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Abstract: Here, the existence of a unique solution of mixed integral equation (MIE) of the first kind in three
dimensions is discussed in the space LZ[Q ] x C [O,T ], T <1; Q is the domain of integration with respect to

position. A numerical method is used to obtain system of Fredholm integral equations (SFIES). Many spectral
relationships (SRs), when the kernel of position takes a logarithmic form, Carleman function, elliptic kernel,
potential function and generalized potential function are obtained in this work. In addition, many important new and
special cases are considered and discussed.
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1. Introduction an elastic material occupying the domain Q, where Q
is the domain of integration with respect to position,

Th thematical  fi lati f  physical
¢ Mathematica ormuiation o1 - prysica through the time t; t €[0,7] T<7. The given

phenomena, population genetics, mechanics and

contact problems in the theory of elasticity, often function f(x,¢) is the sum of two functions, the first

involves singular integral equation with different function o(¢) represents the displacement of the
kernels. The monographs [1-6] contain many surface, under the action of the pressure of
different SRs for different kinds of integral (12)P(t), t € [0,T] T <1, and the second function

equations, in one, two and three dimensional. In

o . ] o f;(x) describes the basic formula of the surface.
addition, in [7, 8] using Krein’s method, Mkhitarian

and Abdou obtained many SRs for the FIE of the Here, 1, 2, and 4, are constants, may be complex,
first kind with logarithmic kernel and Carleman and having many physical meanings. The unknown
function, respectively. function &(x,r) , represents the normal stresses
Consider the MIE between the layers of the two surfaces. The known

- , — function k°—2] is the kernel of position and has a
ﬂ,jﬂl{7 CD(y,t) aj/+ﬂz‘UQF( t-7 )k ﬁ <Il(y,z') ci\/dz':f(x,t)

singular term, while F(|t—t|) is the kernel of

Volterra integral term in time, and represents the
resistance of the layer of the surface against the
pressure P(¢).

(x=;(x,,x2, x3)’y:;(J’1’J’2’y3)) (1.1)

under the condition

In order to guarantee the existence of a unique
fgib(x,t) dx = P(t) (1.2) solution of (1.1), we assume the following
conditions:

The integral equation (1.1), under the condition (1.2),

can be investigated from the mixed contact problem @ The kernel of the position

X

of a rigid surface (G,v), G is the displacement k ;y’ x=x (X, x, x3) and y:;(yl,yg,h) >

magnitude and Vv is the Poisson’s coefficient, having
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satisfies in L,(Q) the condition

e

(ii) The positive
F(|Z—r|)EC([0,T]><[0,T]) , and satisfies

=y

dx dy } =4, (A:constant)
continuous function

Flt-7l<B, B is a constant, for all

Values(t,r)E[O,T],T< 1.

(iii) The given function f(x,) with its first partial

derivatives are continuous and belong to the class
L,(Q)xclorT], where

| 71,0 = max, fAr ) an Ve,

(iv) The unknown function &(x,s) satisfies Holder

condition with respect to time and Lipschitz
condition with respect to position.

In this work, a numerical method is used to transform
the MIE (1.1) into SFIEs of the first kind. In
addition, the potential theory method, Fourier
transformation method, orthogonal polynomial
method and Krein’s method will be used to establish
many theorems for obtaining the SRS of the SFIES
(2.1), under the condition (2.3), in one, two and three
dimensional in the space Lz[ Q]x C[O,T], T<I;
Q is the domain of integration with respect to
position. The kernel of position of (2.1) will take the
following forms: logarithmic form, Carleman
function, elliptic and potential kernels, and
generalized potential kernel.  Moreover, many
important new cases will be discussed here.

2. System of Fredholm integral equations

If we divide the interval [0,T], 0 <t < T <las
0=t)<t;,<.<t;, =T , when ¢=t, ,

(=0,1,2,..., i,the MIE (1.1) takes the form

S A7 o) o [

(n,—0, p>0) .1

where h, =max,<; <, h; and h; =1¢,,,-1;,
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"j D(y) d+d #*)=f]x)

Here, we used the following notations

Alo-o|)-7,. olni)-a(), Asi)=sx
(2.2)

The values u, and the constant p depend on the

number of derivatives of F (| t-1 | ) with respect to t,

see [9, 10]. Also, the boundary condition (1.2)
becomes

J,00 (&) dx =P, , 0=0,12..N

(2.3)
The formula (2.1) represents SIEs of the first kind,
where it’s solution depends on the kind of the kernel

k|2=2| and the domain of integration Q. In the next

applications we will neglect the error term O(hp o )

3. Theorems of spectral relationships

In this section, we obtain the SRS of the SFIES in
one, two and three dimensional using different
domains and suitable methods.

3.1 SIEs with logarithmic kernel
Consider SFIEs of the first kind,

ASuE [ kﬁx y] (y)d+if kﬁ’“ yJ@ = x

0
3.1
= j‘ozo tanh u exp( iuz) du z:xily
under the conditions
]J_,%(X) dx = F, (3.2)

The kernel of SFIEs (3.1) can be written in the form
(see [11])

oo tanhu x-y
y 2=
A

(3.3)

exp( iuz) du=-In

de= 17

editor(@americanscience.org




Journal of American Science, 2012; 8(5);

http://www.americanscience.org

If A— o, and z is very small, so that tanh z

r:
N

then we may write

I tank™ | 2l x—y|~d , d=ln*? (3.4)
4 V4
Hence, we have
SUE, [ | x 3| @10 ( ] do+4 [ [ x— )] A1) dr=/( ]
(3.5)

Let Tn(x)=cos(ncos'1x),x S [—],]], n =0 denotes

the Chebyshev polynomials of the first kind, while

sin[(nJr])cos'lx]

U/(x)= the

n

n=(0 , denotes

sin ( cos” x) '
Chebyshev polynomials of the second kind. It is well
known that {7, (x) | form an orthogonal sequence of
functions  with the

respect  to weight

function (1-x2 )é , while {Un(x )} form an
orthogonal sequence of functions with respect to the
weight function (1 - x° )%. It appears reasonable to
attempt a series expansion to @Z( x) in Eq. (3.1) in

terms of Chebyshev polynomials of the first kind.
This choice is not arbitrary since one can identity a
portion of the integral as the weight function
associated with 7,(x ).

For convenience, we use the orthogonal polynomials
method with some well known algebraic and integral
relations associated with Chebyshev polynomials see
[12,13]. Thus, in this aim, we represent (15/( x) ,

f,(x), in the following forms

1 3 f;zk Tlvc,:
A= I a0 S L
(3.6)

Using the above expressions of (3.6) in (3.5) we have
the following:
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Theorem 1: The SRs of the MIE (3.1), under the
conditions (3.2), when the kernel takes a logarithmic
function are given as :

AZZJ F.f [m d}

iy JI{ }T ()4

[l ey
A2+ d ) ALY 0, A n,=0
B cou, F., T (x T
z ﬂq[z;o d Nn /( ) +7A ,,(n(x)] n, =1
J ‘

3.7
Different new cases can be established from (3.7) as
the following:
(1) Differentiating (3.7) with respect to x, we get

T, 1
ﬂzz w51, - ()yj%Jr Il(yif;i/%
—MZ%E/%I +7AU() =l
(3.8)
Hence we get:
. (yn—j X)yf/zyyz 4l (yix()y\; fyz
(3.9)

Thus, the result of (3.8) leads to the SRs of the SFIES
with Cauchy kernel. While (3.9) leads, directly to the
fact

1 dy —0
y-x W 1-p?
siné/2 sinn/2
2) If =2 = =
@) e =4 sina/2 sinaf2 ’
(a<¢, n=a, a=n), in (3.7) , we have the
following SRs
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n, (sinn@ cos(7/2)dn

sin

u, F., [ |In +
Jzo ol 5 sinf_” \/Z(cosry—cosa)
2
i 2
1 (S ) eostn2)an
+A41% | In +d
2 siné_n \/Z(cosry—cosa)
2
wh| 52z )+d |2, w74 In( 5is)+d ] n, =0
_ (3.10)
sing/2 sing/2
‘ ufF}q fTZm, (sinzz/2) TZm (qina/Z)
) _ . + 7 ———" n, >1.
ZZFO 2m; A 2m, !
G)If ny=2m, +1, 2082 _tann2 (, e p<q g=r) Eq (3.7)yields
tan /2 tan o/2
3 a 1 tanz/2 cos(n/2) dn
12 Z uj F‘j,«fJ. ln + d 2my+1
=0 o 5 siné:;] 7\ tana/2 \/2 (cosn — cosa)
@ 2)d
Y[R Ny e e
— ) sinc“?;n tan /2 \/2 (cosn = cosa)

g Jrg.t TZm/+1( tan /2
= Th)

tan£/2 )

o g B i)

(3.11)
= 2m; +1 2m, +1

(4) Using the following relations

cos(éjcos(zJ = cos(ﬂ + Qjcos(zJ = cos(zj . cos(n_§ + zj (3.12)
2 2 2 2 2 2 2 2

the formula (4.8) leads to the following SRS

4 Z”jFi,f J._a
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240 4,

2 12 Zj:oquj,f [CSC(%) Uij_l(:::i
+2/11[C05(%)U2m,,_1(%) + (_1

sina
1+cosa

Here, in (3.13) we obtain the SRS

n, and n;, j=0,1,2,..,1¢.

3.2 SIEs with Carleman function

The importance of Carleman function came from the
work of Arutiunion [14], who has shown that, the
contact problem of the nonlinear theory of plasticity,
in its first approximation reduce to FIE of the first
kind with Carleman function. If we consider, in the

3.1)

formula
X=Y
A

H

following SFIEs:

1 NJ. ‘x

the following singular kernel

", 0<v<L Qe[ -1 1], we have the

() d=£(»
(3.14)

To obtain the solution of the formula (3.14), we
assume and represent the unknown and known

functions, respectively in the following form:

O (x)= Y a, C, ()
- x* )T n=0
1 2 i
ﬁ(X) = 1-v z f;ﬂ! C22nk (x)
(1 _ x2 iT) n=0

(3.15)
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) + (-1)’
o Fns ]

93

tan$ tan$
Fj, . csc(%) Uzmjl(tan’z’)+2/ll csc(%)UZmﬁ1 (ﬁ)

(m,=2m,, m=1, 2,..") (3.13)

m; =2
sina j
l+cosa l:tan :|z :l

n,=2m, —1

of the integral operator with Hilbert kernel for different values of

Here, C}, (x) are Gegenbauer polynomials, a,, are
the unknown coefficients and f,, are the known

coefficients. Using the potential theory method [3],

and the following relations [12]

1. nC)(x)= ZV[x C,:f]](x) - C,:_gl(x)],
2. 5/_1 (1 -x)“ (1 +x>’8 C (x)dx=

2P 1+a) 1{1+) Mn+29)
12 Mot p+2)

x5 (n, nk2y, ol v, a2 1)

H;F(X) p

2 0 o= oo, (e >0

a2 (2v+n) >£
) P

s Pl el ae

where 7I'(x) is the Gamma function and

3F,(...;o01) is the Generalized hypergeometric

function, we have the following:
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Theorem 2: The SRs of the MIE (3.1), under the
condition (3.2), when the kernel takes the Carleman

function form are
Cjn (y) & 1
-+ I

ﬂzZ/ MJ. .(1 yz)

v

G,y

1-v

(-

=AYy uF,p, G, (x)+4m, G, (x) , n20
Jj=0
(3.16)

and

where

1, = T(2n, +) {r(znk A)T0) cos[”;ﬂ] (1,2 0)

3.3. SIEs with potential kernel in finite domain

Assume the domain of integration 2 , in (2.1), in the

form Q = {(x,y,z) SN x2+y2 <a, z :O}and

the kernel takes the potential function form

A
k(x-¢, yon)=[(x-¢F + (y-n P17
we have the SFIEs with potential kernel. Using the

. Hence,

polar coordinates and then, using the separation of

variables, the SIFs (2.1), yields

A5 EL [ AL oI ()], oL e )=t (1
(3.18)
where

)= §

cosmy dy

r2+ p?-2r p cosO
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Using the following relations, see [16]

d 2 "
j‘m cos my dy - 7(@),,2 F(a,m+a,m+1,22),
0 []- 2200sw+22] m!
F(m + 06)
|Z|<], R€a>0;(a)m:W

and

1 1 ~2a 4z
F(a,a+2—ﬁ, ﬂ+2,22)=(1+z) F(ag 5 20 szjx

2 1{a) F{a—!—l_ﬂ a—|~120(+], b

J ) o (et e a2 2 (m)z]

where F (a,b;c;z) is the Gauss hypergeometric
function, 7"(x) is the Gamma function and J,(x) is

the Bessel function, the SFIEs (3.18) takes the form

AXWE, [ Klrd) 217 doraf Klna 20 do=d (1)

j=0

o = )

(3.19)

(z76)=Vragm

where

Km(r,p ) =27\ rp Xome (u p)Jm (ur)du

(3.20)
Eq. (3.19) represents SFIES of the first kind with
kernel (3.20) takes a form of Weber-Sonien integral
formula.

Assume the solution of (3.19), at a=1, in the form

2" ()=

- =0
(k=0,1,2,....0)
(3.21)
where P,,(y ) is the Legendre polynomial. Then,

using potential theory method [3] and orthogonal

polynomials method [15], we obtain the following:
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Theorem 3: The SRs of the SFIES (3.1), under the condition (3.2), when the kernel takes a potential function form
(3.20) are

/122(: u,
j=0

J.l K, rp)P(" ’)(1 2p° ) dp+iljl Km(r,p)Pnif’f%)(l—sz) dp
/1_p 0 /1_p2

d -1y (n-1)

— A Y oy wF B (1-28) + 4, B (3.22)

1"2( +m j
where, in general, - 2 ‘ ,and P'*7/ )( X ) is a Jacobi polynomial.
o Cm )T +nm,) "

3.4 SIEs with generalized potential kernel in finite domain

When the modules of the elasticity of the contact problem is changing according to ¢,=K,¢;, 0 <v <1, where

o; and ¢ are the stress and strain rate intensities, respectively, while K, and V are the physical constants, see [5].
For this, the kernel of Eq. (2.1) takes the form

K(x—g,y_q)z[(x—g)z+(y—77)2I” 0<v<l (3.23)
The kernel of Eq. (3.23) is called the generalized potential kernel.
Using (3.23) in (2.1) where, Q = {(x, y2)EQ 2+ <a z=0 } ,we can arrive to the following SFIEs.

4
@Zu J. K(V)rp)Z ()dp+/11j K(V)rp)Z ()dp gg)(), (3.24)
=0
where
_ 2(1-v)
K,(nV)(r,p) = cﬁj: u™! Jm(u p)Jm(u r)du , (c= i F(l v).2 ) (3.25)

r (v)

The kernel of (3.25) takes a generalized form of Weber-Sonien integral formula.

Representing the unknown functions Zj(.m) and the known functions gf'")( ), respectively in the Jacobi

polynomials form

Z0() = s Sal R (122, ),

(m) (m) ‘(m)Pn(m»—ff) 1 =22 (3.26)
(_T e (1-2r7)

Then, using Krein’s method, see [5], we can obtain the following:

Theorem 4: The SRs of the SFIES (3.1), under the condition (3.2), when the kernel takes a generalized potential
function form are:
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ﬂ? Z[: jc m.(m)&(jmrf)(l_Q’MZ )du+ﬂ1.[; ul+me(nv)(u’v).(m)P(’"”Ui)(l_zuz) du

& ey "

I3
=L u, pu Fo PO (=207 + Au, PO (1=200 ), (3.27)

J

~—

]71
).

u, =22 T(n, + o' )T(n, + ) [n,1T(1 + 2,

. 1t 1
(O'_ZJ,VZW-F*,O < w<
2 2

N | —

Many special cases can be derived from (3.25) as the following:

1 1 1
(i) Carleman kernel, m = 5 (ii) Logarithmic kernel , v = 5 m=E,

1
(iii) Elliptic kernel, v = 5 m= 0

Fig. 1, m=0.5, v=0.1

Fig.2, m=0.5, v=0.55
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Theorem 5: The SRs of SFIES (3.1), under the condition (3.2) for the complete elliptic kernel can be obtained in
the form:

: JuE (5 : uE (207) 2
iz;quj,z [, \/1_7,021’2,“],(\/1—/7 )dp+ Af, T sz,( - 5 )dp

2 @ 2m,—-1) ! 2 "
:@%Zujpj,[ M B, ( /1—r2)+/11% m sz{( 1 — rz)
j=0

; (2m,) 1 (2m,) 1!

(Pnio’ E (1 -2x° ) =P, (ﬂl—x2 ) P, (Z) is a Legendre polynomial ) (3.29)

The importance of the integral equation with complete elliptic kernel came from the work of Kovalenko [17], who
developed the FIE of the first kind for the mechanics mixed problem of continuous media and obtained an
approximate solution for the FIE of the first kind with complete elliptic kernel.

(iv) Potential kernel, v=0.5 (v) Generalized potential kernel

Fig. 5, m=0.1 Fig. 7, m=50, v=0.2

Fig.8 , m=120, v=0.4
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000035
oo
000025
00002
0.00015
0.0001
el

04
R,

Fig. 9, m=200, v=0.01

Ae+14

2e+14

-Zetld

Fig.10 , m=120,v=0.5

Many important spectral relations can be derived and
established from the formula (3.25), for different
values of v,0 <v<1 and for higher order

mj, j=0,12,....0.

4, Conclusion and results

From the above results and discussion, the following
may be concluded

(1) The contact problem of a rigid surface of an
elastic material, when a stamp of length 2a is
impressed into an elastic layer surface of a strip by a
variable P(t),0 <t <T <] , whose eccentricity of
application e(t), see [ 11], becomes special case of
this work.

(2) The numerical method used transforms the MIE
into SFIEs.
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(3) The SFIEs depends on the number of
derivatives of F (t,r) with respect to time
t, teloTlT <1 .

(4) The displacement problems of anti plane
deformation of an infinite rigid strip with width
2a , putting on an elastic layer of thickness #
is considered as a special case of this work when
t=1, Flt,r)=1, f(x0)=H and p(x,1)=p(x)-
Here, H represents the displacement magnitude
and y/(x) the unknown function represents the
displacement stress, see [18].

(5) The problems of infinite rigid strip with
width 2a impressed in a viscous liquid layer of
thickness % , when the strip has a velocity
resulting  from  the  impulsive  force

V=Vye™,i=+-1, where V, is the constant

velocity , W is the angular velocity resulting
rotating the strip about z-axis are considered as
special case of this work , when F (t,7)=
constant and =1, see [18].

(6) In the above discussion (4) and (5) and when
h — oo | this means that the depth of the liquid
(fluid mechanics ) or the thickness of elastic
material (contact problem ) becomes an infinite .
(7) The three kinds of the displacement problem,
in the theory of elasticity and mixed contact
problems, which discussed in [11,18] ,are
considered special cases of this work .

(8) The generalized potential kernel represents a
Weber-Sonin  integral formula (3.25) and
represents a non homogeneous wave equations.
The kernel (3.25) can be written in the Legendre
polynomial form as follows

L s Pntmt1-w )Pl w) Pl

K (uv)=2 2 (uv)m%2 >

o Pntm+D)Cn+m+1-w™ )

( P"(u) is Legendre polynomial and
=)
2

(9) Taking in mind the basic relations of Bessel
function, the generalized potential kernel (3.25)
satisfies the following nonhomogeneous wave
equation

g 7 :

— - rp)=\hlr)-h nP),

h(r)z(mz —ij ", Emii;)
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(10) This paper is considered as a generalization of
the worker of the contact problems in continuous
media for the Fredholm integral equation of the first
and second kind when the kernel takes the following
forms: Logarithmic kernel, Carleman kernel, elliptic
integral kernel, and potential kernel. Moreover the
contact problem which leads us to the integro-
differential equation with Cauchy kernel is contained
also as a special case, see [1]. Also in this work the
contact problems of higher-order (m > 1) harmonic
are included as special cases, see [1-8, 11-15, 17-19].
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