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Abstract: Support Vector Machine (svm) is a favorable method for categorizing different types of data. The main 
problem with this method is significant decrease of classification speed against increase in the problem magnitudes, 
that the magnitude of the problem is positively correlative to the number of the support vectors. Thus changing, 
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solving the problem. In this article, we introduce the common kernel functions and kernels derived from orthogonal 
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1. Introduction 

A Russian researcher named Vladimir Vapnik 
took an important step in classifiers establishing firmly 
the theory of statistical learning, and proposing SVM 
on this basis [1]. SVM is one of relatively new 
methods, which has shown good efficiency compared 
to more conventional methods of classification like 
Perception Neural Network. 

This algorithm belongs to supervised 
classification algorithms, which predicts the class or 
group for a particular sample, which is often used for 
binary classification. SVM can be employed wherever 
recognizing pattern or classification of things is 
needed. In order to discriminate between two classes, 
this algorithm uses one page (plate) in a way that the 
page has the maximum distance to the both classes. 
The nearest train samples to this page are called 
support vectors [2]. 
 
2. Statement of the problem and aims of the 
research 

Recently, the application of support vector 
machine (SVM) for solving classification problems 
has grown substantially. In SVM problems, consider a 
case where the data are intricate, and classification by 
one line is not possible for the data. (For example, in 
recognition of individuals’ faces where the face, eyes, 
ears, and eyebrows have different, nonlinear patterns). 

If linear discriminator does not account for our 
problem, what solution do we have? Therefore 
nonlinear linear discriminator would be proposed 
which contains the important subject of Kernel 
functions. 

Note the nonlinear pattern for discriminating data 
below. 

It is now obvious that the aim of proposing 
Kernel function is decreasing support vectors and 
improving the accuracy of classification. However, it 

should be noted that the decrease in the number of 
support vectors can result in lesser accuracy of 
classification. Since the accuracy of classification 
resulting from SVM varies depending on the type of 
Kernel function, optimization of every kind results in 
making the way for solving the problem [3]. 

 

 
Figure 1. Data differentiation in on linear and 2 
nonlinear cases 
 
3. kernel function 

Kernel methods have gained increased popularity 
in the machine learning community in recent years. 
Basically, one of the privileges of SVM is nonlinear 
mapping of the vector entering into a feature space 
with large dimensions which is hidden from ingoing 
and outgoing perspectives. This is implemented by 
Kernel functions. Kernel functions play an important 
role in their classifying capability. The way we modify 
Kernel-function parameters for the best is of utmost 
importance. 

Appropriate adjustment of kernel parameters can 
play an important part in its accuracy and validity. 
Because the input set affects kernel parameter 
selection. Ideal Kernel function determines the result 
of similarity between two objects which depends on a 
class with the size of the two objects from different 
classes. Implicit mapping by kernel functions causes 
close similarity among objects, and dissimilar objects 
are separate from each other in the provided feature 
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space. Nevertheless, appropriate selection of input 
features is also an important issue in classification 
procedure [1], [2]. 
3-1. common kernel functions [4], [5] 

Kernel functions can be used in many 
applications. Several types of kernel functions are 
commonly used: Linear, Radial Basis Function, 
polynomial and Multi-Layer Perceptron. 
3-1-1. linear kernel 

The linear kernels is defined as follows:

( , ) ,
i j i j

k x x x x 
(1) 

3-1-2. Radial Basis Function (RBF) or Gaussian 
Kernel 

The RBF kernels take this form: 
2

2

1

2( , )
i jx x

i j
k x x e 

 


(2) 

Where σ is the width of the radial basis function. 
3-1-3. polynomial kernel 

The Polynomial kernels take this form: 

( , ) ( )T d

i j i j
k x x x x c 

 (3) 
Where d is the degree of the polynomial. 
Note 
 If c=0, the kernel is called homogeneous. 
 If c=1, the kernel is called nonhomogeneous. 
 If d=1. We obtain linear kernel. 

3-1-4. Multi-Layer Perceptron kernel (MLP) 
The MLP kernels is defined as follows: 

0 1
( , ) tanh( )

T

i j i j
k x x x x  

(4) 
Note that using this kernel is not simple. Because 

0 1,   is not implement for every value. 
3-2. producing new kernel 

Kernels can combine through specific operators 
to make more complicated kernels as well. But for 
producing kernel we encounter the crucial issue of 
Gramian matrix. This matrix, under certain 
circumstances mentioned below, verifies the 
credibility of produced kernels. There are various way 
to verify kernel validity [4]: 

 Prove its positive definiteness (difficult). 
 Find out a corresponding feature map. 
 Use kernel combination properties (we’ll 

see). 
 Use Mercer’s theorem. 

3-2-1. Gramian matrix [4], [8] 

Given a set V of m vectors (points in
nR ), the 

Gram matrix G is the matrix of all possible inner 

products of V, i.e. 
T

ij i j=V VG
. Let 1 2, ,..., nV v v v

  
 a 

set of input vectors, then the Gram Matrix K is defined 
as: 

1 1 1

1

( ). ( ) ( ), ( )

=

( ). ( ) ( ). ( )

n

n n n

v v v v

k

v v v v

   

   

 
 
 
 
 
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  


 

For example, the Gram matrix of (1, 2) and (1, -
1) is: 

(1,2)(1, 2) (1,2)(1, 1) 5 1

(1, 2)(1, 1) (1, 1)(1, 1) 1 2

    
   

        
3-2-2. Necessary Definitions [5], [7] 

 A symmetric m m  matrix K is positive 

definite (pd), if , 1

0 m
i j j

i j

c c k c


   R

 (5). 
 If equality only holds for c = 0, the matrix is 

strictly positive definite (s.p.d). 
 Alternative conditions: 
 All eigenvalues are non-negative (positive for 

s.p.d.). 

 There exists a matrix B such that
Tk B B . 

 Positive definiteness is necessary and 
sufficient condition for a kernel to correspond to a dot 

product of some feature map . 

 A symmetric function k : X X R  which 

for all m  , ix X  gives rise to a positive 

definite Gram matrix, i.e. for which for all ic R we 
have 

, 1
0

m

i j i ji j
c c k




Where

: ( , )i j i jk k x x
, is called a positive definite (p.d) 

kernel. 

 A symmetric function k : X X R  which 

satisfies previous relation for all m  , ix X  and 

for all 
m

ic R  with
0

m

ii
c 

is called a 
conditionally positive definite (c.p.d) kernel. 

 The Cauchy-Schwarz inequality for kernels 
is: 

2

2 2

( , ) ( ). ( )

( ) ( )

( ). ( ) ( ). ( )

( , ) ( , )

k x x x x

x x

x x x x

k x x k x x

   

  

     

 
(6) 

 Symmetry properties: 

( , ) ( ). ( ) ( ). ( ) ( , )k x z x z z x k z x      
 

(7). 
 Kernel function as similarity measure 

between input objects. Gram Matrix (Similarity 
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/Kernel Matrix) represents similarities between input 
vectors. 
3-2-3. Mercer’s theorem [4] 

By using this theorem, we can test whether it is a 
kernel function. 

Assume that: 

 1,  . . . { }, nX x x  be finite input space 
 K (x, z) on X be a symmetric function 

 Gram Matrix , 1( ( , ))n
i j i jK K x x 

(8) 
 since K is symmetric there exists an 

orthogonal matrix V s.t K V V    (9) 

 diagonal  containing eigenvalues i  of K. 

 and eigenvectors 1( )n
t ti iv v 

 as columns 
of V. 

 all eigenvalues are non-negative and let 
feature mapping be 

1: ( ) , 1,..., .n n
i i ti ix v i n     R

 (10) 
Then: 

j
1

( ), (z ) ( )

( , ).

t ti tj

n

i
i

j j

j

i i

iv v Vx

K k x x

V


  



 

 (11) 
 The kernel matrix is symmetric positive 

definite. 
 Any symmetric, positive definite matrix can 

be regarded as a kernel matrix; that is, there exists a 

  such that: 
K( x,z)= ( ), (z)x 

 (12). 
Note 
 Every Gram Matrix is symmetric and positive 

semi-definite (s.p.s.d). 
 Every s.p.s.d matrix can be regarded as a 

Kernel Matrix, i.e. as an inner product matrix in some 
space. 

 diagonal matrix satisfies Mercer’s criteria, 
but not good as Gram Matrix. 

 Every similarity matrix can be used as kernel 
(satisfying Mercer’s criteria). 
 
3-2-4. Methods of making new kernel function [6], 
[7] 

Simpler kernels can combined using certain 
operators. Then Kernel combination allows to design 
complex kernels on structures from simpler ones. 
Correctly using combination operators guarantees that 
complex kernels are p.d. The best of known operators 
are: 
3-2-4-1. Kernel Sum 

The sum of two kernels corresponds to the 
concatenation of their respective feature spaces: 

1 2

1 2

1 1 2 2

1

1 2

2

( )( , )

( , ) ( , )

( ) ( ) ( ) ( )

( )
( ( ) ( ))

( )

T T

k k x x

k x x k x x

x x x x

x
x x

x

 

  

     

 
       (13) 

The two kernels can be defined on different 
spaces (direct sum, e.g. string spectrum kernel plus 
string length). 
3-2-4-2. Kernel Product 

The product of two kernels corresponds to the 
Cartesian products of their features: 

1 2 1 2

1 1 2 2
1 1

1 1 2 2
1 1

12 12 12 12
1

( )( , ) ( , ) ( , )

( ) ( ) ( ) ( )

( ( ) ( ))( ( ) ( ))

( ( ) ( )) ( ) ( )

n m

i i j j
i j

n m

i i j j
i j

nm
T

k k
k

k k x x k x x k x x

x x x x

x x x x

x x x x

 

 



    

      

     

      

 




 (14) 

Where 12 1 2( ) ( ) ( )x x x     (15), is the 
Cartesian product. Note that the product can be 
between kernels in different spaces (tensor product). 
3-2-4-3. Kernel Linear combination 

A kernel can be rescaled by an arbitrary positive 

constant: 
( , ) ( , )k x x k x x  

 (16). We can e.g. 
define linear combinations of kernels (each rescaled 
by the desired weight): 

1

( , ) ( , )
k

s u m i i
i

k x x k x x


  
 (17) 

Note that: 
 The weights of the linear combination can be 

learned simultaneously to the predictor weights (the 
alphas). 

 This amounts at performing kernel learning. 
3-2-4-4. Kernel normalization 

Kernel values can often be influenced by the 
dimension of objects. E.g. a longer string has more 
substrings higher kernel value. This effect can be 
reduced normalizing the kernel. 

 Cosine normalization: 
Cosine normalization computes the cosine of the 

dot product in feature space: 

( , )ˆ( , )
( , ) ( , )

k x x
k x x

k x x k x x


 

 
 (18) Or 

1

2k( , ) / k( , )k( , )i j i i j jx x x x x x    (19) 
3-2-4-5. kernel convex combination 

1 1 2 2 ( , )= ( , ) + ( , )i j i j i jk x x k x x k x x 
 (20) 
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3-3. introducing new kernels 
In mathematics, an orthogonal polynomial 

sequence is a family of polynomials such that any two 
different polynomials in the sequence are orthogonal 
to each other under some inner product. Orthogonal 
polynomials are important in solving linear equations 
and the linear least squares fitting. 

The most widely used orthogonal polynomials 
are the classical orthogonal polynomials, consisting of 
the Hermite polynomials, the Laguerre polynomials, 
the Chebyshev polynomials, and the Legendre 
polynomials. By using kernels based orthogonal 
polynomials, the number of support vectors has 
decreased, and the accuracy of classification has 
increased [9]. Now we introduce new kernels based 
orthogonal polynomials: 
3-3-1. Hermite polynomials kernel [10] 

The Hermite kernel for the given scalar valued 
inputs x and z is defined as: 

0

( , ) ( ) ( )
n

i i
i

k x z H x H z



(21).  

Where 1 1( ) ( ) ( )n n nH x xH x n H x    and

0 1,( ) 1 ( )H x H x x   (22). 
For vector inputs x, z: 

01

( , ) ( ) ( )
m n

i k i k
ik

k x z H x H z


 
 (23). 

3-3-2. Chebyshev polynomial kernel [11] 
The Chebyshev kernel for the given scalar valued 

inputs x and z take this form: 

0

( ) ( )

( , )
1

n

i i
i

x T

k x
x

T z

z
z






(24).  

Where 1 1( ) 2 ( ) ( )n n nT x xT x T x    and 

0 1( ) 1, ( )T x T x x  (25). 
As the Chebyshev polynomials are orthogonal 

only within the region [-1, 1] the input data needs to 
be normalized within this region according to the 
following formula: 

2( min)
1

max min

old
new x

x


 
  (26). Where Min and 

Max are the minimum and maximum values of the 
entire data, respectively. For vector inputs x, z, we 
have: 

0

1

( ) ( )

( , )
1

n

i j i jd
i

j j j

x T z

k x z
x

T

z











 (27). where d is 
the dimension of the training vectors x and z. 
3-3-3. Legendre polynomial kernel [12] 

For scalar inputs x and z, Legendre kernel is 
defined as follows: 

0

( , ) ( ) ( ) ( ), ( )
n

i i n n
i

k x z P x P z x z


   
 (28). 

Where 
1 1

2 1
( ) ( ) ( ) 1

1 1
n n n

n n
p x x p x p x n

n n
 


  

   

and 0 1( ) 1, ( )p x p x x 
 (29). 

The same as Chebyshev kernel function for 
vector input, each feature of the input vector for 
Legendre kernel function lies in [-1,1] So we have to 
normalize the input data to [-1,1] via the formula: 

2( min )
1

max min

old
new i i

i

i i

x
x


 


 (30). 

Where ix
 is the i-th feature of the vector x, 

maxi  and min i  are the minimum and maximum 
values along the i-th dimensions of all the training and 
test data, respectively. 
3-3-4. Laguerre polynomial Kernel [13] 

By using generalized Laguerre polynomials, we 
define generalized n-th order Laguerre kernel as: 

0

( , ) ( ) ( )
n

T

i i
i

k x z L x L z


 
 (31). Where 

2
1 1( ) ( 2 1) ( ) ( ) 0n n nL x x n L x n L x      and

0 1( ) 1 , ( ) 1L x L x x    (32). 
x and z are m-dimensional vectors. 

3-4. the choice of kernel function [14] 
A good choice of Kernel function is very 

important for effective SVM based classification. An 
appropriate Kernel function provides learning 
capability to SVM. 

The most serious issue in the sphere of SVM is 
kernel function selection. It means that, in order to 
solve an encountered problem, how can we decide 
which kernel function is more optimized for this 
particular problem, and which one should we select 
out of existing functions. 

It is not quite clear which kernel function offers 
the best result of a series of data. Therefore the best 
kernel function should be selected. Generally, even if 
a theoretical method of kernel selection is duly 
developed, its validity cannot be trusted until tested on 
a large number of problems. 

Thus kernel selection is manually performed and 
if some of the points were not able to be differentiated, 
it should be continually performed to the extent of 
accurate differentiation with other kernels. 

However, several methods and principles have 
been introduced for this purpose, which is selecting 
optimized kernel function, but they are still incomplete 
and have to be modified; of these we can name: 

 diffusion kernel. 
 fisher kernel. 
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 string kernel. 
There are also studies being performed for 

obtaining kernel matrix out of existing data. But in the 
majority of problems, usually the Polynomial kernel 
and the linear kernel are the first which are used. 
3-5. other kernels 

In addition to the kernels mentioned in sections 
3.1 and 3.3, there are other, already-produced kernels 
which are proposed by different studies, but they are 
not used frequently nowadays. These kernel functions 
are mentioned in the table below [15], [16], [17], [18], 
[19], [20], [21], [22], [23], [24], [25]: 

 
Table 1. List of other kernel functions 

Kernel 
function 

Formula 

Exponential 
Kernel 2

( , )
2

x y
k x y ex p



  
  

   
Laplacian 
Kernel 

( , )
x y

k x y exp


  
  

   
Anova 
Kernel 

2

1

( , ) ( ( ) )
n

k k d

k

k x y exp x y


  
 

Rational 
Quadratic 
Kernel 

2

2
( , ) 1

x y
k x y

x y c


 

 
 

Multiquadric 
Kernel 

2
( , )k x y x y c  

 
Inverse 
Multiquadric 
Kernel 

2

1
( , )k x y

x y c


 
 

Circular 
Kernel 

2

2 2
( , ) arccos 1

x y x y x y
k x y

    

        
        

       

Spherical 
Kernel 

3

3 1
( , ) 1

2 2

,

x y x y
k x y

if x y zeroothrewise

 



    
     

   

 
 

Wave 
Kernel 

( , ) sin
x y

k x y
x y





   
          

Power 
Kernel 

( , )
d

k x y x y  
 

Log Kernel ( , ) log( 1)
d

k x y x y   
 

Spline 
Kernel 

1

3
2

( , ) 1 min( , )

min( , )
min( , )

2 3

,

d

i i i i i i
i

i i i i
i i

d

k x y x y x y x y

x y x y
x y

where x y R



   








 

B-Spline 
kernel 

2 1
1

1

0

( , ) ( )

11 1
( ) ( 1) ( )

! 2

, 0

0, .

d

n p p
p

n
k n

n
k

d
d

k x y B x y

n n
B x x k

kn

x if x
x

ow











 

  
    

 

 







 

Bessel 
Kernel 

1

( 1)

       

( )
( , )

v

n v

where J is the Bessel function of first kind

J x y
k x y

x y



 






 

Cauchy 
Kernel 

2

1
( , )

1

k x y
x y







 

Chi-Square 
Kernel 

2

1

( )
( , ) 1

1
( )

2

n
i i

i
i i

x y
k x y

x y


 




 
Histogram 
Intersection 
Kernel 

1

( , ) min( , )
n

i i
i

k x y x y



 

Wavelet 
Kernel 

1

( , ) ( ) ( )

   

   

N
i i

i

x c y c
k x y h h

a a

W here and are the w avelet

dilation and translation coefficients



 
 

a c

 
 

4. Conclusion 
In this paper, the most widely used kernel 

functions, as well as new kernel functions derived 
from orthogonal polynomials have been introduced. 
Since using kernel functions can decrease support 
vectors and affect the speed, accuracy, and function of 
classification, depending on the proposed conditions 
for the production of the kernels, we can work on the 
combination of these functions in order to obtain more 
optimized functions with more accuracy of 
classification. Among them, we can work on 
combination of kernel functions based on the 
combination of orthogonal polynomials known as 
hybrids. But it should be remembered that still the 
most important issue in this sphere is how the kernel 
function is selected. 
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