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Abstract: A H∞ control for linear parameter-varying (LPV) systems with a parameter-varying state delay is de​scribed. A new parameter-dependent H∞ performance criterion is first established by the introduction of a slack vari​able, which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoup​ling enables us to obtain a more easily tractable condition for analysis and synthesis problems. Then, the correspond​ing output feedback controller design is investigated upon this new performance criterion, with sufficient condi​tions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities (PLMIs) and a non-convex constraint set. The cone complement linearization idea is employed to convert the control​ler design into a convex optimization problem. A numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure. [Nature and Science, 2004,2(1):53-60].  
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1  Introduction

Linear parameter-varying (LPV) systems have recently much attention because they provide a systematic means of computing gain-scheduled controllers (Shamma, 1990; Apkarian, 1995, 1998). LPV systems are characterized as linear systems that depend on time-varying real parameters. These parameters are assumed to be exogenous signals that are unknown in advance but are constrained a priori to lie in some known, bounded set, and can be measured in real time. Recently, many researchers examined the stability analysis and gain scheduling control of LPV systems extensively and a great number of important results have been reported to the literature (see, for instance, (Shamma, 1990; Apkarian, 1995, 1998; Wu, 2001; Tan, 2000, 2003; Zhang, 2001, 2002; Bara, 2001a, 2001b) and the references therein). 

On the other hand, time delays are often present in engineering systems, which have been generally regarded as a main source of instability and poor performance. Therefore, recent research effort is focused more on the analysis and synthesis problems of LPV time-delay systems. To mention a few, (Wu, 2001;  Tan, 2003; Tan, 2000) investigated control problems for LPV sys​tems with parameter-varying delays, and (Zhang, 2001, 2002) with a fixed delay size. 
In this note, we extend the results in (Wu, 2001) to output feedback control synthesis problems for LPV systems with a parame​ter-varying state-delay. We seek to develop controllers that are scheduled based on the measurement of the parameters to guarantee stability and the desired H∞ performance specification. Firstly, a parameter-dependent H∞ performance criterion is established based on the Lyapunov approach. Secondly, we further improve the obtained performance by decoupling the product terms involving the positive definite matrices, which is enabled the introduction of an additional slack variable. This resulting new performance condition is more easily tractable for analysis and synthesis problems. Thirdly, upon this new criterion, the corresponding parameter-varying dynamic output feedback controllers are designed, which guarantee the closed-loop system to be asymptotically stable with a prescribed H∞ disturbance attenuation level. Since the sufficient conditions for the existence of such controllers are not expressed as parameterized linear matrix inequalities (PLMIs), an iterative algorithm involving convex optimiza​tion is proposed. Numerical example shows that the effectiveness of the proposed methods. The results obtained in this note can be easily extended to LPV systems with multiple delays. 

Notations: Throughout this note the superscript T stands for matrix transposition, 
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2  Problem Set-up

Consider the following LPV system with a parameter-varying delay:
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with initial condition
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where 
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where 
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 is a compact set of 
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Construct a dynamic output feedback LPV controller described by
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where 
[image: image39.wmf]()

n

c

xtR

Î

 is the state vector and 
[image: image40.wmf]()

c

A

r

,
[image: image41.wmf]()

c

B

r

,
[image: image42.wmf]()

c

C

r

,
[image: image43.wmf]()

c

D

r

 are to be determined parameter-
varying matrices.

The feedback connection of the system (1) with the controller (4) produces a closed-loop system described by     
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where  
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Our objective is to seek an output feedback controller that asymptotically stabilizes the closed-loop system and guarantees a prescribed H∞ performance, that is, it should be guaranteed that 
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for all nonzero 
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3  H∞ Performance Criterion
In this section, we will establish the H∞ performance criterion for time-delayed LPV systems.
Lemma 1:　Consider system (1) and suppose 
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 the follow​ing inequality holds 
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Remark 1: The above lemma will be obtained by the similar way to (Wu, 2001) using different Lyapunov-Krasovskii type functional
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where  
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Remark 2: It should be noted that the condition presented in Lemma 1 contain product terms between Lyapunov matrices and system matrices, such that condition (8) is a bilinear matrix inequality when (6) is considered. In the following, we will present an improved version of Lemma 1 by introducing a slack variable to decouple these prod​uct terms, which is more easily tractable for controller synthesis problems.
Theorem 1: Consider system (1) and suppose 
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 is a given positive constant. Then the closed-loop system (5) is asymptotically stable and has an H∞ performance level less than 
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 the following inequality and an non-convex condition hold 
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Proof : The proof is based on the generalization of  the stability results of (Apkarian, 2001). The inequality (10) is equivalent to:
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Now we can drop the matrix 
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 by using the Projection Lemma. The null-spaces of
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By Schur complement (Boyd, 1994), the inequality (13) is equivalent to (8), and (12) is equivalent to the constraint 
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This means that the domain of solution given by (10-11) is included in the domain of solutions satisfying (8) and thus the condition (10-11) is sufficient to ensure the closed-loop system asymptotically stable and guarantee the prescribed H∞ performance level.                                                                 

4  H∞ Output Feedback Synthesis 
In this section, the H∞ performance criterion presented in the above section will be used to design the parameter-dependent H∞ output feedback controllers.

First we introduce a partition of the slack matrix W and its inverse 
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There is no loss of generality in assuming that 
[image: image81.wmf]21

V

 and 
[image: image82.wmf]21

W

 are invertible. Then we introduce the notation


[image: image83.wmf]ú

û

ù

ê

ë

é

=

0

21

11

W

I

W

J

W

, 
[image: image84.wmf]ú

û

ù

ê

ë

é

=

21

11

0

V

V

I

J

V

                                      (15) 

then 
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. Multiplying the righthand and left-hand sides of the inequality (10) by 
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Defining the following matrices
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and considering (6) and (15), we have
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Summarizing the above way, we can derive the following theorem. 
Theorem 2: Consider system (1) and suppose 
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 is a given positive constant. Then an admissible H∞ output feedback controller exists if there exist matrices functions
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Furthermore, if (11), (18) and (19) have feasible solution, an admissible output feedback can be carried out by two steps:

a. Compute a factorization 
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b. Compute the controller data 
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Remark 3: Notice that the PLMI conditions (18) and (19) correspond to infinite-dimensional convex problems due to their parametric dependence. Using the gridding technique and the appropriate basis functions (Apkarian, 1998;  Wu, 2001; Tan, 2000, 2003), infi​nite-dimensional PLMIs can be transformed to finite-dimensional ones, which can be solved numerically using convex optimization techniques. We choose the appropriate basis functions as 
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Remark 4: The condition (11) is a non-convex constraint. We can readily modify the algorithm proposed in (El Ghaoui, 1997) to solve the above nonlinear problem to obtain the suboptimal minimum H∞ performance level 
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Algorithm 1: 

i) Find a feasible solution to (18-21). Set 
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ii) Find a feasible set 
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iii) Choose a sufficiently small initial 
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and solve the following LMI problem.

Minimize 
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Set    
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iv) If 
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5  Numerical Example
Consider the following time-delay LPV system:
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where 
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 holds. To design a parameter-dependent output feedback controller to guar​antee a prescribed H∞ performance level 
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and grid the parameter space using 9 points grid. By Algorithm 1,  for 
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,  an  admissible parameter​-dependent output feedback con​troller is given by
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 and for 
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, the controller is described by
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Even for 
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, we can still find feasible output feedback controller which produces rela​tively larger gain than the above results. Therefore, we can choose appropriate 
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 to design feasible output feed​back controller.
6  Concluding Remarks

In this note, a new H∞ performance criterion for time-delayed LPV systems is presented, upon which the parame​ter-dependent H∞ output feedback controller design problem is investigated. An iterative output feedback controller design procedure is described. A numerical example has shown the feasibility and applicability of the proposed designs.
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