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Abstract: It is proved that Bell’s inequality can be traced back to a classical probabilistic formula that is 
invalid clearly, while the spin correlation formula in quantum mechanics to a formula that has confirmed 
both by facts and quantum mechanics. Two misunderstandings about Bell’s theorem are pointed out: 
Firstly, the hidden variable theory Bell’s used is a special one, but it is regarded as a general form of such 
theories. Secondly, there are two outcomes obtainable from Bell’s hypotheses: one is compatible with 
quantum mechanics and the other leads to Bell’s inequality. Unfortunately, the former is regarded as a 
property of local hidden variable theory, while the latter as self-evident. G. Lochak has revealed the first 
misunderstanding, and thereby he pointed out that Bell’s inequality has nothing to do with locality, but he 
did not find the second one, so that he still analyzed this problem starting from hidden variable theory, 
which is actually irrelative to Bell’s inequality. [The Journal of American Science. 2005;1(2):42-50].  
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Introduction  
 

It is well known that in 1960s J. S. Bell[1] advanced 
Bell’s theorem: “Any a local hidden variable theory is 
impossible to repeat the whole statistical predictions of 
quantum mechanics”. Bell’s work contains two parts, 
one is to prove that any a local hidden variable theory 
leads to Bell’s inequality, the other is to prove that:  

(a) Bell’s inequality and the spin correlation for-
mula in quantum mechanics cannot hold true simulta-
neously.  

In this paper, the meaning of Bell’s theorem will be 
reexamined.  
 
1 The Promises in Wigner’s Proof 
 

Above all, let us remember Bohm’s perfect ex-
periment: A source emits electron pairs in the singlet 
state continuously. Considering a system, say S, con-
sisting of a pair of electrons e and e’ in the singlet, the e 
flies towards the right and the e’ towards the left. Soon 
afterwards, the e enters into a Stern-Gerlach device Ga 
oriented in the direction a, in which it obtains spin 
(projection) measurement value σa. At the same time, 
the e’ enters into device Gb oriented in the n the direc-

tion b, and obtains τb. Because that the σa and the τb can 
be measured simultaneously, for given x,y ∈ {1, −1} 
the probability Pr (σa = x, τb = y) is definable, and the 
experiment facts show that τb = −σa if a = b, in other 
words, σb = −τb . 

Due to the thinking of the original proof for Bell’s 
theorem is rather complicated, let us start from another 
proof.  

In a famous paper, E. P. Wigner[2] has given a proof, 
which is deemed to be the most compact for Bell’s 
theorem. As far as I know, Wigner’s train of thought is 
as follows. 

Firstly, quantum mechanics gives that:  
For arbitrary given unit vectors a, b and the angle

γ = ∠(a, b), we have: 

Pr (σb = 1 | σa = 1) = Pr (σb = −1 | σa = −1) = cos2 γ
−−
2

, 

Pr (σb = 1 | σa = −1) = Pr (σb = −1 | σa = 1) = sin2 γ
−−
2

. 
 (1) 

This is also an experimental fact, which we call “po-
larization law” hereafter.  

Starting from this fact and the probability multi-
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plication formula  

Pr (σa = x, σb = y) = Pr (σa = x)·Pr (σb = y | σa = x), 

in addition, by means of the formulae  
Pr (σa = x, τb = −y) = Pr (σa = x, σb = y)  (2) 

and 
 Pr (σa = 1) = 1/2,        (3) 

Wigner gave  

Pr (σa = 1, τb = 1) =
1
2 sin2 γ

−−
2

.    (4) 

Secondly, according to local hidden variable theory, 
Wigner introduced a joint probability 

Pr (σa = x, σb = y, σc = z; τa = x’, τb = y’, τc = z’) , 
and from this expression concluded that: 

Pr (σa = x, τb = y’) =  

Σ
T

Pr (σa = x, σb = y, σc = z; τa = x’, τb = y’, τc = z’)

, 
 (5) 

in which the T under the summation sign is abbreviated 
from that y, z, x’, z’ ∈ {1, −1}. 

Thirdly, from Eq. (4) and Eq. (5), an invalid ine-
quality, which we call Wigner’s inequality, is derived, 
and thereby Bell’s theorem is proved.  

Now, let us examine this proof carefully. 
By the fact τb = −σb, only when x’ = −x, y’ = −y, 

z’ = −z, the joint probability introduced by Wigner is 
nonzero. So, Eq. (5) can be rewritten as that:  

Pr (σa = x, τb = −y) =  

Σ
z

Pr (σa = x, σb = y, σc = z; τa = −x, τb = −y, τc = −z),  
in which the z under the summation sign indicates that 
z ∈ {1, −1}. 

Applying Eq. (2), the left side of this formula is 
equal to Pr (σa = x, σb = y). Also, considering that the 
joint probability in the right side is actually equivalent 
to Pr (σa = x, σb = y, σc = z), the above formula and 
thereby Eq. (5) becomes 

Pr (σa = x, σb = y) = Σ
z

Pr (σa = x, σb = y, σc = z). 

(6) 
Besides, Eq. (2) has also been used in the deriva-

tion of Eq. (4) from Eq. (1). 

It is thus seen that by means of Eq. (2), on the one 
hand, Eq. (1) gives Eq. (4), on the other hand, Eq. (6) 
becomes Eq. (5), whereas, Wigner’s inequality results 
from Eq. (4) and Eq. (5). As such, a question appears 
naturally: Whether or not it is possible to derived 
Wigner’s inequality without the intermediary Eq. (2)? 
The answer is positive. 
 
2 The Conclusion of Wigner’s Proof 
 

Now, we derive Wigner’s inequality from Eq. (1) 
and Eq. (6) under the promises those Wigner used. 

From Eq. (3) and the probability multiplication 
formula it is concluded that for arbitrary directions m,  
n and x, y ∈ {1, −1}, we have 

Pr (σn = x, σm = y) = 1
2 Pr (σm = y | σn = x) . 

Together with Eq. (1) we obtain that: if θ = ∠(n, m), 
then  

Pr (σn = 1, σm = −1) = 1
2 sin2 θ

2
. −−

Introducing directions a, b, c and 
α = ∠(b, c),  β = ∠(a, c),  γ = ∠(a, b),  

we have 

Pr (σb = 1, σc = −1) = 1
2 sin2 α

2
; −−

Pr (σa = 1, σc = −1) = 1
2 sin2 β

2
; −−

Pr (σa = 1, σb = −1) = 1
2 sin2 −−

2
. 

γ

(7) 
Besides, applying classical probability formula, it 

is easy to obtain that: 
Pr (σa = x, σb = y, σc = z) =  
Pr (σa = x, σc = z, σb = y) =  

Pr (σb = y, σc = z, σa = x). 
(8) 

Cocsidering that 
Pr (σa = x, σb = y, σc = z) ≥ 0, 

abbreviating the Pr (σa = x, σb = y, σc = z)  to 
F (x, y, z), from Eq. (6) and the (8) it is concluded that:  

Arbitrary giving a, b, c  and x,y,z ∈ {1, −1}, there 
exits function F (x, y, z) ≥ 0, such that: 

Pr (σa = x, σb = y) = Σ
z

F (x, y, z); 
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Pr (σa = x, σc = z) = Σ
y

F (x, y, z); 

Pr (σb = y, σc = z) = Σ
x

F (x, y, z). 

We call this proposition after “Bell’s promise” in 
the following; the reason is that Bell has applied it un-
consciously instead that he has found it. 

Bell’s promise gives that: 
Pr (σa = 1, σb = −1) = F (1, −1, 1) + F (1, −1, −1); 
Pr (σa = 1, σc = −1) = F (1, 1, −1) + F (1, −1, −1); 
Pr (σb = 1, σc = −1) = F (1, 1, −1) + F (−1, 1, −1). 

Considering that F (x, y, z) ≥ 0, from the above 
three formulae we get the following inequality: 

Pr (σa = 1, σb = −1) + Pr (σb = 1, σc = −1) ≥

Pr (σa = 1, σc = −1). 
Substituting Eq. (7) into this inequality, we have 

sin2 γ
−−
2

+ sin2 α
2

≥ sin2 β
2

. −− −−

That is just the Wigner’s inequality. 
However, taking that γ = α = β /2 = π /3, and 

thereby 

sin2 γ
−−
2

= sin2 α
2

= 1/4, sin2 β
2

= 3/4, −− −−

Wigner’s inequality is violated, which is just the out-
come Wigner obtained. 

It is thus seen that in order to obtain Wigner’s ine-
quality, we need not to introduce the joint probability 
Pr (σa = x, τb = y); instead, Bell’s promise is indispen-
sable. So, under otherwise identical conditions, from 
Wigner’s proof we ought to conclude that:  

(b) Polarization law and Bell’s promise cannot hold 
true simultaneously. 
 
3 A revision for Wigner’s Proof 
 

Eq. (3) is used in the course proving the (b), but as 
we see in the following this formula is false. 

Let us consider the following process, a beam, say 
R, which is polarized along the direction n, passes 
through a Stern-Gerlach device Ga and splits into two 
sub-beams, one of them, say A, which is polarized along 
the a, departs from the Ga. Taking the σn = 1 as the 
precondition for this process, the expression Pr (σa = 1) 
is abbreviated from the Pr (σa = 1|σn = 1), which indi-

cates the probability that a single electron in the R de-
parts the Ga finally. Clearly, the value of the Pr (σa = 1), 
therefore, is dependent on the n. It is thus seen that Eq. 
(3) is not true. 

Fortunately, Eq. (3) is not necessary for proving 
the (b). We can give a version of Wigner’s proof without 
the use of Eq. (3) as follows. 

From the probability multiplication law we can see 
that only given the directions a and b, the value of the 
Pr (σa = x, σb = y) is undetermined. But we can prove 
that 

Σ
xy

xy Pr (σa = x, σb = y) = a ⋅ b.   (9) 

from the polarization law as follows: 
Let  

I ≡ Pr (σa = 1, σb = 1) − Pr (σa = 1, σb = −1); 
J ≡ Pr (σa = −1, σb = −1) − Pr (σa = −1, σb = 1). 

Then, 

Σ
xy

xy Pr (σa = x, σb = y) = I + J. 

Besides, by means of the probability multiplication 
formula and Eq. (1), we have 

I = Pr (σa = 1) (cos2 γ
−−
2

− sin2 γ
−−
2

); 

J = Pr (σa = −1) (cos2 γ
−−
2

− sin2 γ
−−
2

). 

Besides, as everyone knows that  
Pr (σn = 1) + Pr (σn = −1) = 1 

and  

cos2 γ
−−
2

− sin2 γ
−−
2

= cosγ = a ⋅ b. 

The above formulae give Eq. (9), from which we 
see that it is possible to define  

E (a, b) ≡ Σ
xy

xy Pr (σa = x, σb = y).    (10) 

and thereby Eq. (9) is written as: 
E (a, b) = a ⋅ b.     (11) 

This is an outcome resulted from polarization law. 
On the other hand, from Bell’s promise it is easy to 

conclude that:  
(c) For arbitrary a, b, c and x,y,z ∈ {1, −1}, there 

exists F (x, y, z) ≥ 0, such that:  

E (a, b) = Σ
xyz

xy F (x, y, z), 
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E (a, c) = Σ
xyz

xz F (x, y, z), 

E (b, c) = Σ
xyz

yz F (x, y, z). 

The preceding two formulae in the (c) give  

  E(a, b) − E (a, c) = Σ
xyz

x (y − z) F (x, y, z). 

Considering that x (y − z) F (x, y, z) = 0 if y = z, 
the above formula can be rewritten as 

E (a, b) − E (a, c) = Σ
y ≠ z

x (y − z) F (x, y, z). 

Taking the absolute values on both sides, consid-
ering that the absolute value of the sum cannot be larger 
than the sum of the absolute values, we have  

| E (a, b) − E (a, c) | ≤ Σ
y ≠ z

| x (y − z) F (x, y, z) |. 

Also, considering that F (x, y, z) ≥ 0, and thereby  
| x (y − z) F (x, y, z) | = | x (y − z)| F (x, y, z); 

and that | x (y − z)| = 2 if y ≠ z, we can rewrite the 
above formula by  

| E (a, b) − E (a, c) | ≤ 2Σ
y ≠ z

F (x, y, z). 

On the other hand, considering that  

Σ
xyz

F (x, y, z) = 1, 

the third formula of the (c) gives that 

1 − E (b, c) = Σ
xyz

(1 − yz ) F (x, y, z) = 2 Σ
y ≠ z

F (x, y, z). 
The above two formulae give  

| E (a, b) − E (a, c) | ≤ 1 − E (b, c).  (12) 
This is an outcome resulting from Bell’s promise. 

Now, we prove the (b) by reduction to absurdity: If 
the (b) is false, then the polarization law and Bell’s 
promise hold true simultaneously. Thus, Eq. (11), which 
can be derived from the polarization law, and Eq. (12), 
which is able to result from Bell’s promise, also hold 
true simultaneously. Substituting Eq. (11) into Eq. (12), 
we have  

|a ⋅ b − a ⋅ c| ≤ 1 − b ⋅ c. 
However, taking that b ⊥ c and the a runs parallel 

with b − c, then the above inequality gives 2 ≤ 1. It 

is thus seen that the above inequality is violated and 
thereby the (b) holds true. So, we have retrieved the (b) 
without the application of Eq. (3).  

The (b) means that:  
Firstly, Since that in Wigner’s proof, only the joint 

probability Pr (σa = x, τb = y)  is involved with the 
“interaction at a distance” and thereby with locality, 
now this probability is unnecessary, so that Wigner’s 
proof has nothing to do with locality.  

Secondly, it has been proved that Bell’s promise 
results from classical probability theory and the polari-
zation law is beyond all doubt. As a result, the unique 
meaning of the (b) is it confirms again that classical 
probability theory is not always applicable for micro 
process.  

The next problem is how to understand the (a). 
 
4 Spin Correlation Function 
 

The correlativity between two random quantities is 
measured by a quantity called “correlation”, of which 
the definition is the difference between the mean value 
of the product of the very two quantities and the product 
of two mean values. Clearly, both the mean values of 
the random quantities x and y in the expression 
Pr (σa = x, τb = y) are zero. So, the correlation between 
x and y is the mean values of the product xy, namely, is  

P (a, b) ≡ Σ
xy

xy Pr (σa = x, τb = y).  (13) 

This formula is the definition for the spin correlation 
function of pair electrons in singlet. 

It is easy to see that if Eq. (2) is true, then  
P (a, b) = − E (a, b).    (14) 

As a result, Eq. (12) is equivalent to Bell’s inequality 
|P (a, b) − P (a, c)| ≤ 1 + P (b, c).    (15) 

and Eq. (11) is equivalent to that  
P (a, b) = − a ⋅ b,    (16) 

which is the spin correlation formula in quantum me-
chanics. Therefore, the (a) is equivalent to the (b). It is a 
pity that we do not know if Eq. (2) is true. 

In Eq. (2), the Pr (σa = x, σb = y) is a joint prob-
ability of two quantities those cannot be measured si-
multaneously. Such a probability is inconsiderable in 
quantum mechanics, but it is generally believed that 
provided by means of the experimental fact τb = −σb, 
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substituting τb = y  by σb = −y  in the expression
Pr (σa = x, τb = y), Eq. (2) is obtained immediately, so 
that Eq. (2) holds true beyond doubt. However, this 
thinking is wrong. In the Eq. (2), two sides denote dif-
ferent processes, the right side only involves one elec-
tron while the left involves a pair of electrons; the right 
side is concerned in two events occurring successively, 
while the left occurring simultaneously. For such two 
expressions containing widely different meaning, the 
substituting operation above has no physics signifi-
cance. 

Fortunately, an alternative to Eq. (2) can be found 
by a more complex way. This formula is 

Pr (σa = x, τb = y) = Pr (σb = −y, σa = x),   
(17) 

which will be got through three steps as follows: 
The first step, we prove that Eq. (17) is true if the 

following two events are equivalent each other: 
(i) The spin state of the e before entering the Ga is 

σb = −y. 
(ii) The spin measurement value of the e’ in the Gb 

is τb = y. 
If the (i) is equivalent to the (ii), then the product 

event of the σa = x and τb = y is equivalent to the 
product event of the following two events: 
1．The spin state of the e departing from the Ga is 
σa = x; 
2．The spin state of the e entering the Ga is σb = −y. 

By definition, the probability of this product event 
is just the Pr (σb = −y, σa = x) . Due to the probabili-
ties of equivalent events are equal to each other, Eq. (17) 
is obtained. 

The second step, we prove as follows that if the 
spin state of the e before entering the Ga is σb = −1, 
then the spin measurement value of the e’ in the Gb is 
τb = 1: 

Considering that in the system S, the e and the e’ is 
in the singlet, if the spin state of the e before entering 
the Ga is σb = −1, then the spin state of the e’ before 
entering the Gb is τb = 1. Because that the magnetic 
field direction of the Gb is the b, from Eq. (1) it is con-
cluded that the spin measurement value of the e’ in the 
Gb is τb = 1. 

The third step, we prove that if the spin measure-

ment value of the e’ in the Gb is τb = 1, then the spin 
state of the e before entering the Ga is σb = −1 by re-
duction to absurdity, namely, assuming that the spin 
measurement value of the e’ in the Gb is τb = 1, but the 
spin state of the e before entering the Ga is not σb = −1, 
then a contradiction will be appear as follows: 

From the fact that σb = −τb, it is concluded that if 
the spin measurement value of the e’ in the Gb is τb = 1, 
then we have that: 

(iii) Provided that the magnetic field direction of 
the Ga is the b, then the spin measurement value of the e 
in the Ga is σb = −1. 

On the other hand, if the spin state of the e before 
entering the Ga is not σb = −1, then there will be two 
occurrences: one is σb = 1, the other is neither σb = 1 
nor σb = −1. So, under the condition that the magnetic 
field direction of the Ga is b, in the former case, the spin 
measurement value of the e in the Ga is σb = 1, namely, 
it is determined but not σb = −1; in the latter case, the 
spin measurement value of the e in the Ga is undeter-
mined. Namely, if the spin state of the e before entering 
the Ga is not σb = −1, then we have:  

(iv) Even if that the magnetic field direction of the 
Ga is the b, the spin measurement value of the e in the 
Ga either σb = −1 or undetermined. 

This outcome is the antithesis of the (iii), so that 
the contradiction that the proof needs is found. 

From the second step and the third step, we has 
proved that the (i) is equivalent to the (ii), if y = −1. 
Similarly, we can prove that the same proposition is also 
true if y = 1. Consequently, we has proved that the (i) is 
equivalent to the (ii). Together with the outcome of the 
first step, Eq. (17) is proved. 

From Eq. (17) it is easy to get  

Σ
xy

xy Pr (σa = x, τb = y) = −Σ
xy

xy

Pr (σa = x, σb = y), 
and thereby Eq. (14) is obtained, and thereby it is con-
firmed that the (a) is equivalent to the (b). As a result, 
we have proved that the meaning of Bell’s theorem is 
only to confirm once more that classical probability 
theory is not always applicable for micro process. 

Besides, it is easy to see from the above formula 
and the definition Eq. (13) we can derive directly that  
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P (a, b) = −Σ
xy

xy Pr (σa = x, σb = y) . (18) 

This formula results from classical probability theory 
completely. As we see, by means of this formula, it is 
possible to obtain directly Bell’s inequality Eq, (15) 
from Bell’s promise, as well as obtain directly the spin 
correlation formula in quantum mechanics Eq, (16) 
from the polarization law. 

Indeed, to obtain Eq, (16) the quantum mechanics 
method is simpler and more direct. But the above deri-
vation confirms that: 

1. Despite the fact that Eq, (18) results from clas-
sical probability theory completely, it is still compatible 
with quantum mechanics. 

2. Though Eq, (18) is a promise of Bell’s inequality, 
it is not the reason that Bell’s inequality is wrong.  

The above two conclusions are of great importance 
to clear the meaning of Bell’s work. 
 
5 Local Hidden Variable Theory 
 

In Bell’s original work, a kind of hidden variable 
theory is used. This theory is based on a set of axioms, 
and thereby we call it “axiom hidden variable theory” 
hereafter. So-called local hidden variable theory is the 
conjunction of this theory and locality. Applying local 
hidden variable theory on the system S, a pair of elec-
trons e and e’ in the singlet, several results is obtained as 
follows:  

I. Attaching a set of hidden variables, denoted by 
λ, to the state function of the S, it is possible to give the 
single measurement value of the first electron spin pro-
jection along the direction a, say σa and that of the sec-
ond along the b, say τb, namely, there exists functions: 

σa = A (a, λ),  τb = B (b, λ).  (19) 
II. In the collection, say Λ, of all hidden variables, 

it is possible to define distribution function ρ(λ) ≥ 0, 

such that the normalized condition ∫Λ
ρ(λ) dλ = 1 is 

satisfied, and for arbitrary subset Γ ⊆ Λ, it is obtained 
that  

 Pr (λ ∈ Γ) = ∫Γ
ρ(λ) dλ. 

III. The spin correlation function of the system S 
can be expressed by  

P (a, b) = ∫Λ
A (a,λ) B (b,λ) ρ(λ) dλ.  (20) 

By the I, the fact τb = −σb is expressed as 

B (b, λ) = − A (b, λ), 
so that Eq. (20) is rewritten as that 

P (a, b) = −∫Λ
A (a,λ) A (b,λ) ρ(λ) dλ. (21) 

For given x,y ∈ {1, −1}, defining  
Γ (x, y) ≡ {λ ∈ Λ | A (a, λ) = x, A (b, λ) = y}, 

from the II it is concluded that 

∫Γ (x, y)
ρ (λ)dλ = Pr (λ ∈ Γ (x, y)) =

Pr (A(a, λ) = x, A (b, λ) = y) = Pr (σa = x, σb = y) 
and 

∫
Γ (x, y)

A (a,λ) A (b,λ) ρ(λ) dλ = xy

Pr (σa = x, σb = y). 
By the properties of integrals, we have 

∫Λ
A (a,λ) A (b,λ) ρ(λ) dλ =  

Σ
xy

∫
Γ (x, y)

A (a,λ) A (b,λ) ρ(λ) dλ. 

Together with Eq. (21), the above two formulae 
give Eq. (18). 

Also, giving unit vector c and variable z ∈ {1, −1} 
and another subset  

Γ (x, y, z) ≡  
{λ ∈ Λ | A (a, λ) = x, A (b, λ) = y, A (c, λ) = z}, 

from the II it is concluded that: 

Pr (σa = x, σb = y, σc = z) = ∫Γ (x, y, z)
ρ (λ)dλ . 

Considering that  

∫
Γ (x, y)

ρ (λ)dλ = Σ
z

∫Γ (x, y, z)
ρ (λ)dλ , 

we obtain Eq. (6), namely, 

Pr (σa = x, σb = y) = Σ
z

Pr (σa = x, σb = y, σc = z) . 

Similarly, from the I and the II it is also concluded 
that  

Pr (σa = x, σc = z) = Σ
y

Pr (σa = x, σb = y, σc = z) ; 

Pr (σb = y, σc = z) = Σ
x

Pr (σa = x, σb = y, σc = z) .  

According to that ρ (λ) ≥ 0, we have 
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Pr (σa = x, σb = y, σc = z) = ∫Γ (x, y, z)
ρ (λ)dλ ≥ 0. 

The above formulae give Bell’s promise. 
As we know, Eq. (18) and Bell’s promise give 

Bell’s inequality. Therefore, Bell’s inequality can result 
from I, II and III, namely, result from so-called local 
hidden variable theory. This is just the first outcome in 
Bell’s work. 
 
6 Bell’s Misunderstandings 
 

Since that the so-called local hidden variable the-
ory is the conjunction of locality and axiom hidden vari-
able theory, which is left intact classical probability the-
ory, whereas, it is well known that classical probability 
theory is probably inapplicable for micro processes, it 
has nothing essential new that so-called local hidden 
variable theory is impossible to repeat the whole statis-
tical predictions of quantum mechanics. Though it is 
hard to say that this “theorem” is wrong, we must point 
that this “theorem” is misunderstood by Bell. 

Despite that Bell is entitled to define the conjunc-
tion of locality and axiom hidden variable theory as 
“local hidden variable theory”, it is yet impossible from 
this definition to conclude that any a hidden variable 
theory must be left intact the classical probability theory, 
or go a step further, the realism, which is generally re-
garded as the philosophy foundation for hidden variable 
theory, requires restoring the probability calculation 
method of classical probability theory and excluding 
that of quantum mechanics in micro processes. Unfor-
tunately, since that axiom hidden variable theory is re-
garded as the general form of hidden variable theory, 
this absurd reasoning is actually tacitly approved and it 
goes so far as to conclude that locality is in conflict with 
realism, in other words, so-called “local realism” has 
been rejected from the violation of Bell’s inequality. 
Perhaps, as viewed from the future physicists, this is the 
most monstrous event in the physical history. 

Except regarding axiom hidden variable theory as 
the general form of hidden variable theory, Bell has 
another misunderstanding for Bell’s inequality. As we 
know, Eq. (18) is compatible with quantum mechanics. 
Even only starting from that Bell’s inequality is incom-
patible with quantum mechanics, we can confirm what 
leads to Bell’s inequality is Bell’s promise instead of Eq. 
(18). 

Unfortunately, in the Bell’s work, the application 
of Bell’s promise is indirect and unconscious, and the 
course to derive Bell’s inequality is quite flexuous, 
Bell’s inequality is actually imputed to Eq. (18), and 
thereby finally imputed to Eq. (19) and Eq. (20), instead 
of from the application for Bell’s promise. As viewed 
from the practice, this understanding is still more mor-
tal.  

Just due to these two understandings, it seems that 
Bell’s theorem give a criterion between quantum me-
chanics and “local realism”, and thereby a continued 
fanaticism is started. Some persons try hard to find 
more unimaginable philosophy conclusions from the 
violation of Bell’s inequality, while the others rack their 
brains for discovering some hidden hypotheses in the 
promises concerning the functions A (a, λ) , B (b, λ) 
and ρ (λ), so as to save locality and realism simultane-
ously. 
 
7 Lochak’s Objection 
 

It seems that the first person who took objection 
against Bell’s work is a France physicist G. Lochak[3,4]. 
In the [3], he said that:  

“Bell’s reasoning involves not only a hypothesis on 
the local character of the theory, but also a hypothesis, 
which consists in the admission that such a theory must 
restore the classical probabilistic pattern simultaneously 
in the statistics of all measurement results. But it leads 
immediately to a contradiction with the calculation of 
the mean values in wave mechanics since the latter vio-
lates the usual probabilistic pattern; therefore it is not 
astonishing to ‘discover’ afterward an incompatibility 
between the results of wave mechanics and those as-
cribed to hidden-variable theories.” 

The main argument Lochak advanced can be, so 
far as I understand, signified as follows: In the original 
derivation of Bell’s inequality, the integral (20) is in-
troduced. Such a formula can be certainly agreed with, 
but the problem is that: Is it possible to introduce the 
same ρ (λ) for different mean values? For example, is 
it possible to obtain the formula 

P (a, b) − P (a, c) =  

∫Λ
[A (a,λ) B (b,λ) − A (a,λ) B (c,λ)] ρ(λ) dλ  

from Eq. (20)? The Lochak’s answer is negative. 
By means of the relation 
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B (b,λ) = −A (b, λ), 
Eq. (20) becomes Eq. (21), and thereby the question 
only involves one electron. For given subset Γ (x, y), it 
is got that 

∫Γ (x, y)
ρ (λ)dλ = Pr (σa = x, σb = y) . 

Herein, the expression Pr (σa = x, σb = y)  is a joint 
probability! But, for quantum probabilities, because of 
uncertainty principle, such joint probability is indefin-
able. It is thus seen that in the derivation of Bell’s ine-
quality, a classical probability formula is used. 

As a result, in the [4] Lochak wrote that:  
“The experimental violation of Bell’s inequalities 

has nothing to do, in my opinion, with the so-called 
‘non locality’ or ‘non separability’. This violation sim-
ply signifies that quantum probabilities are not classical 
probabilities! This is a fact which was discovered more 
than half a century ago, which it is nice to see con-
firmed again, but which perhaps does not need so many 
sophisticated and beautiful experiments in order to be 
accepted.” 

It seems that no one objected to Lochak’s thesis as 
viewed from mathematics-physics, but this thesis does 
not yet rivet the attention of physicists clearly. It has 
caused the discussion about Bell’s theorem to be mean-
ingless, but up to now, this theorem is still a problem in 
great demand.  

On the other hand, the Lochak’s thesis is unsatis-
factory yet. Lochak believes that provided it has been 
pointed out that classical probability theory, especially 
the joint probabilities, is used in the derivation for Bell’s 
inequality, locality is divorced from Bell’s inequality, 
but this argument is insufficient. 

According to Lochak’s viewpoint, the question re-
solves itself into the joint probability 
Pr (σa = x, σb = y) and thereby into Eq. (18), but that is 
not the question!  

As we know, classical probability theory is not al-
ways inapplicable for micro processes, so that merely 
from the fact that classical probability theory has been 
used in the derivation for Bell’s inequality, we cannot 
conclude that Bell’s inequality is wrong. It remains to 
clear which formula in classical probability theory leads 
to Bell’s inequality and why this formula is inapplicable 
for micro processes? 

Lochak upholds de Broglie’s point that hidden 

variables must obey the classical probability theory laws. 
Starting from this point the translation from hidden 
variable relations into the measurement value relations 
is a complex course. It seems that such a hidden vari-
able theory only makes things complicated and makes 
no contribution to clear the origin of Bell’s inequality. 
As seen, Bell’s inequality has actually nothing to do 
with hidden variables. 

When enumerating the classical probability for-
mulae, Lochak expressed the multiplication formula by 

Pr (A ⋅ B) = Pr (A) ⋅ Pr (B|A) = Pr (B) ⋅ Pr (A|B). 
Herein, Lochak gave actually two formulae; one is 

Pr (A ⋅ B) = Pr (A) ⋅ Pr (B|A);    (22) 
and the other is   

Pr (A ⋅ B) = Pr (B ⋅ A).   (23) 
Within the bounds that the Pr (B|A) is meaningful, Eq. 
(22) is derivable from the probability frequency defini-
tion (to derive the multiplication formula from probabil-
ity frequency definition requires a slight revision for 
such definition), while Eq. (23) from the Boolean alge-
bra for event calculation. It is generally believed that the 
former is certainly applicable for micro processes, while 
the latter is not. Lochak did not distinguished between 
these two hypotheses and thereby he did not find what 
leads really to Bell’s inequality is Bell’s promise and the 
reason why Bell’s promise is inapplicable for micro 
processes is the unreasonable application of the Boolean 
algebra for event calculation. 

Despite all this, the Lochak’s work is still of great 
important. He is the first one who pointed out that Bell’s 
inequality is irrelevant to locality and thereby to the 
so-called action at a distance. If this argument is ac-
cepted, people will lose interest for Bell’s theorem im-
mediately. 
 
8 Conclusion  
 

To sum up, it has been seen that Bell’s inequality 
can be tracked back to Bell’s promise, which is a for-
mula in classical probability theory, while the spin cor-
relation formula in quantum mechanics to the polariza-
tion law, which is established both by facts and quantum 
mechanics. Consequently, two outcomes are obtained.  

Firstly, the mathematical content of Bell’s theorem, 
namely, the spin correlation formula in quantum me-
chanics and Bell’s inequality cannot hold true simulta-
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neously, is very mediocre, of which the reasoning needs 
neither locality nor hidden variable theory.  

Secondly, it is predictable that the spin correlation 
formula in quantum mechanics will be approved ex-
perimentally and Bell’s inequality will be violated. As a 
result, the experiments about Bell’s inequality in the 
1970s give us nothing essential new. 

This conclusion perhaps is disappointing. It is gen-
erally believed that Bell’s theorem is “a progress of 
great importance in physics”. Now, it is revealed that 
this theorem is actually a domestic shame that is not 
suitable for making public. 
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