4570). 
http://www.sciencepub.net/stem. 2 
 
Keywords: liver; animal; adult; hepatocyte; self-replication; stem cell 
 

The liver in an animal adult healthy body 
maintains a balance between cell renew and cell loss. 
The cell damage can stimulate the new cell growth 
and in liver it is hepatocyte self-replication. The 
transplanted hepatocyte can undergo clonal expansion 
which shows that the hepatocytes themselves can play 
the function as stem cells in the liver. Severe liver 
injury can activate a potential stem cell compartment 
located within the intrahepatic biliary tree, giving rise 
to cords of bipotential (oval cells) within the lobules 
that can differentiate into hepatocytes and biliary 
epithelial cells. A third population of stem cells with 
hepatic potential resides in the bone marrow; these 
haematopoietic stem cells can contribute to 
regeneration and restore normal liver function (Forbes, 
et al, 2012). The hepatic stem cell is also called liver 
stem cell.  

Bone marrow is the site of hematopoiesis and 
bone marrow transplant has been successfully used for 
decades as a means of treating various hematological 
malignancies in which the recipient hematopoietic 
compartment is replaced by donor-derived stem cells. 
Progenitor cells in bone marrow are capable to 
differentiate into other tissues, such as cardiac tissue. 
Clinical trials have been conducted demonstrating 
beneficial effects of bone marrow infusion in cardiac 
patients. It is believed that injured tissue, whether 
neural tissue after a stroke, or injured cardiac tissue, 
has the ability to selectively attract bone marrow stem 
cells, perhaps to induce regeneration. Bone marrow 
has therapeutic effect in conditions ranging from liver 
failure, to peripheral artery disease, and the possibility 
of using bone marrow stem cells in kidney failure has 
been relatively understudied (Ma et al. 2009). Liver 
stem cell, or oval cells, differentiate into both 
hepatocytes and cholangiocytes during chronic liver 
injury. 

Firstly, under certain circumstances, bone 
marrow engraftment in tubules can be dramatically 
increased. Held et al. made use of a transgenic 
fumarylacetoacetate (FAH)-/- mouse, in which 
discontinuation of the rescue drug NTBC leads to 
acute tubular necrosis (Held et al. 2006). After 
transplanting bone marrow from wild-type mice into 
FAH-/- mice, a few bone marrow-derived tubular cells 
are noted. In a subset of the FAH-/- mice, there is, in 
addition, loss of heterozygosity (LOH) in the liver for 
homogentistic acid hydrogenase, which induces a 
more severe, ongoing form of acute tubular necrosis. 
In FAH-/- animals with additional hepatic LOH, up to 
50% of tubular cells are bone marrow-derived cells. 
Engraftment of these wild-type bone marrow-derived 
cells leads to morphological resolution of ATN and to 
disappearance of the aminoaciduria present in control 
mice. In this model, the bone marrow cells have a 
strong survival advantage over native tubular cells, 
due to their ability to metabolise toxic products. It is 
possible that this strong positive selective pressure is 
necessary for regeneration to occur through wild-type 
bone marrow cells. Interestingly, most of the bone 
marrow-derived tubular cells are derived from cell 
fusion between bone marrow cells and tubular cells. 
This is supported by a study by Li et al. in which 
fusion of bone marrow cells to tubular cells account 
for part of bone marrow-derived tubular cells after 
ischaemia/reperfusion (I/R) injury, but not all. In this 
model without selective pressure, the percentage of 
bone marrow-derived tubular cells is low (1.8%) (Li 
et al. 2007b).  

In addition, injection of stem cells into the 
kidney or the bloodstream can lead to an improvement 
of renal function, although this does not always seem 
to be mediated by transdifferentiation into renal cells. 
Current views favour a predominant role for the 
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delivery of a cocktail of angiogenic and 
immunomodulatory mediators as the main means by 
which bone marrow cells enhance epithelial and 
endothelial cell survival. As far as engraftment of 
bone marrow cells as renal parenchymal cells is 
concerned, proving functionality of the engrafted bone 
marrow-derived cells is crucial in order to assign to 
them a role in improved renal function, rather than 
relying on morphological observations alone. 

Primary liver cells (hepatocytes) are the 
liver’s chief functional cells that perform most of the 
liver’s complex metabolic tasks. It is possible to grow 
hepatocytes that could provide significant biomedical 
advantages, including cell therapy, and the liver stem 
cells are good candidate. For the patients suffering 
from liver cancer, the liver stem cells could be safe 
and credible source of liver cells as an alternative to 
liver transplant. Growing liver cells form liver stem 
cells could also be useful in detecting safe drug 
screening methods. 

Stem cell therapy is already a popular 
intervention for treating blood and immune system 
conditions, as well as numerous skin diseases. It 
involves a careful medical procedure of introducing 
adult cells that are grown from early cells or stem 
cells, into damaged tissues. Liver stem cells are the 
precursors for a subset of liver cancer, hepatocellular 
carcinoma. 

The possibility of liver stem cell therapy, 
especially for those with chronic liver diseases, could 
definitely ease the worry of hundreds of people 
anxiously waiting for liver transplants. Selecting 
CD45 negative cells is used in the isolation of liver 
stem cells. Magnetic antibody metod is applied in the 
isolation liver stem cells.  

Hepatocellular carcinoma (HCC) and 
intrahepatic cholangiocellular carcinoma (ICC) are 
common liver tumors. Originating from one 
pluripotent liver stem cell both tumor entities can 
occur in a cirrhotic liver. According to Wengert et al 
report, several risk factors have been identified as 
causative for both carcinomas. Surgical resection, 
interventional procedures and transplantation are 
available as curative treatment options when 
diagnosed in time. The common characteristic 
features and morphology in cross-sectional imaging 
by ultrasound (US), multidetector computed 
tomography (CT) and magnetic resonance imaging 
(MRI) were used. It showed a better understanding of 
the carcinogenesis model of both liver tumors 
originating from one pluripotent liver stem cell 
(Wengert, et al, 2014). 

The precursor to oval cells is considered to 
be a facultative liver stem cell (LSC). Recent lineage 
tracing experiments indicated that the LSC is SRY-
related HMG box transcription factor 9 positive 

(Sox9(+) ) and can replace the bulk of hepatocyte 
mass in several settings. Quantitative analysis showed 
that Sox9(+) cells contributed only minimally (<1%) 
to the hepatocyte pool, even in classic oval cell injury 
models (Tarlow, et al, 2014). 

Glycogen storage disease type I (GSDI), an 
inborn error of carbohydrate metabolism, is caused by 
defects in the glucose-6-transporter/glucose-6-
phosphatase complex, which is essential in glucose 
homeostasis. With the feasibility of novel cell-based 
therapies, including hepatocyte transplantations and 
liver stem cell transplantations, it is essential to 
consider long term outcomes of liver replacement 
therapy (Boers, et al, 2014). 

A method for the feeder-independent culture 
of PICM-19 pig liver stem cell line was recently 
devised, but the cell line's growth was finite and the 
cells essentially ceased dividing after approximately 
20 passages over a 1 year culture period. Talbot and 
Caperna reported the isolation, continuous culture, 
and initial characterization of a spontaneously arising 
feeder-independent PICM-19 subpopulation, PICM-
19FF, that maintained replication rate and hepatocyte 
functions over an extended culture period. Accordign 
to Talbot and Caperna’s report, PICM-19FF cells 
grew to 90-98 % confluency after each passage at 
2 week intervals, and the cells maintained a high cell 
density after 2 years and 48 passages in culture 
(average of 2.6 × 10(6) cells/T25 flask or 1 × 10(5) 
cells/cm(2)). Morphologically, the PICM-FF cells 
closely resembled the finite feeder-independent 
PICM-19 cultures previously reported, and, as before, 
no spontaneous formation of 3D multicellular ductules 
occurred in the cells' monolayer. Their bipotent stem 
cell nature was therefore not evident (Talbot and 
Caperna, 2014). 

Saito, et al studied a 43-year-old man patient 
with chronic hepatitis B without history of 
hepatocellular carcinoma (HCC) and first diagnosed 
with thrombosis in right portal vein trunk and portal 
vein branches and ruptured esophageal varices in 
October 2011, and underwent endoscopic variceal 
ligation, but ruptured repeatedly. Computed 
tomography (CT) scan showed that portal vein 
thrombosis had low density from early to late phase. 
This is the first case of HCC only in portal vein 
without liver parenchyma tumor nodules, with 
difficult differential diagnosis from a non-malignant 
portal vein thrombosis (Saito, et al, 2013). 

Various stem cell populations have been 
described in distinct models of liver regeneration 
(Dahlke, et al, 2004). 

One example of the protocols for the liver 
stem cells analysis (Rountree, et al, 2015): 
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1. Parenchymal and non-parenchymal separation 
from whole liver 
1) Prepare the enzyme solution for digestion using a 

15 cc tube with screw top in 10 ml sterile PBS 
containing 5 mg collagenase, 5 mg pronase, and 1 
mg DNAse. 

2) Euthanize mouse using institution approved 
(Institutional Animal Care and Use Committee) 
method such as CO2 asphyxiation. Wipe 
abdominal area of euthanized animals with 70% 
ethanol solution. Using sterile instruments, open 
abdominal cavity and explant liver en-block. 
Remove gall-bladder from explanted liver. 
Transfer whole liver to laminar flow hood in 
closed sterile dish. 

3) This procedure is completed in a laminar flow 
hood. Using a sterile razor blade, mince liver with 
combination of multiple horizontal and vertical 
cuts for 1 minute in sterile dish. Place ¼ of 
minced liver pulp in 15 cc tube with 10 cc PBS 
with collagenase, pronase, and DNAse from step 
1.1 above. Repeat with each ¼ minced liver. 

4) Place tubes with ¼ minced liver pulp and 
enzymes into water bath at 37°C for 45 minutes, 
with shaker at 1-2 cycles/second. Wipe tubes with 
70% ethanol after removal from water bath prior 
to transfer to laminar flow hood. 

5) This procedure is completed in a laminar flow 
hood. Strain digested liver pulp through 70 
micron mesh filter to collect into a sterile dish. 
Using 2 ml aliquots of sterile DMEM:F12 media 
with 10% heat inactivated fetal bovine serum, 
rinse the filter and use the rubber end of a syringe 
plunger to mash the digested pulp through the 
filter. Repeat 5 times to make total volume of 
filtrate approximately 20 mL. Divide the filtrate 
into 2 equal 15 mL tubes. 

6) All transfers should be completed in laminar flow 
hood, and use refrigerated centrifuge at 4°C if 
available. Centrifuge at 50 x g for 1 minute. Save 
supernatant #1 and discard parenchymal pellet 
Centrifuge supernatant #1 at 50 x g for 1 minute. 
Save supernatant #2 and discard pellet. 
Centrifuge supernatant #2 at 50 x g for 1 minute. 
Save supernatant #3 and discard pellet. 
Centrifuge final supernatant #3 for 180 x g for 8 
minute to obtain non-parenchymal fraction. 

 
2. Red cell lysis  
Work in laminar flow hood, keep cells cold, and use 
solutions cooled to 4°C.  
1) The night before the procedure, prepare red cell 

lysis buffer by diluting 10X concentration stock 
BD Pharm Lyse buffer with a 1:10 dilution with 
sterile distilled water. 1X solutionshould be 
stored for 30 days at 4°C. 

2) The night before the procedure, prepare Miltenyi 
buffer using sterile PBS, 0.5% bovine serum 
Albumin, and 2mM EDTA. Filter solution using 
vacuum filter unit with 0.45 micron filter. Cover 
top of tilter unit with original plastic lid and 
secure with plastic wrap. Storeentire filter unit at 
4°C for 12 hours to degas EDTA. Filter unit can 
be replaced with standard sterile cap after 12 
hours. 

3) This procedure is completed in a laminar flow 
hood. Using a 5 ml sterile tube, re-suspend non-
parenchymal pellet from step 1.6 above into 1 mL 
of 1X diluted red blood cell lysis buffer from 2.1 
above. Cap the tube for transfer out of the laminar 
flow hood.  

4) Gently vortex for 5seconds and incubate for 15 
minutes at 4°C protected from light. 

5) Centrifuge at 200 x g for 5 minutes.  
6) This procedure is completed in a laminar flow 

hood. Discard lysed RBCs in supernatant, and re-
suspend pellet in 1 ml ice-cold and sterile 
Miltenyi buffer.  

7) Centrifuge at 200 x g for 5 minutes. 
8) This procedure is completed in a laminar flow 

hood. Discard supernatant and re-suspend pellet 
in 1 ml ice-cold and sterile Miltenyi buffer. 

9) Remove 10 μl of PBS cell suspension and add 10 
μl tryan blue. Count remainingnon-parenchymal 
cells using hemocytometer. 

 
3. CD45 hematopoietic cell depletion from non-
parenchymal fraction 
Work in laminar flow hood, keep cells cold, and use 
solutions cooled to 4°C. 
1) Suspend cells in 100 μL of Miltenyi buffer per 

107 cells up to 108 total cells. 
2) Apply 20 μL Miltenyi CD45 microbead antibody 

for each 107 cells and incubate at 4°C for 15 
minutes. 

3) Add additional 2 ml Miltenyi buffer and 
centrifuge at 200 x g for 5 minutes. Remove 
supernatant. Re-suspend cell pellet (up to 108 
total cells) in 1 ml Miltenyi buffer. 

4) In laminar flow hood, filter cells using Miltenyi 
LD magnetic column. Start by placing column in 
magnetic holder (Miltenyi MidiMACS or 
QuadroMACS). Place sterile 5 ml tube below 
filter to catch filtrate. Prepare column by loading 
2 ml Miltenyi buffer. 

5) Once pre-filter wash is complete, load cells onto 
LD column. Once the cell suspension is within 
the column, add 1 ml Miltenyi buffer and repeat 1 
ml Miltenyi buffer wash 2 additional times. Do 
NOT use plunger provided with column to 
increase speed of filtration. ONLY collect filtrate 
when the filter in placed in the magnetic holder.  
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6) Centrifuge the collected filtrate of approximately 
5 ml (the column holds the remaining 1 ml) of 
CD45-depleted non-parenchymal cells at 200 x g 
for 5 minutes. Discard the column with the 
retained CD45 positive cells. 

 
4. Flow cytometry isolation of CD133 positive cells 
1) Prepare oval cell media. Use 1:1 DMEM:F12 

medium with 10 % heat inactivated fetal calf 
serum as base, and add insulin (1 μg/ml), HEPES 
(5 mol/L), and Penicillin/Streptomycin (1% 
volume/volume). Filter solution using vacuum 
filter unit with 0.45 micron filter. 

2) Re-suspend cells in Miltenyi buffer at 100 μL per 
107 cells. Add 2 μL of CD133-PE conjugated 
antibody. Using a second group of cells, incubate 
with IgG-PE conjugated antibody as a control. 
Retain a third group of cells without staining as 
an unstained control for FACS. 

3) Incubate at 4°C for 15 minutes in the dark. Re-
suspend in 2 ml staining buffer. Centrifuge at 200 
x g for 5 minutes. Discard supernatant and re-
suspend pellet in 1 ml Miltenyi buffer. 

4) This step is conducted using standard flow 
cytometry cell sorting procedures, which may be 
institution specific. Using unstained cells and IgG 
PE stained cells, adjust sorting parameters for 
optimized gating of CD133+ cell population. PE 
(R-Phytoerythrin) can generally be used with any 
flow cytometer that has a laser that emits at 488 
nm. The peak emission for PE is 575 nm and is 
detected in the FL-2 channel. Note: Using a BD 
FACS Calibur or BD FACS Vantage machines, 
with the Cell Quest program for data collection, 
we use Forward Scatter and Side Scatter view in 
the log scale to identify cell populations, with 
side scatter set to 250. FL1 and FL2 are both in 
log scale and set to 550. These parameters 
provide an initial starting place to view liver non-
parenchymal cells, and are adjusted as needed 
based on staining intensity of positive and 
negative populations. 

5) Isolate the CD133+ cell population using 
CD133+ gate and collect the cells in sterile 
filtered cell media. 

 
5. Cell culture methods 
1) Centrifuge FACS collected cells at 200 x g for 5 

minutes. Re-suspend cell pellet in oval cell media 
with approximately 5000 cells per ml. May start 
with higher concentrations, up to 50,000 cells/ml 
for initial experiments, and reduce as technique 
improves and overall cell viability and yield 
improves. 

2) Plate cells onto BD Biocoat Laminin coated 96 
well plates using 1000 cells/cm2. Place in 

humidified cell culture incubator at 37°C, with 
5% CO2. After 24 hours, add Hepatocyte Growth 
Factor (50 ng/nl) and Epidermal Growth Factor 
(20 ng/ml). 

3) For single cells, isolate cells directly into 50 μl of 
oval cell media in each well of a 96 well Laminin 
coated plate. Use single cell FACS settings for 
strict selection of one positive cell only. After 24 
hours, add 50 μl of oval cell media with HGF and 
EGF as above in step 5.2. Change media fully 
after 5-7 days. 

4) Once the expanding colonies are greater than 
50% confluent, which typically occurs after 2 
weeks, depending on total number of cells plated 
and cell viability, the cells may be split 1:3 as 
below. 

5) Split cells using Trypsin 0.05%-EDTA. Apply 
just enough to cover well bottom, 50-100 μL/well 
on 96 well plate Place in incubator at 37°C for 3-
5 minutes. 

6) Add 100 μL of media to each well and transfer all 
liquid to 5 ml tube. Add 1 mL media to each tube 
and centrifuge at 200 x g for 5 minutes. 

7) Re-suspend cells in media plate in laminin coated 
dish, using cells from 1 well to plate into 3 new 
wells (1:3 ratio). 

 
6. Confirmation of bi-potential status using RT-
PCR 
This procedure is detailed in the RNeasy protocol 
handbook, which is supplied with the RNeasy Kit. 
1) Use RNeasy micro columns for 96 well plate 

colonies. Aspirate culture media from each well. 
Add 75 μl Buffer RLT (from RNeasy Kit) 
directly to each well. Scrape plate bottom with 
sterile rubber policeman. Pipettelysate into micro-
centrifuge tube and vortex mixture for 1 minute. 
Add 70% ethanol to lysates and mix by pipetting. 

2) Transfer the solution to RNeasy column placed in 
a 2 ml collection tube (as supplied in RNeasy Kit) 
and centrifuge in micro-centrifuge for 15 seconds 
at 10,000 rpm. Discard eluted filtrate. 

3) Re-use the collection tube. Add 350 μL Buffer 
RW1 (RNeasy Kit) to the RNeasy column and 
centrifuge for 15 seconds at 10,000 rpm to wash 
the column membrane. Discard eluted wash. 

4) Add 10 μL DNase I stock solution to 70 μL 
Buffer RDD (both supplied in RNeasy Kit).Add 
the 80 μL DNase I Buffer RDD incubation mix to 
the RNeasy column membrane and incubate for 
15 minutes at room temperature. 

5) Add 350 μL Buffer RW1 (RNeasy kit) to the 
RNeasy column and centrifuge for 15 seconds at 
10,000 rpm to wash the membrane. Discard 
eluted wash and collection tube. 
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6) Place the RNeasy column in a new 2 ml 
collection tube (supplied in RNeasy kit). Add 500 
μL Buffer RPE(RNeasy Kit) to the RNeasy 
column and centrifuge for 15 seconds at 10,000 
rpm to wash the membrane. Discard eluted wash. 

7) Prepare 80% ethanol using RNase-free water 
(RNeasy Kit). Add 500 μL of 80% ethanol to the 
RNeasy columnand centrifuge for 2 minutes at 
10,000 rpm. Discard eluted wash. 

8) Place the RNeasy column in a new 2 ml 
collection tube (RNeasy Kit) and centrifuge at 
full speed for 5 minutes. Discard any eluted wash 
and collection tube. 

9) Place the RNeasy column in a new 1.5 ml 
collection tube (RNeasy kit). Add 14 μL RNase-
free water (RNeasy Kit) to the center of the 
column membrane and centrifuge for 1 minute at 
full speed. Collect filtrate with purified RNA and 
transfer to ice if creating cDNA immediately or 
store at minus 80°C for future use. 

10) Reverse transcription using Omniscript.Dilute 
RNase inhibitor to a final concentration of 10 
units/ μL in ice-cold 1x Buffer RT Vortex for 5 
seconds, and pulse centrifuge for 5 seconds. 
Prepare a fresh master mix on ice according to 
page 13 of Omniscript protocol. Vortex for 5 
seconds, and pulse centrifuge for 5 seconds. 
Recommend to prepare a volume of mastermix 
10% greater than that required for the total 
required for all reactions. 

11) Add template RNA to the individual tubes 
containing master mix. Vortex for 5 seconds, and 
pulse centrifuge for 5 seconds. Incubate for 60 
min at 37°C. 

12) PCR amplification of hepatocyte (Albumin) and 
cholangiocyte specific genes using HotStarTaq 
DNA polymerase Prepare reaction mix per page 
15 of HotStarTaq protocol book. Recommend 
diluting stock primers to concentration of 20 
pm/μl, and with 1 μL/reaction tube used for 
forward and reverse primers. Depending on 
number of cells initially used for RNA extraction, 
we recommend dividing final cDNA among 3 
reaction tubes (β-actin for loading control, 
Albumin, and KRT19) to start. 

13) PCR primer design is listed in Table 1. 
14) Place reaction tubes into thermocycler. 

Recommend following program for initial 
experiments: 95°Cfor 15 minutes x 1 cycle 
followed by 95°C for 30 seconds, 55°C for 30 
seconds, 72°C for 30 seconds x 35 cycles, 
followed by 72°C for 10 minutes. 

15) PCR products are analyzed using ethidium 
bromide impregnated agarose gel. 

 

7. Confirmation of tumor potential of CD133+ 
stem cells 
1) This procedure can be done with freshly isolated 

cells from step 4 or using cells that have been 
cultured from step 5. We recommend performing 
initial experiments with cultured cells, as freshly 
isolated cells will have reduced viability and 
reduced yield. 

2) Trypsinize cells using Trypsin 0.05%-EDTA 
from step 5.5 above. After 3-5 minute incubation 
at 37°C, add 100 μL of media to each well and 
transfer all liquid from each well to individual 5 
ml tubes (1 well = 1 tube). Add 1 ml media to 
each tube and centrifuge at 200 x g for 5 minutes. 

3) Re-suspend cells in 1 ml ice cold PBS. Remove 
10 μl of PBS cell suspension and add 10 μl trypan 
blue Using trypan blue exclusion, determine 
numbers of live cells. If using FACS isolated 
cells, cell number will be determined by FACS 
isolation count. 

4) Centrifuge cells at 200 x g for 5 minutes and re-
suspended in PBS at a concentration of 1 x 106 
live cells/100 μl. Add 100 μl Matrigel. Six-week-
old immune-deficient Nude mice were injected 
subcutaneously using 28 gague needle. Inject 1 x 
106 cells in 200 μl per site. 

5) Mice are monitored for tumor growth daily. Once 
tumors form, typically after 3-4 weeks incubation, 
tumor volume is measured using calipers (height 
x length x width). 

 
8. Representative Results:  

From normal, healthy murine liver, the expected 
cellular yield of CD133+liver stem cells is 1,000 to 
5,000 per liver. These cells are relatively rare in 
quiescent liver and will not expand well in culture. 
We do not recommend using single cell analysis on 
normal liver and the yield of viable cells that will 
expand is extremely low. 

Isolation of single cells from chronic injury 
models will yield several (3-9 colonies/96 well plate) 
colonies that expand from single cells once the 
procedure is mastered, and cell viability is ensured. 
Confirmation of bi-potential status is conducted using 
Albumin and Krt19 RT-PCR. Colonies from expanded 
single cells will demonstrate both expression for 
markers of hepatocytes (Albumin) and cholangiocytes 
(Krt19).  

CD133+ stem cells from normal liver and 
chemically induced liver injury (e.g. DDC 0.1% diet 
for 6 weeks) will not form tumors in nude mice. 
CD133+ stem cells from specific genetic models 
(MAT1a-/- or liver specific Pten-/- mice) will form 
tumors in nude mice if isolated late in late pre-tumor 
chronic injury phase. This tumor forming phenotype is 
currently identified as a cancer stem cell.2-4For 
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example, the MAT1a-/- mice form spontaneous liver 
tumors at 18 weeks of age. CD133+ liver stem cells 
isolated at 15-16 weeks, during a late chronic injury 
phase of liver disease, will form tumors in nude mice.  

Major markers present on the surface of 
hepatic stem cell include EpCAM, E-cadherin, CD29 
and CD133. Epithelial cell adhesion molecule 
(EpCAM) is a transmembrane glycoprotein mediating 
Ca2+-independent homotypic cell-cell adhesion in 
epithelia. EpCAM is also involved in cell signaling, 
migration, proliferation and differentiation. 
Additionally, EpCAM has oncogenic potential via its 
capacity to upregulate c-myc, e-fabp, and cyclins A & 
E. Since EpCAM is expressed exclusively in epithelia 
and epithelial-derived neoplasms, EpCAM can be 
used as diagnostic marker for various cancers. It 
appears to play a role in tumorigenesis and metastasis 
of carcinomas, so it can also act as a potential 
prognostic marker and as a potential target for 
immunotherapeutic strategies. E-cadherin, or 
epithelial cadherin, is an cell-cell adhesion 
glycoprotein important to cellular processes such as 
morphology, polarity, development, tissue integrity 
and migration. E cadherin's extracellular domain 
interacts with other E-cadherin protein on adjacent 
epithelial cells to establish adhesion between them. E 
cadherin has also been identified as a tumor and 
metastasis suppressor, and its mutations have been 
linked to various forms of cancer. Integrin beta-1 
(ITGB1, CD29, VLA-beta) is the beta subunit found 
in the integrin families, forming a heterodimer 
integrin receptor through non-covalent bonding with 
various integrin alpha subunits. Integrin heterodimer 
containing Integrin beta-1 binds to various cell surface 
and extracellular proteins (CD49a-f, CD51) to 
mediate cell to cell and cell to matrix adhesion (1). 
Integrin beta-1 plays a critical role in the cell adhesion 
and recognition in embryogenesis, hemostasis, 
immune response, tissue repair, metastatic diffusion of 
tumor cells and development. Prominin 1 (CD133) is 
expressed on primitive hematopoietic stem and 
progenitor cells, retinoblastoma, hemangioblasts, and 
neural stem cells as well as on developing epithelium. 
The CD133 positive fraction of human bone marrow, 
cord blood and peripheral blood have been shown to 
efficiently engraft in xenotransplantation models, and 
have been shown to contain the majority of the 
granulocyte/macrophage precursors, NOD/SCID 
repopulating cells and CD34 + dendritic cell 
precursors (Novus, 2014).  
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