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Abstract
Employing Monte Carlo simulation method, we have studied randomness-induced evolution of the first-order to the 

second-order phase transition in two-dimensional six-state Potts model system. Biological applications of the Potts 
model are developed very much recently. We change the transition from first-order to second-order through tuning the 
bonds strength or the concentration of void bonds. The evolution of phase transition in two-dimensional six-state Potts 
system is examined with energy histogram and the Binder cumulant analysis. [Life Science Journal. 2009; 6(2): 29 – 
32] (ISSN: 1097 – 8135).
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1  Introduction

It has attracted much interest that randomness 
influences cellular phase transition behavior both in 
theoretical and experimental studies. The disorder 
produced by porous media reveals experimental evidence 
of randomness affecting phase transition of a system. For 
a system exhibiting continuous phase transition in pure 
case, the quenched bond randomness or field randomness 
can change the value of critical exponent and may even 
eliminate the phase transition[1–3]. The phenomenological 
renormalization-group arguments[4–5] suggest that 
addition of bond randomness can smoothen the first order 
phase transition and induce a continuous phase transition. 
This conjecture arises recent research interest to explore 
randomness effect upon the nature of phase transition 
with second-order system, which originally carried on 
the first-order phase transition in the pure case[4–8]. As for 
experimental work, extensive studies of the isotropic to 

nematic phase transition of nCB liquid crystals in 
aerogel shows that the transition temperature is lowered 
compared with the pure situation[9–12].

It is well known that the Potts model possesses 
fruitfully critical behavior. The q-state Potts model on 
two-dimensional cellular lattices exhibits temperature-
driven phase transition both in first-order and second-
order[14]. The phase transition is first-order for q > 4 and is 
continuous for q ≤ 4. So it could be a good candidate for 
testing the emergence of randomness-induced evolution 
of the first-order to second-order phase transition. Chen 
S et al[6–7] and Janke W[15] have performed Monte Carlo 
simulation study for the random bond Potts model in 
two-dimensional system with strong first-order region (q 
= 8). Yet some debated contradiction appears between 
the works of Chen S et al and Janke W demonstrates that 
quenched random-bond induces the second-order phase 
transition in two-dimensional eight-state Potts model. 
On the contrary, Janke W et al ascertain that the phase 
transition remains the first-order on random lattices in 
the same model. Paredesv R et al[13] study the five-state-
Potts model with weak first-order region, and Yang CS et 
al[8] study the three-state Potts anti-ferromagnetic model 
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on triangular lattice. Both models appear variation of the 
nature in phase transition induced by randomness.

In order to illustrate the randomness-induced change of 
the nature in phase transition, we investigate the six-state 
Potts model with various random by means of Monte 
Carlo simulation. Because the system has first-order 
phase transition in pure case, we may alter the nature 
of phase transition to the second-order through diluting 
the system, randomly introducing certain concentration 
of blank bonds or weakening strength of partial bonds. 
Applying field on the system, random effect also induce 
the change of nature in phase transition. We examine the 
evolution of phase transition in two-dimensional six-
state Potts system with energy histogram and the Binder 
cumulant analysis in this study.

2  Model

The Hamiltonian of a six-state Potts model with 
quenched random interaction can be written as follows:

H = ∑Kijδσiσj

Where δ is a Kronecker delta function; the spin σi can 
take on the values 1, 2, 3 ... 6; < i, j > indicates summa-
tion over all nearest-neighbor pairs of sites. The coef-
ficient Kij is the nearest-neighbor (< i, j >) random bond 
coupling constant, which can be randomly selected ac-
cording to the following distribution.

P(Kij) = fδ(Kij – Kα) + (1 – f)δ(Kij – Kβ)
Where f is a positive real number smaller than or equal 

to 1. Two differently prescribed random cases are stud-
ied. (1) The self-dual system (SD system): we randomly 
assign half of the total bonds to be the coupling K1, and 
the rest bonds are the coupling K2. The strength ratio is 
r = Ka/Kb. (2) The random dilution system (RD system): 
partial bonds is void, i.e. r → 0. In order to investigate 
the evolution of phase transition, we tune the strength 
and the concentration of blank bonds systematically. In 
SD system we set the normal bond coupling (Kb) to be 
one, and then decrease the strength ratio to make the pure 
system uneven. In RD system we gradually increase the 
concentration of blank bonds from zero. 

3  Simulation and Analysis

Consider a two-dimensional square lattice with frac-
tion f as quenched bonds and fraction (1 – f) as normal 
bonds. We perform extensive simulation on 90 × 90 lat-
tices with periodic boundary conditions. The Monte Car-
lo steps are up to 106 typically. The first 20% of the steps 
are discarded, and we accumulate the remaining data at 

equilibrium states in our simulation. The temperature of 
the heat capacity peak corresponds to the transition tem-
perature. We explore transition properties by analyzing 
energy histogram near the transition temperature. Usually 
the energy distribution displays a Gaussian type around 
some central energy due to fluctuation at thermal equi-
librium states in a finite size system. As the first-order 
phase transition occurs, there may co-exist two states at 
the transition temperature. The energy histogram would 
display two distinct humps. By analyzing the histogram, 
one may be able to identify the presence of the first-order 
phase transition[15–17].

We study the phase transition of pure system first. 
The behavior of specific heat indicates that the transition 
temperature is T = 0.808. Thus, we explore the energy 
distribution around this temperature extensively. Figure 
1 shows the energy histograms of pure case. The diagram 
displaying energy histogram near the transition tempera-
ture is sensitively dependent on temperature. At T = 0.807, 
the system start to melt, and the energy histogram dis-
plays a double-hump structure – a large right hump and 
a small left one. Then at T = 0.808, the energy histogram 
demonstrates a distinct double-hump structure, which has 
two humps of almost equal size. Just beyond the transi-
tion temperature, at T = 0.809, the energy histogram 
shows an inverse double-hump structure comparing to T 
= 0.807, with large left hump and a small right one. At a 
slight temperature difference away from the transition, T 
= 0.812, the energy histogram falls back Gaussian struc-
ture. Our simulation result reveals that the six-state pure 
Potts model proceeds a first-order phase transition at T = 
0.808.

Figure 1. The energy histograms of pure case. 

We then conduct the systematic study for the effect of 
randomness. The RD system is studied with randomly 
putting blank bonds. Figure 2 displays energy histograms 
of various blank bond fraction f = 0.1, 0.15, and 0.2, 
respectively. The transition temperature decreases with 
increasing the blank bond concentration, T = 0.715, 
0.664, and 0.614, respectively. They display different 
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types of state distribution at transition temperature. The 
distribution of f = 0.1 still demonstrates a distinct two-
hump structure. The histogram of f = 0.15 smears out to 
be a broad single hump. Yet, it is hard to find distinct dip. 
The distribution of f = 0.2 changes into nearly Gaussian 
type. In this case, the nature of phase transition may 
evolve into second-order behavior.

Figure 2. The energy histograms of various empty bond fraction 
f = 0.1, 0.15, and 0.2 in RD system, at transition temperature, T = 
0.715, 0.664, and 0.614, respectively.

In the SD system with randomly selected half of the 
total bonds quenched, we vary the coupling strength 
ratio. Figure 3 displays energy histogram of various 
strength ration r = 0.5, 0.4, and 0.3. The phase transition 
temperature decreases with decreasing strength ratio, T 
= 0.588, 0.540 and 0.484, respectively. The evolution 
of the diagram is similar to that in Figure 2. The energy 
histogram of r = 0.5 and 0.4 displays an unsymmetrical 
broad hump. The distribution of r = 0.3 changes into 
nearly Gaussian type, which shows second-order phase 
transition behavior due to larger bond strength variation. 

As for applying field on the system, we see systematic 
variation of the energy histogram with increasing the 
randomness. Simulation reveals that the nature of first-
order phase transition will change into the second-order 
induced by randomness.

Furthermore we inspect the quantity of the Binder’s 
fourth cumulant of energy defined as VL = 1 – (E4)L/3(E2)2, 
which is used to distinguish numerically between first-
order and continuous transitions. The concept is as the 
following: The energy distribution PL(E) for lattice L  × 
L is described by a single Gaussian. It will reduce to 
δ-function singularity in thermally dynamical limit, while 
the system is away from the transition. The fourth-order 
being reduced cumulant of energy yields the value of 
VL = 2/3, while L → ∞, at T ≠ Tc. And the quantity holds 
at Tc for second-order transition due to Gaussian energy 
distribution. On the other hand, the energy distribution 
PL(E) in finite lattice is considered to be a double Gauss-
ian over a small range around Tc. The corresponding or-
der and disorder states will yield a nontrivial value of VL. 

There will be a minimum value of VL at Tc.

Figure 3. The energy histograms of various strength ratio r = 0.5, 
0.4, and 0.3 in SD system, at transition temperature, T = 0.588, 
0.540 and 0.484, respectively.

Figure 4 displays the Binder’s cumulant VL near the 
transition temperature in RD system. We can find the 
minimum dip of VL at Tc in the pure system and in the 
case of empty bond fraction f = 0.15. Comparatively for 
the case of empty bond fraction f = 0.2, we find the VL is 
very close to 2/3.

Figure 4. The Binder’s cumulant VL near the transition temperature 
in RD system.

Figure 5 displays the Binder’s cumulant VL near the 
transition temperature in SD system. We can also find 
that in the case of strength ratio r = 0.3, VL is very close 
to 2/3. Therefore, we can ascertain the phase transition is 
changed by randomness from first-order to second-order.

Figure 5. The Binder’s cumulant VL near the transition temperature 
in SD system.

4  Conclusion

We have conducted Monte Carlo simulation of two-di-
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mensional six-state Potts model with constant couplings 
and random couplings. With thorough analysis, we have 
found that strength ratio r = 0.3 in SD system and blank 
bond ratio f = 0.2 in RD system will induce the variation 
of phase transition from the first-order to the second-
order.
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