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Abstract: The application of graph partitioning to modern scientific problems with various objectives has been 
attempted by many researchers in a variety of fields. Such applications are many and the following may be 
mentioned only to name a few examples. Applications such as vulnerability assessment of large power systems, 
power system islanding, design of VLSI circuits, dynamic system modeling and simulation, innovation graph state 
estimation, internet-like network partitioning, task mapping of parallel computation, database management, 
archaeological dating, power system transient studies, load balancing of parallel computing, molecular dynamics, 
DNA sequencing, categorizing amino acids, circuit netlists partitioning, etc. have been reported in the literature. In 
this paper, the complexities of the application of graph partitioning in modern scientific applications are thoroughly 
investigated in order to shed some light on this issue with such a diverse domain of applications. Fundamental graph 
theoretical and matrix algebraic concepts are discussed with sufficient examples. Application of these concepts to 
the problem of power system islanding is presented with suggestions to improve the speed and the objective function 
being used. [Journal of American Science 2009;5(5):1-12]. (ISSN: 1545-1003).  
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1. Introduction 

Since the development of graph theory, many 
applications have been sought by researchers in various 
fields. Perhaps one of the most important classes of 
applications of graph theoretic concepts to modern 
scientific problems is graph partitioning. This 
application is found under many disguises in the 
literature. Titles such as splitting, islanding, grouping, 
clustering, etc. are such names which have been adopted 
by the researchers in individual fields. The domain of 
application of these techniques is so vast that it 
encompasses almost all scientific fields. Therefore, an 
issue of such general application in science and 
engineering deserves a closer look. 

Once the literature is reviewed, you find that graph 
partitioning has been applied to many problems such as 
power systems, electronics, communications, computers, 
genetics, image processing, etc. The applications are so 
many that one cannot list them all in one paper. However, 
a short survey of these applications is presented here in 
order to indicate the importance of taking a closer look 
at the complexities involved. 

Graph partitioning can be applied in many modern 
day large scale system problems such as parallel 

processing, sparsity preserving orderings for sparse 
matrix factorizations, circuit placement, routing, system 
hierarchy, VLSI circuit testing, facility location, 
scattered network, hierarchical design of VLSI circuits, 
data mining, dynamic load balancing, parallel test 
pattern generation, power system islanding, annotation 
of protein sequence, and fault section estimation in large 
scale power systems. 

To start, one may refer to the area of dynamic 
system modeling and simulation in the work of Rideout 
et al. (2009) who applied partitioning to detect weak 
coupling including one-way coupling or complete 
decoupling among elements of a dynamic system model. 
They attempted to partition the problem in order to 
reduce the models in which weak coupling is found so 
as to reduce the physical-domain model. This would 
enable one to perform parallel simulation of smaller 
individual submodels and reduce the computational time. 
They applied this method to the partitioning of the 
longitudinal and pitch dynamics of a medium-duty truck 
model. The intensity of dynamic coupling and the 
potential for model reduction are shown to depend on 
the magnitude of system parameters and the severity of 
inputs such as road roughness.  
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In applications to power systems, Bi et al. (2002) 
proposed a multiway graph partitioning method for 
partitioning a large scale power network into the desired 
number of connected subnetworks with the intention of 
fault section estimation. They proposed the balancing of 
work burden on each of the subnetworks formed. The 
proposed partitioning method minimizes the number of 
elements at the frontier of each subnetwork.  

You et al. (2003) proposed a self-healing strategy to 
deal with catastrophic events when power system 
vulnerability analysis indicates that the system is 
approaching an extreme emergency state. They 
suggested the use of graph partitioning to adaptively 
divide the power system into smaller islands with 
consideration of quick restoration. In their approach, it 
was suggested that a load shedding scheme based on the 
rate of frequency decline be applied in the islands 
formed.  

Kamwa et al. (2007) addressed the problem of 
dynamic vulnerability assessment of large power 
systems using a fuzzy clustering algorithm for 
partitioning the power system into a number of coherent 
electric areas. The objective function is imposed by 
selecting representative buses from the data set in such a 
way that the total fuzzy dissimilarity within each cluster 
is minimized. Zhang et al. (2008) used partitioning 
algorithms for innovation graph estimation to meet the 
management requirement of large-scale power grid to 
provide a simplified network in the upper-level control 
center to replace the original whole grid in two-level 
cooperative control centers on a provincial electrical 
network reducing the computational time requirements. 
Wang X. Z. et al. (2008) proposed an adaptive clustering 
algorithm based on power system network topology, 
initial power flow and given architecture to address 
power system transient stability studies. The sizes of the 
small cliques are derived using multi-constraint and 
multi-objective graph partitioning theory where the 
nodes represent units of computation, and the branches 
encode data dependencies. In a different work, Wang C. 
et al. (2008) presented a searching algorithm for 
islanding using a multilevel reduced graph partition 
algorithm. Peiravi and Ildarabadi (2009) proposed the 
use of multilevel kernel k-means partitioning for 
intentional islanding of power systems. 

The applications in electronics are also outstanding. 
Hagen et al. (1992) addressed the problem of 
partitioning of circuit netlists in VLSI design. Using the 
well-known Fiedler vector, they presented a good 

approximation of the optimal ratio cut partition cost. 
Using Lanczos method for the sparse eigenvalue 
problem was found to be a robust basis for computing 
heuristic ratio cuts based on the Fiedler vector. They also 
considered the intersection graph representation of the 
circuit netlist as a basis for partitioning, and proposed a 
heuristic based on spectral ratio cut partitioning of the 
netlist intersection graph which was tested on industry 
benchmark suites. 

Cherng et al. (1999) presented a two-level 
bipartitioning algorithm combining a hybrid clustering 
technique with an iterative partitioning process for VLSI 
circuits. Later on, Cherng and Chen (2003) presented a 
multi-level bipartitioning algorithm by integrating a 
clustering technique and an iterative improvement based 
partitioning process for VLSI circuit design in order to 
minimize the number of interconnects between the 
subsets of the circuit in order to reduce interconnect 
delays in deep submicron technology. 

Application in other areas such as genetic 
engineering and image processing should also be 
mentioned. Shepherd et al. (2007) used the Fiedler 
vector for partitioning or categorizing amino acids based 
on the Miyazawa-Jernigan matrix. Their proposed model 
splits the amino acid residues into two hydrophobic 
groups (LFI) and (MVWCY) and two polar groups 
(HATGP) and (RQSNEDK). Othman et al. (2006) 
proposed the application of partitioning to assign highly 
correlated Gene Ontology terms of annotated protein 
sequences to partially annotated or newly discovered 
protein sequences. Their proposed method is based on 
Gene Ontology data and annotations. The first problem 
considered by them relates to splitting the single 
monolithic Gene Ontology RDF/XML file into a set of 
smaller files that are easy to assess and process so that 
they may be enriched with protein sequences and 
inferred from Electronic Annotation evidence 
associations. The second problem involves searching for 
a set of semantically similar Gene Ontology terms to a 
given query. Dhillon et al. (2005) and Dhillon et al. 
(2007) presented a graph partitioning method based on a 
Multilevel Kernel k-Means approach with a high speed 
performance in partitioning graphs which they used on 
large-scale partitioning tasks such as image 
segmentation; social network analysis; and gene 
network analysis types of systems.  

The support for load balancing simulations that are 
performed on heterogeneous parallel computing 
platforms is an important issue and it can only be 
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effectively achieved if the graph is distributed so that it 
properly takes into account the available resources such 
as CPU speed, network bandwidth, etc. One such 
application is load balancing in parallel computing to 
minimize communications between the various 
processors such as the parallel simulation of power 
system dynamics by Xue and Qi (2007) who used a 
multilevel graph partition algorithm and introduced 
regional characteristics into the partition and improved 
the weights of the nodes and its scheme. Moulitsas and 
Karypis (2006) developed algorithms that can address 
the partitioning requirements of scientific computations 
and can correctly model the architectural characteristics 
of emerging hardware platforms given that 
heterogeneous technologies are becoming more 
widespread.  

 
2. Objectives of Graph Partitioning Applications 
In practical applications, nodes and branches of the 
graphs to be partitioned represent different objects and 
this must be taken into consideration when developing 
the graph partitioning algorithm. Moreover, the 
objectives in mind in various applications of graph 
partitioning to modern scientific problems are 
somewhat different based on the demands of the 
particular application. To cover these differences, it 
would be wise to consider graphs with weights and 
costs assigned to the elements as suggested by 
Aleksandrov et al. (2006) who presented an algorithm 
for computing cutsets in planar graphs with costs and 
weights on the nodes, where weights are used to 
estimate the sizes of the partitions and costs are used 
to estimate the size of the cutset. They measured the 
quality of the partitioning by the total cost of the 
elements in the cutset and the imbalance between the 
total weights of the parts. In such applications, the 
weights assigned to the nodes are usually estimates of 
computational time requirements of the corresponding 
tasks. Once the node weights are balanced, the total 
computational burden is balanced amongst the various 
processors in the system. On the other hand, 
minimizing the branch cut sets implies minimum 
communications between the various processors in the 
system.  
As another example of such challenges and 
complexities, let's consider the problem of power 
system islanding. The usual weight assigned for the 
branches in power system islanding applications 
represents the power flow in the corresponding 

transmission line, whereas the nodes represent power 
system buses. The underlying relationship between the 
nodes and the branches is also widely different in 
different applications. These issues must also be taken 
into consideration in the design of graph partitioning 
algorithms for a given application. There are, however, 
subtle difficulties in each application. For example, in 
the scheme presented by Wang C. et al. (2008), the 
authors only attempt to make the generation load 
imbalance in each island as small as possible. This is a 
minimal requirement for restoration. Blackouts may be 
caused for various reasons, even though power system 
partitioning or islanding application is meant to 
prevent them. Pre-disturbance conditions such as 
maintenance outages, changes in generation pattern 
and unexpected events such as misoperation of relays 
or failure of circuit breakers may pre-expose the 
system towards blackout after a disturbance. After the 
system breaks into islands, the load/generation 
imbalance in the islands could result in blackout in the 
individual islands. Therefore, it is reasonable to 
attempt to direct the intentional islanding of the power 
system towards islands with minimal load/generation 
imbalance. However, other factors such as voltage 
collapse, cascading thermal overloads, and dynamic 
stability could also lead to power system blackout. 
Therefore, more complexities and more strict 
conditions must be imposed to achieve a better 
islanding solution. For example, inherent structural 
characteristics of the power system should be 
considered and the choice of the island should be 
independent of the disturbance as proposed by Rehtanz 
(2003). 
 
3. Mathematics of Graph Partitioning 

Graph partitioning is usually based on graph 
theoretic concepts. In order to understand the 
complexities involved in modern scientific 
applications, a detailed analysis of the current 
approaches and the underlying algorithms is necessary. 
Graph partitioning is a well known NP-complete 
problem in mathematics where a graph is divided into 
several pieces in such a way that the pieces are of 
about the same size and there are few connections 
between them. The unweighted graph partition 
problem is usually stated as follows: 

Given a graph G(N,B) with N nodes and B 
branches, and given an integer k >1, partition N into k 
subsets N1, N2, ... Nk such that the subsets are disjoint 
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and have equal size, and the number of branches 
which end in different parts is minimized. In its more 
general form, weighted graph partitioning problem 
where both nodes and branches may be weighted, the 
problem may be stated as follows: 

Given a graph G(N,B) with N nodes and B 
branches, and given an integer k >1, partition the 
graph into k disjoint subsets of approximately equal 
weight and the size of the branch cuts is minimized. 
The size of a cut set is the sum of the weights of the 
branches contained in it, while the weight of a subset 
is the sum of the weights of the nodes in that subset. 
This partitioning problem may be solved by using 
graph-theoretic heuristics. 

The graph's adjacency matrix and the degree 
matrix are needed to form the Laplacian matrix. The 
Laplacian matrix of an undirected, unweighted graph 
G(N,B) where the graph is without any self loops or 
multiple branches between any pair of nodes is an n by 
n symmetric matrix with one row and column for each 
node defined by 
L D A= −                                   (1) 
where the degree matrix  and 
A is the well-known adjacency matrix. 

),,,( 321 ddddiagD Λ=

The Laplacian matrix is symmetric and positive 
semidefinite. This may be extended to weighted graphs. 
If the eigenvalues of the Laplacian of a graph are 
sorted by increasing value, the eigenvector 
corresponding to the second (smallest) eigenvalue of 
the Laplacian matrix is called Fiedler vector, and it 
may be used in heuristics for various graph 
manipulations including spectral graph partitioning. 
The second (smallest) eigenvalue of the Laplacian 
matrix is greater than 0 if and only if G(N,B) is a 
connected graph and the number of times 0 appears as 
an eigenvalue in the Laplacian represents the number 
of connected components in the graph. The magnitude 
of this value that is also known as the algebraic 
connectivity reflects how well connected the graph is. 
This may be used in the analysis of network 
sysnchronizability which has applications in many 
fields. Given that the number of nodes of a connected 
graph is n and its diameter is D, the algebraic 
connectivity of the graph G(N,B) is bounded below by 

nD
1  . 

Here, a simple example is used to illustrate the 

effort required in partitioning a graph using the 

Laplacian. Consider the simple weighted graph shown in 

Figure 1.  

The Adjacency matrix for this graph is 

0 1 1
1 0 2
1 2 0

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
2 

 
Figure 1 The graph with 3 nodes and 3 branches 
 

The Degree matrix D for this graph is 

2 0 0
0 3 0
0 0 3

D
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The Laplacian matrix Q is 

2 1 1
1 3 2
1 2 3
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The first eigenvector will be: :1V
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The second eigenvector  or the Fiedler vector is  2V
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And the third eigenvector is:  3V
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Figure 2 A sketch showing how the graph may be 
partitioned using the Fiedler vector 
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The second column of this matrix is the Fiedler vector 

and it may be used to bipartition the graph as shown in 

Figure 2.  

The bipartitioned form of the graph in Figure 1 is 
shown in Figure 3 based on the Fiedler vector which 
indicates that the graph should be partitioned into two 
partitions with node 1 in one partition and nodes 2 and 

http://www.americanscience.org                                            editor@americanscience.org 5



Complexities of Using Graph Partitioning in Modern Scientific Problems and Application to Power System Islanding    Peiravi and Ildarabadi 

3 in the second partition. In this simple illustrative 
example, it can be seen that the minimum cut set found 
{(n1,n2), (n1,n3)} has a total flow of 2 which is clearly 
the minimum of all possible cut sets. 

 
One complexity involved in this basic procedure is the 
amount of mathematical effort required to compute the 
eigenvalues and the eigenvectors as illustrated by the 
example. In large scale systems where thousands of 
nodes are involved, the time complexity becomes 
burdensome and makes a solution practically 
impossible to obtain. The computational bottleneck of 
this partitioning procedure lies in the eigenvector 
calculation. Notice that since only the sign of each 
component of the Feidler vector is needed in order to 
partition the graph, an exact answer is not really 
required. This could be potentially useful in finding a 
fast solution approach. In applications where the 
Laplacian matrix is dense, there exist routines such as 
eig in Matlab that require (4/3)*|N|3 time. However, in 
applications in which the graph has relatively few 
connections compared to a complete graph, this would 
not be computationally wise. In such cases, it is more 
suitable to resort to the Lanczos algorithm which is an 
iterative algorithm. For an n-by-n sparse symmetric 
matrix L, the Lanczos algorithm computes a k-by-k 
symmetric tridiagonal matrix T, whose eigenvalues are 
good approximations of the eigenvalues of T. The 
eigenvectors of T may be used to get approximate 
eigenvectors of A. The most computationally 
expensive part of this algorithm is in building T that 
requires k matrix-vector multiplications with L. Since 
the largest and the smallest eigenvalues of L including 

2λ  converge first, a good approximation can be 
obtained given k much smaller than n. 
The Lanczos algorithm applies to Hermitian matrices 
and transforms the original matrix into a tridiagonal 
matrix that is real and symmetric,  
whose diagonal elements are denoted by , 
and the off-diagonal elements are denoted by 

 Moreover, the terms due to 
symmetry. 
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The next step would be to find the eigenvalues of the 
matrix T as follows: 
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The eigenvalues of T are  and the corresponding 

eigenvectors  can now be easily computed. The 

Lanczos vectors V
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through the above iterative approach may be used to 
compute them. The eigenvalues thus computed are 
approximations of the eigenvalues of L. 
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where  is the transformation matrix whose 
column vectors are . The set of 
vectors 

m
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mvvvv ,,,, 321 Λ

mvv ,,, 32 Λ  forms an orthogonal basis 
which would yield good approximate eigenvalues and 
eigenvectors for the original matrix if precise 
arithmetic is used. However, due to round off errors 
introduced during the computations, the Lanczos 
algorithm suffers from lack of numerical stability, and 
measures to prevent the loss of orthogonality must be 
adopted. One may periodically reorthogonalize the 
vector  against all previous ones. Since this would 
take a lot of time to do, one must estimate the degree 
of nonorthogonality and reorthogonalize only when 
needed.  

v

It is interesting to note that although the real 
eigenvectors are not really needed in partitioning 
applications, one may compute them from the 
eigenvectors of T as follows 

1 
1 

2 

1 

2 3 

Figure 3 The bipartitioned graph with three 
nodes and three branches 
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where the v's are the Lanczos vectors. Many 
researchers have based their partitioning algorithms 
upon the Lanczos technique which uses the 
approximate Fiedler vector. 
 
4. Pioneering Graph Partitioning Heuristics 

The problem of partitioning nodes of a graph with 
costs associated with the branches into subsets no 
larger than a given maximum size with the objective of 
minimizing the total cost of the branch cutest was first 
considered by the pioneering work of Kernighan-Lin 
(1970). A typical application of this heuristic would be 
the placement of the components of electronic circuits 
onto various printed circuit boards with the objective 
of minimizing the number of inter-board connections. 
The limitation of each board in terms of the maximum 
number of components which can be placed on it 
should also be considered. They proposed an iterative, 
2 way, and balanced minimum cutset partitioning 
heuristic. In this procedure,  

a) The node pairs that yield the largest decrease 
or the smallest increase in the size of the cutest are 
exchanged. 

b) The nodes are then locked so that they may 
not participate in any further exchanges. 

c) The above procedure is repeated until all the 
nodes are locked. 

d) The set with the largest partial sum is found 
for swapping. 

e) All nodes are unlocked. 
The details of this procedure are outlined in Figure 

4. 
There are several complexities involved in any 

graph partitioning problem. Kernighan and Lin (1970) 
introduced the probability that a heuristic procedure 
finds an optimal solution in a single trial as one such 
consideration. They concluded that this probability is 
around 0.5 for matrices of size 30x30, 0.2 to 0.3 for 
matrices of size 60x60 and from 0.05 to 0.1 for 
matrices of size 120x120. They assumed 50% dense 
matrices in these estimates. Although many modern 
day scientific applications of graph partitioning 
involve matrices that are much less dense, the size of 
the matrices involved is much higher than the ones 
considered in these estimates. This indicates that the 
challenge still remains a viable one since finding an 
optimal solution in a short time is a vital issue 
especially in real time applications. Another 

complexity is the running time of the procedure in the 
Kernighan-Lin partitioning procedure. The total time 
for a single pass involves computation of the D values 
initially which is in the order of  , updating the D 
values that is proportional to  , and sorting D 
values is in the order of  . Since the number 
of passes required is estimated to be a few before a 
phase 1 optimal partition is found, the total running 
time for phase 1 is in the order of  . Another 
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Figure 4 The flowchart of the first phase of 
Kernighan-Lin partitioning heuristic 
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complexity of the Kernighan-Lin partitioning heuristic 
is the restriction imposed in the size of the partitions 
being exactly equal. Although this may be useful in 
some applications, it is certainly not a requirement of 
all modern day scientific applications of partitioning. 
Other factors exist which are more important than the 
exact size of the partition. For example, in power 

system islanding applications, it is more desirable to 
have stable islands after partitioning with minimal 
load/generation imbalance in each island formed than 
to force them to be exactly of equal size. This 
restriction may not even be practically possible to 
enforce in all power networks. Kernighan and Lin 
(1970) addressed this issue themselves in their original 
work and proposed partitioning into unequal subsets. 
Yet a further complexity is the restriction of having 
two partitions, which should also be relaxed to several 
partitions in some applications. This was also briefly 
noted in their work. 

3

 8

5. An example of power system partitioning using 
the Fielder vector 

To gain a better feel for the complexity of the 
work, an example is presented here to demonstrate the 
application of the spectral method for partitioning a 
power system graph into 3 partitions, using the 
smallest 3 eigenvalues. The weighted graph of a 
14-bus power system is shown in Figure 5. 

The Laplacian matrix fro the above graph is as 
follows where  is weight of the branches that 

connect the two nodes  and  (note that 
ije

iv jv

0=iie  ). Therefore, the Laplacian matrix is as shown 
below: 

⎪
⎩

⎪
⎨

⎧

≠−

=
= ∑

=

jie

jie
Q

ij

h
ih

ji

;

;
14

1,  

and the eigenvalues are: 
[ 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  9λ  10λ  11λ  12λ  13λ  14λ ]= 

[ 0 1.62 5.31 11.27 13.67 14.80 24.46 28.94 33.02 40.47 42.95 47.88 58.76 82.83] 
 
The second and third eigenvectors of the 

Laplacian of the graph are shown in Figure 6 which 
shows that this graph can be divided into three 

partitions as follows: [Partition 1: {1, 2, 3, 4, 5}, 
Partition 2: {6, 7, 8, 9}, Partition 3: {10, 11, 12, 13, 
14}] 
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Figure 5 The graph of a 14-bus power 
system with 21 branches 

18 -10 0 0 -8 0 0 0 0 0 0 0 0 0 
-10 33 -5 -8 -10 0 0 0 0 0 0 0 0 0 
0  -5 16 -11 0 0 0 0 0 0 0 0 0 0 
0 -8 -11 31 -12 0 0 0 0 0 0 0 0 0 
-8 -10 0 -12 50 -20 0 0 0 0 0 0 0 0 
0 0 0 0 -20 55 -8 -20 -7 0 0 0 0 0 
0 0 0 0 0 -8 14 -6 0 0 0 0 0 0 
0 0 0 0 0 -20 -6 46 -3 -17 0 0 0 0 
0 0 0 0 0 -7 0 -3 10 0 0 0 0 0 
0 0 0 0 0 0 0 -17 0 31 -10 -4 0 0 
0 0 0 0 0 0 0 0 0 -10 24 -6 -8 0 
0 0 0 0 0 0 0 0 0 -4 -6 30 -15 -5 
0 0 0 0 0 0 0 0 0 0 -8 -15 33 -10 
0 0 0 0 0 0 0 0 0 0 0 -5 -10 15 

=Q  



Marsland Press   Journal of American Science 2009; 5(5):1-12 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-0.5

0

0.5
-0.6

-0.4

-0.2

0

0.2

0.4

Nodes 

Second 
eigenvector 

Th
ird

 e
ig

en
ve

ct
or

 

ure 6 The second and third eigenvectors with respect to the nodes and the three partitions of the 
wer system based on the eigenvectors of the Laplacian of the graph 
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Various techniques have also been proposed to 
reduce the complexities of graph partitioning and 
the computational burden even more. One may 
mention techniques such as multilevel clustering by 
Hendrickson et al. (1995), recursive spectral 
bisection method by Xu et al. (1998) or local 
clustering by Orponen et al. (2005) as examples of 
such efforts. 

Yang et al. (1994) noted that the complexity of 
large problems can be efficiently reduced using the 
concept of divide and conquer. They proposed the 
use of ratio cut objective function in logic 
partitioning of VLSI design since it automatically 
coordinates the two traditional goals of logic 
partitioning, mincut and equipartition. The 
complexity in this application is how to reduce the 
needed number of trials while maintaining the 
quality of solutions. A preprocessing 
circuit-clustering procedure to improve the 
performance is proposed. 

Hendrickson et al. (1995) proposed a multilevel 

algorithm for graph partitioning where the graph is 
approximated by a sequence of increasingly smaller 
graphs. The smallest graph is then partitioned using 
a spectral method. The partition is then propagated 
back through the hierarchy of graphs. They 
periodically applied a variant of the Kernighan-Lin 
algorithm to refine the partition. They claimed that 
the entire algorithm could be implemented to 
execute in time proportional to the size of the 
original graph. The proposed algorithm used branch 
and node weights to preserve in the coarse graphs 
as much structure of the original graph as possible 
to allow its applicability in physical problems such 
as the terminal propagation technique used in VLSI 
layout.  

Xu et al. (1998) proposed a fast 
implementation of the recursive spectral bisection 
method for k-way partitioning since recursive 
bisections for k-way partitioning using optimal 
strategies at each step may not lead to a good 
overall solution. The relaxed implementation 
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accelerates the partitioning process by relaxing the 
accuracy requirement of spectral bisection method. 
Since the quality of the solution of a spectral 
bisection of a graph primarily highly depends on 
the accuracy of its Fiedler vector, they proposed a 
tight iteration number bound and a loose residual 
tolerance for Lanczos algorithms to compute the 
Fiedler vector. 

Multilevel versions of the Kernighan-Lin 
algorithm have been used for partitioning large 
graphs. In these algorithms, the graph is coarsened 
until it becomes so small that the processes for the 
problem at hand may be applied fast. Then the 
partitions are aggregated. Multilevel versions of the 
spectral method which are based on applying the 
spectral method at various levels have also been 
successfully used. In these methods, it is required to 
compute the Fiedler vector. Holzrich et al. (1999) 
proposed a purely spectral approach in which the 
calculation of the Fiedler vector is done using the 
Davidson algorithm. The problem at hand is to be 
set up in the form of a graphical preconditioner to 
the Davidson algorithm. 

Spectral algorithms are usually based on the 
Fiedler vector of the Laplacian. Determining the 
Fiedler vector of the Laplacian or adjacency 
matrices of graphs is the most computationally 
expensive part of graph partitioning as well as other 
applications such as graph coloring, envelope 
reduction, and seriation. In many applications, an 
approximation of the Fiedler vector is used to speed 
up the solution.  

Barnard (1995) proposed a parallel multilevel 
recursive spectral bisection algorithm for 
distributed parallel processing to balance the loads 
between the processors as well as minimize the 
interprocessor communication. Noting that the 
problem of finding a partition that balances the 
work of all processors and minimizes interprocessor 
communication is an NP-complete problem and 
heuristic approaches should be relied upon, 
recursive spectral bisectioning was chosen since it 
provides good partitions. In this approach, the 
eigenvector corresponding to the smallest 
non-trivial eigenvalue of the Laplacian of the graph 
is computed first. Then the graph is bisected into 
two partitions by finding the median of the 
components of the eigenvector. One partition 
includes nodes corresponding with the elements of 

the eigenvector that are less than or equal to the 
median, while the second partition includes nodes 
corresponding with the elements of the eigenvector 
that are greater than the median. 

Several researchers have proposed 
graph-partitioning algorithms based on heuristics 
like the Kernighan-Lin method [Kernighan and Lin 
1970], spectral methods [Pothen et al. 1990], 
genetic algorithms [Maini et al. 1994], or 
combinations of different methods. Although they 
are reported to work well for the chosen application, 
they can not guarantee asymptotically optimal 
bounds on the size of the obtained separators in the 
worst case. Most of them work on general graphs 
and are based on relatively simple and easy to code 
routines.  

There are also other approaches for estimating 
the eigenvectors of the Laplacian of a graph. 
Srinivasan et al. (2002) proposed the use of Monte 
Carlo techniques which use an iterative scheme to 
converge to the correct eigenvalues and 
eigenvectors for this purpose. The complexities in 
this approach lie in the fact that Monte Carlo 
technique requires many iterations to converge; 
there are no generally accepted acceleration 
techniques, and it is very difficult to determine 
when convergence has been achieved.  

The authors believe that since the exact values 
of the eigenvectors are not really necessary in 
portioning graphs, better approaches should be 
sought. The use of multilevel kernel k-means to 
speed up the partitioning and the modification of 
objective functions used in order to better reflect 
the complexities of the application in hand are 
proposed. Peiravi and Ildarabadi (2009) reported a 
paper in this respect in the area of power systems 
intentional islanding to illustrate this perspective. 
More work is being carried out in order to improve 
the application to make it more realistic and faster 
so that it becomes suitable for real time application 
to controlled power system islanding. It is 
suggested that the use of directed graphs be 
followed in order to properly count for the direction 
of power flow in the transmission lines. It is also 
suggested that the objective function be changed 
from just minimum cutest flows to a different 
measure considering the generation/load imbalance 
that will exist in the islands being formed a well as 
the instabilities such as frequency or voltage 
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instability that may pursue the formation of islands 
 
6. Conclusions 

In this paper the various approaches for graph 
partitioning and their application to modern day 
scientific problems were presented. The 
mathematical basis of graph partitioning was 
discussed along with an example to show the 
amount of work required to carry out the 
partitioning even in simple cases. 

Since the graph partitioning problem is 
NP-complete, it may not result in an optimum 
solution of practical problems. There exist many 
variations of this approach aimed at improving its 
performance. However, one should not be very 
optimistic about these techniques and think that 
they present a universal solution to partitioning 
problems since there are certain graphs for which 
each version of these methods performs poorly. 
Guattery and Miller (1998) showed that some of the 
existing spectral algorithms for graph partitioning 
perform poorly against the usual claim that they 
work well in practice. They present a generalized 
definition of spectral methods to include the use of 
a specified number of the eigenvectors 
corresponding to the smallest eigenvalue of the 
Laplacian matrix of the graph and show that even if 
these algorithms use a constant number of 
eigenvectors, there are graphs for which these 
algorithms do no better than they would using just 
the Fiedler vector. They also show that the use of 
the Fiedler vector would produce poor partitions.  

Heuristics proposed for partitioning tasks were 
shown along with the complexities involved. 
Improvements in application to various problems 
were discussed with an example applied to power 
system islanding. It is concluded that the challenge 
still remains until careful attention is paid to the 
various complexities which exist in the application 
of graph-theoretic partitioning heuristics to modern 
day scienctific problems. 
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