
The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

A Distributed Approach for Solving a System of Linear Equations

Dhruv Matani

Computer Engineering, The DJ Sanghvi College of Engineering [Vile Parle (W), Mumbai, India]
53 Mint Road, 2nd Floor, Fort, Mumbai, Maharashtra 400001, India, dhruvbird@yahoo.com

Abstract: This paper discusses an algorithm and its implementation for solving a system of linear
equations on a distributed system. The algorithm used is The Cramer's rule for solving a large number of
linear equations simultaneously. Hence, a pivotal part of this algorithm is solving a determinant of a
square matrix in a distributed manner. This topic of determinant solving is discussed in detail, followed
by some results of running the program with different number of computers on the network. [The Journal
of American Science. 2005;1(2):1-8].

Key Words: Determinant; Distributed System; Distributed Algorithm; Linear equations

Contents

1. Introduction.
2. Practical applications of solving a system of

linear equations.
3. Existing solutions.
4. A distributed approach for solving a system of

linear equations.
5. A distributed approach for finding the

determinant of a square matrix.
6. Complexity analysis.
7. The implementation in detail.
8. Results of tests conducted measuring the

improvements in time required for solving the
system of linear equations.

9. Future developments.
10. Conclusion.
11. Acknowledgments.
12. References.

1 Introduction

A system of linear equations has many applications
in the fields of chemistry, physics, mathematics, and
also in our day to day lives. Solving slightly non-trivial
problems become very easy if we can express them as a
system of linear equations, and solve them
simultaneously. They provide just the abstraction that
the human mind needs to solve the original problem
without taking into account other unrelated data.

We describe in this paper a method for solving a
large number of such simultaneous linear equations
quickly and efficiently on a distributed system. The

rationale for choosing a distributed system lies in the
fact that they are very cheap to build, because a large
number of inexpensive computers connected by a high-
speed network can form a very powerful distributed
network.

We first describe a distributed approach for solving
the determinant of a square matrix, and then apply
Cramer's rule to solve the system of linear equations
simultaneously. We shall show how these two tasks are
very much inter-related, and closely coupled for the
correct functioning of the final algorithm.

We have implemented this program on a Linux
based system, and have measured the timings for runs of
the program for solving the same number of equations,
but with a different number of clients connected to the
main server.

2 Practical applications of solving a system of
linear equation.

(1) Digital signal processing (DSP) is the study of
signals in a digital representation and the processing
methods of these signals. DSP and analog signal
processing are subsets of signal processing. It has three
major subfields: audio signal processing, digital image
processing and speech processing.

In DSP, engineers most commonly study digital
signals in one of the following domains: time domain
(one-dimensional signals), spatial domain
(multidimensional signals), frequency domain,
autocorrelation domain, and wavelet domains. They
choose the domain in which to process a signal by
making an educated guess (or trying out different
possibilities) as to which domain best represents the

http://www.americanscience.org editor@americanscience.org ·1·

mailto:dhruvbird@yahoo.com

The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

essential characteristics of the signal. A sequence of
samples from a measuring device produces a time or
spatial domain representation, whereas a discrete Fourier
transform produces the frequency domain information.
The autocorrelation is, loosely speaking, defined as the
expected value of correlation of the signal with itself on
some distance in time or spatial distance.
http://www.fact-
index.com/d/di/digital_signal_processing.html

(2) Linear programming is the process of solving
a system of linear equalities and linear inequalities over
a set of unknown real variables, along with a linear
objective function to be maximized.
Many practical problems in operations research can be
expressed as linear programming problems. For
instance, if x1 is the number of acres planted with wheat
and x2 is the number planted with corn, and a farmer has
a limited number of acres A, and has a limited
permissible amount F of fertilizer and P of insecticide
which can be used, each of which is required in different
amounts per acre (F1, F2, P1, P2) for wheat and corn
respectively, and knows the selling price of wheat S1
and the selling price of corn S2, then the optimal number
of acres to plant with wheat vs corn can be expressed as
a linear program. http://www.fact-
index.com/l/li/linear_programming.html.

(3) Numerical analysis is that branch of applied
mathematics, which studies the methods and algorithms
to find (approximate) numerical solutions to various
mathematical problems, using a finite sequence of
arithmetic and logical operations. Most solutions of
numerical problems build on the theory of linear
algebra. http://www.fact-
index.com/n/nu/numerical_analysis_1.html

(4) Nonlinear Least Squares Curve Fitting:
Simple linear curve fitting deals with functions that are
linear in the parameters, even though they may be
nonlinear in the variables. For example, a parabola
y=a+b*x+c*x*x is a nonlinear function of x (because of
the x-squared term), but fitting a parabola to a set of data
is a relatively simple linear curve-fitting problem
because the parameters enter into the formula as simple
multipliers of terms that are added together. Another
example of a linear curve-fitting problem is y=
a+b*Log(x)+c/x; the terms involve nonlinear functions
of the independent variable x, but the parameters enter
into the formula in a simple, linear way.
http://members.aol.com/johnp71/nonlin.html.

3 Existing Solutions

Many solutions currently exist for solving such a

large number of simultaneous linear equations. Many of
them are iterative methods like the Gauss-Jordan
iterative method. Others include the Gauss elimination,
and matrix-methods which involve manipulation of the
contents of a matrix to get the final result. The matrix
methods including the Gauss elimination method
essentially use the following relation:
Ax = B
where,
A --> The coefficient matrix.
x --> The list of variables.
B --> The column matrix representing the RHS of the
equations.

The Gauss-Jordan method, which is an iterative
method uses the values of the unknowns computed at
the previous step in its next step while refining the
values. thus, there is a dependence of one step on the
previous step making this method not very attractive for
implementing on a distributed system.

The Gauss elimination method involves
converting the original matrix into an upper or lower
triangular matrix, and then computing the individual
values by re-substituting them into the resulting
equations. This method too suffers from the defect that
each step is dependent on the previous step. there is one
more dependency introduced in the fact that the same
operations must be performed on the column matrix on
the other side as is being performed on the original
matrix. Thus, making it unsuitable for our purposes.
[MFA2001]

The matrix-inversion method again involves
converting the original matrix to a unit matrix, and
suffers from the same defects as the Gauss-elimination
method, making it unsuitable for our purposes.

4 A distributed approach for solving a system of
linear equations

In our distributed approach, we use the Cramer's
rule for solving the system of linear equations. Cramer's
rule is defined as:

Given a system of 'n' linear equations in 'n' distinct
unknowns represented as:
a1x + a2y + ... + anz = k1
b1x + b2y + ... + bnz = k2
c1x + c2y + ... + cnz = k3
We can find the unknowns x, y, ... , z using the
following formulae:
Let

http://www.americanscience.org editor@americanscience.org ·2·

http://www.fact-index.com/d/di/digital_signal_processing.html
http://www.fact-index.com/d/di/digital_signal_processing.html
http://www.fact-index.com/l/li/linear_programming.html
http://www.fact-index.com/l/li/linear_programming.html
http://www.fact-index.com/n/nu/numerical_analysis_1.html
http://www.fact-index.com/n/nu/numerical_analysis_1.html
http://members.aol.com/johnp71/nonlin.html

The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

∆ = det(coefficient matrix)
∆x = det(coefficient matrix, with the first column
replaced by RHS column matrix)
∆y = det(coefficient matrix, with the second column
replaced by RHS column matrix)
and so on...
∆z = det(coefficient matrix, with the nth column replaced
by RHS column matrix)
Thus,
x = ∆x / ∆
y = ∆y / ∆
z = ∆z / ∆

As you can clearly see, the process of calculating
the values ∆, ∆x, ∆y, ..., ∆z is independent of any other
process, and also each of the above values can be
calculated independently of each other. So, this method
seems to be very attractive for implementing on a
distributed system, since it involves a series of steps
which can be performed independently of each other.
So, in our approach, we use the Cramer's rule for solving
the system of linear equations simultaneously.

As you might have noticed, now that we know that
each of the above operations can be performed
independently of each other the fact still remains that the
procedure for calculating the determinant of a square
matrix is a very time consuming process, and should be
done efficiently for the efficient operation of our
algorithm. We describe in detail in the following section
the procedure for calculating the determinant of a square
matrix. Also described is the algorithm for calculating
the same in a distributed environment. [DAB2002]
[LN012003].

5 A distributed approach for finding the
determinant of a square matrix

The process of calculating the determinant of a square
matrix is a recursive one, as we shall show shortly.
Thus, it should be possible to break up the process into
distinct independent units, each operating in isolation
from the others.
Consider a 1 X 1 matrix given by:
a
The determinant of this matrix is trivial to find, and is
the value 'a' itself.
Now, consider a 2 X 2 matrix given by:
a b
c d
The determinant of the above 2 X 2 matrix is given by
the formula:

a(d) - b(c)
Now, consider a 3 X 3 matrix given by:
a b c
d e f
g h i

To calculate the determinant of the above matrix,
we use the formula:
a(e(h) - f(h)) - b(d(i) - f(g)) + c(d(h) - e(g))

As you can see, the above step of calculating the
determinant of a 3 X 3 matrix involves calculating the
determinant of a 2 X 2 matrix 3 times. And, the process
of calculating the determinant of a 2 X 2 matrix involves
calculating the determinant of a 1 X 1 matrix 2 times.

Generalizing, we conclude that the process of
calculating the determinant of an n X n matrix involves
calculating the determinant of an (n-1) X (n-1) matrix 'n'
times. This shows us that the process of calculating the
determinant of a square matrix is in fact a recursive
process.

Now, coming to the point of calculating the
determinant of a square matrix in a distributed
environment, we make the following assumptions:

1. The computer containing the n X n matrix whose
determinant is to be calculated is called the 'master'.

2. The 'master' is connected to at least 'n' client
machines by means of a high speed network connection.
Each of these 'n' clients is capable of calculating the
determinant of a square matrix.

3. Each of these 'n' clients may be connected to any
number of sub-clients, which may in turn be connected
to sub-sub-clients, and so on and so forth... Thus, the
client acts as a server for the sub-client, and this kind of
relationship is replicated at each level.

4. It is not necessary for the correctness of the
algorithm for the points (1..3) to hold, but they are
necessary for showing that the proposed algorithm in
such a scenario is very efficient in solving the
determinant of an n X n matrix.

Once the above environment is set up, the 'master'
starts the process of calculating the determinant of the n
X n matrix by delegating to each of the 'n' clients the
task of calculating the determinant of each of the 'n' (n-
1) X (n-1) matrices. These 'n' clients may in turn
delegate part of their work-load to sub-clients connected
to them, and so on and so forth... Thus, which each
client has finished performing the task that its master
assigned it, the master is passed back the result from
each of its clients, where it is consolidated and the final
result is computed by the master.

We can express the algorithm as:

http://www.americanscience.org editor@americanscience.org ·3·

The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

1. The master delegates the task of calculating the

determinant of 'n' (n-1) X (n-1) matrices to each of the
'n' clients connected to itself.

2. Each of the clients in turn delegate the work to
clients connected to them, and this continues till there is
no client with a client connected to it. At this stage, the
determinant is calculated locally on that machine.

3. These clients at various stages in the tree-
hierarchy then pass the computer results up the tree to
their respective masters.

4. The masters who are waiting for the computer
results accept them, and consolidate the computed
determinants of the 'n' sub-matrices, and compute the
value of the determinant of the square matrix that they
have been assigned.

6 Complexity analysis

The complexity for finding the determinant of an n
X n matrix can be expressed by the following
recurrence:
O(n) = n + n(O(n-1)) ______(1)

The first 'n' stands for the 'n' multiplication
operations performed after each of the 'n' (n-1) X (n-1)
determinants have been computed, and the n(O(n-1))
stands for the complexity of calculating the value of the
'n' (n-1) X (n-1) determinants 'n' times.

Solving the above recurrence, we get:
O(n) = nn _______(2)

The above complexity represents that for a serial
execution of the determinant algorithm on a uni-
processor system, or more simply said, on a single
machine.

To reduce the complexity, we have decided to use
the distributed approach for computing the determinants.

The complexity for finding the determinant of an n
X n matrix in a distributed environment is quite different
from that in a non-distributed one.

We notice that each of the (n-1) X (n-1)
determinants is being computed simultaneously (in
parallel) on the various clients that have been assigned
the mutually independent tasks of computing the
determinants.

Thus, in the eqn.(1), the term n(O(n-1) becomes
simply O(n-1).
The new recurrence for a distributed system can be
given as:
O(n) = n + O(n-1) ______(3)
Solving the above recurrence, we get:
O(n) = n2 _________(4)

Cramer's rule solves the determinant of an n X n matrix
'n' times, so the first serial(non-distributed) method
gives us an asymptotic upper bound of:
O(n) = n x (2)
O(n) = n x nn

O(n) = n(n+1) ______(5)
However, for a distributed system, the asymptotic

upper bound is given by:
O(n) = n + (4)
O(n) = n + n2

O(n) = n2 _______(6)
Thus, the asymptotic upper bound for solving 'n'

linear equations in 'n' unknowns is: n2.

7 The implementation in detail

The ideas expressed in the document up to now
have been implemented in standard C++ in the form of a
computer program, which can be compiled and run on a
Computer system. This section discusses the
implementation in detail, highlighting some of the
features and pit-falls of the current implementation.

The implementation is currently split up into 7
logical units.

(1) client
o The client is the part of the code that runs on the

client machines, and is responsible for connection
to the central server.

o The client accepts requests like 'start',
'reset_client', 'reset_subclient'and 'quit' from the
server, and acts on them. See below for a complete
list of commands supported by the client, and how
each one of them is acted upon by the client.
(2) Server
The server is responsible for polling continuously

for new connections from clients. Once a client tries to
connect to the server, and the server accepts this
connection, the client is said to have been connected to
the server, and the server stores the unique ID associated
with this connection locally within its memory.

This server also partially manages the task of
distributing the work-load of solving the determinant
remotely along with the determinant module. It most be
noted that the server code is executed on both the server
(master) machine as well as the client machines. This is
because the client may acts as a server for other sub-
clients, etc...

(3) File parser
a. The file parser defines a set of rules for the syntax

of equations that can be understood by the parser,
and reads them off the input file. These set of rules

http://www.americanscience.org editor@americanscience.org ·4·

The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

are in the form of a CFL (Context Free Language)
represented by a set of productions.

b. The rules are given below.
(4) Determinant module

a) The determinant module is the main part of the
Equation Cruncher application which is
responsible for solving the determinants both
remotely and locally.

b) It contains various helper functions to assist itself
in the correct and efficient execution of the
determinant solving logic.

c) This piece of code makes heavy use of threads,
and a lot of the operations being mutually
independent can be carried out concurrently. So,
having the master as an SMP system would be
highly beneficial from the efficiency and speed of
execution point of view.

d) This module interacts extensively with both the
Socket module as well as the Node manager.

e) It extracts free clients from the Node manager, and
instructs them to carry out various operations. A
list of operations and how these interactions take
place are given below.

f) The interaction of this module with the Socket
module is also very large, and there is strong
coupling between these two modules, as is the
case with this module and the Node manager.

(5) Node manager
a) The Node manager is responsible for effectively

and correctly maintaining the list of all clients
currently connected to the master after the server
has recognized such clients and has accepted their
connections.

This module contains functions that send matrices
across the network to clients, and on the client side,
another set of functions receive the data, and re-create
the matrix in its original form from the extra data
provided in the command header. A description of the
packer header is given below.
b) It contains atomic operations for getting a client

socket, and replenishing it.
c) This piece of code is tightly coupled with the

server code.
(5) Socket manager

a) This contains basic wrapper functions around
standard UNIX socket functions, and implements
basic error checking.

b) It throws exceptions if there is any error in the
execution of the underlying functions.

c) The list of exceptions is given below.
(6) Synchronization manager

a) This is just a thin wrapper around the POSIX
thread API, and provides a solitary Mutex class
which allows programs to have mutually exclusive
access to any piece of shared data.

b) It throws exceptions if there is any error in the
execution of the underlying functions.

c) The list of exceptions is given below.
(7)Synchronization manager

a) This is just a thin wrapper around the POSIX
thread API, and provides a solitary Mutex class
which allows programs to have mutually exclusive
access to any piece of shared data.
You can download the current version of the

program named “Equation Cruncher” at:
http://www.geocities.com/dhruvbird/eqnc/.

List of commands accepted by the client, and actions taken when these commands are received

Command Action taken

start When the client receives a start command, it first receives the
complete matrix from its server, and then starts evaluating the
determinant of that square matrix received. When the
determinant calculation is complete, it sends the server a result
command in return along with the actual result.

reset_client When the client receives a reset_client command, it performs 2
main functions. Firstly, it sends all its clients a reset_subclient
command, and secondly it disconnects itself from its server by
closing the open socket, and then starts waiting for a
connection once again on the same IP address and port as

http://www.americanscience.org editor@americanscience.org ·5·

http://www.geocities.com/dhruvbird/eqnc/

The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

before.

reset_subclient When the SubClients receive a reset_subclient command, they
just display the appropriate message to the user, and propagate
the message to their clients.

quit When the client receives a quit command, it closes the
connection with all its clients, and its server, and gracefully
exits.

Set of productions defining the Context Free Language (syntax) of the equations appearing in the input file.

1. EQN --> LHS = RHS
2. DOUBLE -->(0..9)* | (0..9)*.(0..9)+
3. RHS --> (+ | - | e)DOUBLE
4. LHS --> LHS(+ | -)TERM | TERM
5. TERM --> (+ | - | e)DOUBLE_VAR
6. VAR --> (a..z)+

Structure of the Packet Header

struct pkt_header
 {
 int size; // Amount of data after the packer header gets over.
 int type; // Type of packet: { data, command }
 int code; // Command issued: { quit, start, result, reset_client }
 double reserved; // Reserved for the implementation to use as it feels right.
 };
 List of exceptions thrown by the Socket module

Exception Name Thrown When? Public Base Classes

eqn_cruncher::socket_error Any general socket error while creating the socket,
connecting to the server, listening for connections,
accepting connections, sending/receiving data.

std::runtime_exception

eqn_cruncher::host_error Host name lookup error. eqn_cruncher::socket_error

eqn_cruncher::port_error Error binding to the specified port number. eqn_cruncher::socket_error

List of exceptions thrown by the File parser

Exception Name Thrown When? Public Base Classes

eqn_cruncher::file_error Input file does not exist. std::runtime_exception

eqn_cruncher::parse_error Error encountered during parsing the input file. This error is a
syntax error encountered during scanning/reading the input
file data.dat. This exception suggests that the format of the
equations is not correct, and does not adhere to the list of
productions given above.

std::runtime_exception

http://www.americanscience.org editor@americanscience.org ·6·

The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

8 Results of tests conducted measuring the
improvements in time required for solving the
system of linear equations

The measurements were taken on systems running
Mandrake Linux - 9. They had a hardware configuration
of Intel Celeron 2400MHz CPU with 128MB RAM.
The various machines were connected to each other by a
10/100MBPs fast ethernet connection. In all, there were
9 systems connected to each other, with one acting as
the server, and the other 9 as clients.

We solved 10 simultaneous linear equations in 10
unknowns on these systems increasing the number of
clients each time from 0(zero) right up to 8(eight). The
results are given below in a tabular format, followed by
a graphical representation.

As you can see, the time taken to solve the
equations reduces as the number of clients connected to
the server increases. Thus, showing that the
implementation is fairly scalable, and will perform well
under various loads with many clients connected to the
server(master) machine.

Also shown below is the tree-hierarchy structure
for the arrangement of clients writ the server (master)
machine that will result in optimal performance.

Number of clients
connected to the

server.

Time taken (in seconds)
to solve 10 equations.

0 340.525

1 132.95

2 80.2574

3 37.3861

4 20.8911

5 13.2871

6 9.9505

7 7.56436

8 5.38614

9 Future work

These are the areas which we shall be
concentrating on in the near future. Any help in these or
other related areas is greatly welcomed, and will be
highly appreciated.

(1) Optimizations:
o Network speed test: This should test the speed

between each client, and the server by sending ping
like packets.

o Client speed(CPU speed) test: This should test the
speed of the client in terms of CPU speed.

o Client memory(RAM) capacity test: This should
test whether the client machine has enough memory
to handle the request being sent to it without
making sufficient use of it's swap file.
(2) Load Balancing:
This algorithm should balance the load between the

various clients by relinquishing some unused clients in
some server to some other client who needs them(and
their processing speed) to distribute its work-load.

(3) Fault Tolerance: (Done!)
o If some client goes down while evaluating the

determinant, then the server should immediately
recognize this situation, and take remedial steps
such as sending the request to another client if there
exists a free client or queuing up the request for a
client as soon as some client gets free, or to
evaluate the determinant itself.
(4) Security:

o If some spurious application tries to log on to the
network, and pretend to be an actual client, we have
no way of knowing this fact! This was pointed out
to me by Sandesh Singh (sandesh247@gmail.com).
If such a situation arises, then the application can
get badly mistaken, and can produce wrong results
if the spurious application sends back junk data.
We need some method by which the clients are
authenticated before they are allowed to establish a
connection with the server, and get problems to
solve.

10 Conclusion

We have seen the implementation of an algorithm
which solves a system of linear equations on distributed
systems. The test results show that it is more efficient
compared to the serial algorithm, which executes on a
single machine. We have also computed the asymptotic
upper bound for both the approaches, and have seen that
given a greater number of processors, the asymptotic
upper bound for out distributed algorithm tends towards
n2, and compared to nn for the serial algorithm.

We have also seen the timings for solving 9
equations in 9 unknowns on a distributed system, each
containing a different number of clients. We observe
that as the number of clients increases, the speed of the

http://www.americanscience.org editor@americanscience.org ·7·

mailto:sandesh247@gmail.com

The Journal of American Science Science, 1(2), 2005, Matani, Distributed Approach for Solving a System

algorithm also increases, thus showing that the
algorithm is scalable. We would have liked to perform
the tests with an SMP/server system as the master, but
such a computer was not available at the time of testing.

Future work in the areas of optimization, Load
balancing, and creating a Fault tolerant system will be
encouraged, and greatly appreciated. We hope to
accomplish the points mentioned in (9) in the year to
follow.

There is some scope for improving the algorithm
of finding the determinant, and improvements which
use properties of determinants to eliminate redundant
calculations will be encouraged, and implemented. For
example, one optimization already in place is that if the
element with which the determinant of a sub-matrix is
to be multiplied is 0, then the value of the determinant is
not calculated, thus saving a lot of time. This will prove
highly beneficial for sparse matrices. Another area that
has been explored is cutting down the number of
iterations, and network data flow. When we wish to
calculate the determinant of a 3 X 3 matrix or a square
matrix of a smaller dimension, then the formula is used
directly instead of using the recursive function.

We would also like to explore the possibility of
using a grid based approach instead of the current tree-
like hierarchy based approach, since we believe that it
would alleviate the problem of load balancing to some
extent.

11 Acknowledgments

The author would like to thank Siddharth Shah for
introducing him to the world of clusters, grids, and
helping him out with the basics of Networking in

computers, without which this project would never have
been possible. This project was actually made because
Siddharth wanted to do something related to
networking, and I wanted to do something related to
Algorithms. So, we reached a compromise, and this
baby was born! I would also like to thank Apurva
Mehta, who helped me test the initial client-server
network model, which I had implemented in C++.
Thanks to Aniket for proof reading this document,
reporting the mistakes and helping me explain certain
concepts in a better manner. My mom needs a special
mention, because she was the one who reminded me
that there existed something called food while I was
busy thinking about the whole concept and later
implementing the ideas.

We would like to pay our tributes to Dr. Cramer,
without whom this project would never have been
possible!

12 References
[1] [MFA2001] Mark F. Adams. A Distributed Memory Unstructured

Gauss-Seidel Algorithm for Multigrid Smoothers. August 17,
2001.

[2] [DAB2002] David A Bader, Bernard M.E. Moret, and Peter
Sanders. Algorithm Engineering for Parallel Computation.

[3] [LN012003] Lecture notes. Csanky's Algorithm: matrix
determinant € NC2. 10/14/2003.

http://www.americanscience.org editor@americanscience.org ·8·

	Contents
	List of commands accepted by the client, and actions taken when these commands are received
	Structure of the Packet Header
	List of exceptions thrown by the File parser

