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Abstract: Cancer remains the major health threat worldwide; therefore, the extensive search for potent cancer-
controlling agents are still a big demand. Hepatocellular carcinoma (HCC) is a type of cancer widespread in the 
developing countries. In the present study, the role of Cyclophosphamide and drug combinations (including 
Erlotinib, Temozolomide, Vorinostat, and Sodium Phenylbutyrate) as DNA methyltransferase (DNMT) and Histone 
deacetylase (HDAC) inhibitors was evaluated. Two concentrations of each drug i.e., 3µM and 5µM for one 
incubation period of 72 h were applied. Trypan blue test was used to count the number of viable cells before and 
after treatments. DNA degradation assay was employed to evaluate the effect of Cyclophosphamide and a 
combination of drugs on the integrity of genomic DNA. Global methylation was also quantified via measuring the 
concentration of 5-Methylcytidin in the treated and un-treated HCC cells. Data obtained indicated that treating HCC 
cells with Cyclophosphamide either alone or in combination with other drugs has resulted in a significant decrease 
in the number of viable cells. Meanwhile, global DNA methylation data analysis showed that three combinations 
have resulted in hypomethylating the whole genome of HCC cells (Cyclophosphamide with Erlotinib, 
Cyclophosphamide with Sodium Phenylbutyrate, and Cyclophosphamide with Vorinostat). Although in vitro data 
need to be tested on the pre-clinical level, the best combination, Cyclophosphamide combined with Sodium 
Phenylbutyrate, might be recommended to be used in treating HCC in vivo. 
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1. Introduction 

Cancer is a complicated disease that shows itself 
in various forms, all these forms were marked by the 
same uncontrolled proliferation of cells (Allen and 
Chen, 2013). Hepatocellular carcinoma (HCC) is 
viewed as the main reason for death worldwide in men 
and women with around 6% of all new cancer cases 
diagnosed around the world (Buonaguro et al., 2013). 

Tumors appear when mutations accumulate 
within cells and eventually prompt uncontrolled cell 
growth. These changes can be brought on by external 
factors, for example, hepatitis infection, or by internal 
factors, such as hypermethylation of tumor-silencing 
genes (Diederich et al., 2014). HCC is an aggressive 
disorder with a high rate of mortality and morbidity 
(Anestopoulos et al., 2015). If identified in the 
symptomatic stage, the patient has an untreated mean 
life expectancy of less than one month; even at this 
stage, the accessible medicines are constrained and 
ineffective (Lu et al., 2014). 

DNA methylation plays an important role in many 
biological events and is associated with various 
diseases (Liu et al., 2015). Several factors may directly 
or indirectly regulate the dynamic distribution of DNA 

methylation and demethylation between intergenic and 
intragenic gene regions, which means that thereby 
controlling gene expression (Jiang et al., 2013).  DNA 
methylation played a critical part in numerous 
biological events and is connected with different 
diseases (Liu et al., 2015), and have an essential role in 
the regulation of gene expression, as it is the first 
epigenetic change to occur on a given DNA strand 
(Mathiyalagan et al., 2014, Lopez-Ramirez and Nicoli, 
2014). 

CpG islands have direct ramifications for the 
understanding of DNA methylation patterns in typical 
conditions (Tao et al., 2014) and in some normal 
illness states (Stefansson et al., 2015), including cancer 
CpG island shores (Rhee et al., 2013) and first exons 
(Rao et al., 2013) is known to play crucial part in the 
gene expression patterns in all human malignancies. 

DNA hypermethylation is characterized by 
hyperactivity of the DNA methyltransferase enzymes, 
over expression of DNMT3b, and concurrent 
methylation-dependent silencing of various epigenetic 
biomarker genes (Roll et al., 2013). The methylation of 
promoter DNA sequences suppresses the binding of 
several transcription-related proteins (Paonessa et al., 
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2013). The methyl groups project into the major groove 
of DNA; through the direct interference of the binding 
of specific transcription factors that have methylated 
CpG(s) within their response elements (Hagiwara et 
al., 2012; Haerter et al., 2014). 

Cyclophosphamide (CP), works as an alkylating 
chemotherapeutic drug and is used in cancer therapy 
(Mittal et al., 2014), by activating a robust innate anti-
tumor immunity (Waxman and Wu, 2014). Although 
the advances of traditional therapies, such as surgery, 
transplantation, and use of radiotherapy, the prognosis 
of HCC neoplasm has not considerably improved over 
the past few years (Giordano and Columbano, 2014). 
Recent randomized clinical trials (RCTs) have 
demonstrated survival benefits for combination 
therapy (Gresham et al., 2014). In addition, the study 
of epigenetic mechanisms of gene regulation offers a 
novel approach for innovative diagnosis and treatment 
of different types of cancer (Cock-Rada and Weitzman, 
2013). However, the aim of the present study is to test 
the role of cyclophosphamide combined with different 
chemotherapeutic drugs in changing the genome-wide 
methylating profile in HCC cells. 
 
2. Materials and Methods 
Cell line maintenance 

Hepatocellular carcinoma cell line (HepG2) was 
purchased from the Holding Company for Vaccines 
and Biological Products (VACSERA), Cairo, Egypt. 

The cells were maintained in RPMI 1640 media 
supplemented with 10% Fetal Bovine Serum (FBS) and 
1% antibiotic mix. Cells were grown in humidified 
conditions with 5% CO2 at 37°C. 
 
Cell viability test 

Prior subjecting the cells to any treatment, Trypan 
blue test was performed to assess the number of viable 
cells. Briefly, 100 µL of cell suspension was mixed 
with 100 µL of trypan blue and the mix was applied to 
the haemocytometer slide and then measured under 
inverted microscope. Trypan blue was also performed 
after applying the chemotherapeutic drugs. 
 
Chemotherapeutic drugs 

Cyclophosphamide, Erlotinib, Sodium 
Phenylbutyrate, Vorinostat, and Temozolomide were 
purchased from Santa Cruz Biotech. (USA). A stock of 
both 3µM and 5µM of each drug was prepared and 
used for the treatment of the HCC cells. 
 
Drug application 

Five different drugs/drug combinations were 
applied.  In a 12-well tissue culture plate, 1 x 106 
cells/well was inoculated and left for 24 h before 
applying the drug/drug combinations. Combinations 
were mixed separately and added to the wells 
containing the HCC according to the design 
represented in Table (1). 

 
Table (1): The combination and the concentrations used in the present study. 

C CY (3µM) CY +S (3µM ) CY +E (3µM) 

CY +V (3µM) CY +T (3µM) CY (5µM) CY +S (5µM) 
CY +E (5µM) CY +V (5µM) CY +T (5µM) C 

C: Control, Cy: Cyclophosphamide, S: Sodium Phenylbutyrate, E: Erlotinib, V: Vorinostat, and T: Temozolomide. 
 
DNA extraction 

Genomic DNA was extracted from treated and 
non-treated cells for the downstream analysis i.e., DNA 
degradation assay and methylation quantification in the 
malignant cells after being treated with the drugs. 
Extraction was done using Cell Biolab DNA extraction 
kit (USA) according to the kit’s instructions. 
 
DNA degradation assay 

After being extracted, a suitable volume of the 
eluted DNA was migrated on a 1.4% agarose gel. Gels 
were subjected to 5 V for 5 minutes and then to 120 V 
for about 30 min. Gels were photographed after being 
stained with Ethidium Bromide. 
 
Quantification of whole genome methylation 

Global methylation in the treated and un-treated 
cells was measured using MethylFlash quantification 
kit (Cell Biolabs, USA) with minor modifications. 
Briefly, the extracted genomic DNA was applied to the 

assay wells. Wells were washed and the capture 
antibody was added, and the chromatin was 
enzymatically sheared to allow the antibody to bind to 
the assay wells. The antibody was immunoprecipitated. 
The flouro assay solution was added after washing and 
then the signals were measured immediately at 580 nm 
using plate reader. A standard curve was generated to 
calculate the concentrations of 5-Methylcytidin in the 
treated and untreated samples (Figure 1). 
 
Statistical analysis 

Statistical analyses were conducted by SAS 9 
software (SAS Institute, Cary, NC). The analysis was 
performed according to the following model: 

yijk= µ+ai+bij+eijk 
Where µ is the population mean, ai is the effect of 

each of the five different drugs/drug combinations and 
bij is the effect of the concentration within each 
treatment. The criterion for significance was set at p< 
0.01 for all tests. 
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3. Results and Discussion 
Cell viability after treatment 

Trypan blue test was performed to measure the 
number of viable cells after being treated with the 
drug/drug combinations (Wang et al., 2012). Figure (2) 
shows the differences in the number of viable cells 
between treated and untreated cells. The obtained data 
indicated that all of the treatments resulted in a 
significant decrease in the number of viable cells 
compared to the control (Table 2). It was shown 
elsewhere (Vives et al., 2013; Kayal et al., 2015; 
Mondi et al., 2015) that the combined treatment of the 
malignant cells might result in prolonged effect and 
also in higher efficiency in terms of enforcing 
malignant cell to commit apoptosis. Our data indicated 
that out of the combined chemotherapeutics, 
Cyclophosphamide and Erlotinib (3µM), was the most 
efficient combination followed by Cyclophosphamide 
and Sodium Phenylbutyrate (5µM). Meanwhile, 
Cyclophosphamide alone (5µM) was more efficient in 

inducing apoptosis compared to its lower concentration 
(3µM). Data obtained indicated that not all the 
combinations had the same profile, as the HCC cells 
might undergo specific internal changes, which is 
combination- or dose-mediated (Morris et al., 2013; de 
la Torre et al., 2015). The obtained profile could be 
attributed to the fact that Cyclophosphamide, as DNMT 
inhibitor, perform its function by attenuating and/or 
inhibiting the enzymatic activity of DNMTs, and 
subsequently hypomethylate the HCC-related tumor 
suppressor gene, which led eventually to enforce the 
malignant cells to commit apoptosis (Bassiouny et al., 
2010; Zheng et al., 2010). On the other hand, Erlotinib, 
as HDAC inhibitor, helps the maintenance of a specific 
level of acetylation in the promotor region of the HCC-
related tumor suppressor genes. This mechanism has 
led to euchromatinize the promotor region and hence to 
accumulate the product of these genes, which in turn 
enforce the cells to commit apoptosis (Lai et al., 2005; 
Choudhari et al., 2007). 

 
Table (2): The mean values of Duncan's Multiple Range Test for cell viability of control and treated cells. 

Duncan Grouping Mean N Treat./ Conc. 

A 387500 4 C 

B 264375 4 CY+E (C2) 

C 212500 4 CY+S (C1) 

D 187500 4 CY+T (C2) 

D 175000 4 CY+T (C1) 

D 175000 4 CY (C1) 

D 175000 4 CY+V (C1) 

E 137500 4 CY+V (C2) 

E    F 125000 4 CY (C2) 

G    F 112500 4 CY+S (C2) 

G 100000 4 CY+E (C1) 

C: control, C1: concentration 3µM, C2: concentration 5µM, CY: Cyclophosphamide, S: Sodium Phenylbutyrate, T: 
Temozolomide, V: Vorinostst,and E; Erlotinib. 

 
DNA degradation assay 

DNA fragmentation is considered a powerful tool 
to identify the effect of treating cell lines with 
chemotherapeutic drugs (Muller et al., 2010). The 
extracted genomic DNA was subjected to 
electrophoresis to assess the degradation of DNA due 
to the treatments. Figure (3) shows the smears of 
degraded DNA in different treatments. 

As shown in Figure (3), all treatments have 
resulted in a severe degradation of the genomic DNA 
content of the cells. This DNA fragmentation might be 
due to the inactivation of caspase-associated DNase 
inhibitor (CADi) (Yuste et al., 2005; Yan et al., 2009), 
which releases the CAD to degrade DNA, or, on the 
other hand, via suppressing DNA repair mechanisms 

(Groselj et al., 2013). Cyclophosphamide and other 
drugs might be involved in this mechanism (Sarder et 
al., 2015). Data obtained showed that the combination 
of Cyclophosphamide with Erlotinib was very efficient 
in inducing DNA fragmentation. In addition, the 
combination of Cyclophosphamide and Vorinostat 
resulted in an obvious smear. 
 
Quantification of Global DNA methylation 

In the present study, the global methylation level 
in all treated and untreated HCC cells was evaluated. In 
this assay, 5-Methylcytidin concentration was 
measured as indicator for the occurrence of 
hypo/hypermethylation as a result of the treatments. 
The obtained data (Figure 4 and Table 3) showed that 



 Cancer Biology 2015;5(4)              http://www.cancerbio.net 

 

29 

the HCC responded differently to the dose and 
combination of the applied chemotherapeutic drugs. As 
shown in Figure (4), the combination of 
Cyclophosphamide with Sodium Phenylbutyrate (3µM) 
has resulted in a significant hypomethylation, while 
using the same combination in a higher concentration 
(5µM) resulted in a significant hypermethylation (P< 
0.01). The same profile was obtained when 
Cyclophosphamide combined with Erlotinib and 
Vorinostat was used, where the lower concentration 
(3µM) have led to hypomethylate the whole genome of 
HCC cells and the higher concentration (5µM) have 
oppositely hypermethylated the cell’s genome. This 
might be attributed to the synergetic action of Sodium 
Phenylbutyrate when combined with 

Cyclophosphamide. Several studies (Phillips and 
Griffin 2007; Iannitti and Palmieri, 2011; Gresham et 
al., 2014) have indicated the same profile. 
Furthermore, seven drug/drug combinations have 
resulted in moderate to severe hypermethylation. One 
of the most effective drug combinations that activated 
the DNMT was the combination of Cyclophosphamide 
and Sodium Phenylbutyrate (5µM). This was 
concluded from the numbers of viable cells generated 
in the present study. The hypermethylation status 
profiled in the HCC cells might has been occurring in 
some anti-apoptotic gene, and this could enforce the 
cells to commit apoptosis (Hervouet et al., 2010; Stone 
et al., 2013). 

 
Table (3): Mean values of Duncan's Multiple Range Test for quantification of global DNA methylation. 

Duncan Grouping Mean N Treat./ Conc. 

A 26536 4 CY+S (C2) 

B 17479 4 CY+V (C2) 

C 14401 4 CY (C1) 

D 11974 4 CY+T (C2) 

E 8067 4 CY+T (C1) 

E 7949 4 CY (C2) 

F 5521 4 CY+E (C2) 

F 4693 4 C 

G 4515 4 CY+V (C1) 

H 3254 4 CY+E (C1) 

I -2469 4 CY+S (C1) 
 

C: control, C1: concentration 3µM, C2: concentration 5µM, CY: Cyclophosphamide, S: Sodium Phenylbutyrate, T: 
Temozolomide, V: Vorinostst,and E; Erlotinib. 

 

 
Figure (1): A standard curve of the relationship between OD and concentration of 5-Methylcitidine. 
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Figure (2): The differences in the number of viable cells between treated and untreated cells. C: Control, Cy: 
Cyclophosphamide, S: Sodium Phenylbutyrate, E: Erlotinib, V: Vorinostat, and T: Temozolomide. I: 
concentration of 3µM and II: concentration of 5µM. 

 

 
Figure (3): DNA degradation assay. C: Control, Cy: Cyclophosphamide, E: Erlotinib, T: Temozolomide, S: 
Sodium Phenylbutyrate, and V: Vorinostat. 

 

 
Figure (4):  Levels of 5-Methylcytidin in nM after treating HCC cells with different drugs. C: Control, Cy: 
Cyclophosphamide, S: Sodium Phenylbutyrate, E: Erlotinib, and T: Temozolomide. I: concentration of 3µM 
and II: concentration of 5µM. 
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Data could also be viewed in a dose-wise 
perspective to elucidate the effect of the drug dose on 
the HCC cell proliferation (Figure 5). Meanwhile, the 
presented data indicated that applying 
Cyclophosphamide in lower concentration (3µM) 
resulted in hypermethylation of the whole genome of 
the hepatocellular carcinoma cells (Figure 6). The 
higher concentration of the same drug (5µM) yielded a 
lower methylation rate, despite being higher than the 
control. When combined with Sodium Phenylbutyrate 
in lower concentration (3µM), cyclophosphamide 
induced a severe hypomethylation, while when the 
same combination was applied in higher concentration 
(5µM), it induced severe hypermethylation. 

This might indicate that the combination should 
be used in lower concentration (Greten et al., 2010; 

Reguart et al., 2014). In addition, when 
Cyclophosphamide was applied combined with 
Erlotinib, the lower concentration caused 
hypomethylation of the whole genome of the HCC 
cells, while the high concentration yielded more methyl 
groups added to the CpG dinucleotides. This also 
indicated that the desired hypomethylation pattern 
could be obtained by using the lower concentrations of 
the combined drugs. The same profile has been noticed 
when Cyclophosphamide was combined with other 
drugs, i.e., Vorinostat and Temozolomide (Zhang et al., 
2011). 

Figure 6 shows the changes in global methylation 
patterns due to different treatments. 

 
Figure (5): The effect of different treatments on the viability of HCC cells arranged in a descending manner. 

 

 
Figure (6): The effect of different treatments on the concentrations of global 5-Methylcytidine. 

 
In conclusion, the hypo- and hypermethylation 

rates obtained were not able to assign a specific drug 
combination as the best one, but rather both 
mechanisms could lead to control the proliferation of 
the HCC cells. Although, in vitro data always need to 

be confirmed on the clinical level, the present study 
revealed that we could rely on the combination 
composed of Cyclophosphamide and Sodium 
Phenylbutyrate in in vivo treatment of HCC. 
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