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Abstract: This paper examines the problems of robust H∞ filtering design for linear parameter-varying discrete-time systems with time-varying state delay. We present parameter-dependent robust H∞ fil​ters, which are derived using appropriately selected Lyapunov-Krasovskii functional. The resulting fil​ters can be obtained from the solution of convex optimization problems in terms of parameterized linear matrix inequalities, which can be solved via efficient interior-point algorithms. The admissible filters guarantee a prescribed H∞ noise attenuation level, relating exogenous signals to the estimation error for all possible parameters that vary in compact sets. A numerical example illustrates the feasibility of the proposed methodologies. [Nature and Science, 2004,2(2):36-44]
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1    Introduction

Stability analysis and control synthesis problems of linear parameter-varying (LPV) continuous-time sys​tems where the state-space matrices depend on time-varying parameters, whose values are not known a priori, but can be measured in real time, have received considerable attention recently [1-6]. In contrast to continuous-time cases, discrete-time LPV sys​tems [7-9] received relatively less attention despite their importance in digital control and signal processing applications.

On another front of systems control research, time delay often appears in many control systems either in the state, the control input, or the measurements. Time-delay is, in many cases, a source of instability. The stability issue and the performance of LPV systems with delay are, therefore, of theoretical and practical importance. Recently, much attention has been devoted to the analysis and synthesis problems of LPV time-delay systems. To mention a few, [5] investigated L2-L2 control problems for LPV systems with parametervarying delay and [6] proposed delay-independ​ent and delay-dependent stability conditions for LPV systems with constant delay. However, it is worth noting that the filter obtained for LPV time-delay systems are still very limited, especially for LPV discrete time-delay systems.
H∞ estimation has been widely studied during the past decades. One of its main advantages is the fact that it is insensitive to the exact knowledge of the statistics of the noise signals. This estimation procedure ensures that the L2-induced gain from the noise signals to the estimation error will be less than a prescribed level, where the noise signals are arbitrary energy-bounded signals. However, less study [8-10] has been done for the design of H∞ filters for LPV systems.

This paper is interested in the H∞ filtering problem for LPV discrete-time systems that include time-varying state delay. Using parameter-dependent Lyapunov-Krasovskii functional, we obtained a new H∞ performance criterion that depended on parameter and the magnitude of delay-varying. Then we further modified the obtained criterion by adopting the idea [4, 11] of decoupling between the positive matrices and the system matrices, which is en​abled by the introduction of addition slack variable to obtain another parameterized linear matrix inequali​ties (PLMIs) representation. The corresponding filter designs are finally cast into convex optimization problems, which can be solved via the efficient interior-point algorithms [12]. The obtained filters design procedure is shown, via a numerical example, to be effective.

The notation used throughout the paper is fairly standard. The superscript “T” stands for matrix transposi​tion, 
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2    Problem Formulation

Consider the following LPV discrete-time state-delayed system presented in state-space form by:
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 is a vector of time-varying parameters which belongs to a compact set 
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 is time-varying delay. It is assumed that there exist two positive constants dm and dM   such that the following inequality holds
dm≤d(k)≤dM ,   (k≥0                               (2)
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Here we are interested in designing an estimator or full-order filter described by:
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Augmenting the model of (1) to include the states of the filter, we obtain the filtering error system as follows: 
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and I denotes an identity matrix with an appropriate dimension.

Our objective is to develop a robust H∞ filter of the form (3) such that for all admissible parameter trajecto​ries:

(a) The filtering error system (4) is asymptotically stable. 

(b) The filtering error system (4) guarantees, under zero-initial condition,
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for all nonzero 
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3    Robust H∞ Filtering Analysis 

In this section, we will derive new H∞ performance criterions for filtering analyses and syntheses of system (1). 

Theorem 1: Consider the system of (1). For a prescribed 
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that satisfy the following PLMI
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for all nonzero 
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 and parameter trajectory, the filtering error system (4) is asymptotically stable with an H∞ noise attenuation level 
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where 
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Then
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Therefore, from (9)-(14) we can obtain that      
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Using the Schur complement [14], LMI (7) implies
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. Then from the Lyapunov-Krasovskii stabil​ity theorem, we can conclude that the filtering error system (4) is asymptotically stable.

Now, to establish the H∞ performance for the filtering error system, assume zero-initial condition and con​sider the following index

[image: image69.wmf][

]

å

¥

=

-

=

0

2

)

(

)

(

)

(

)

(

:

k

T

T

k

k

k

e

k

e

J

w

w

g

                                                                                                         (15)

Under zero initial condition, 
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where
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By Schur complement, PLMI (7) guarantees 
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Remark 1: It should be noted that the conditions presented in Theorem 1 contain product terms between Lyapunov matrices and system matrices, such that condition (7) is a bilinear matrix inequality when (5) is 
considered.   In   the   following,   we   will   present  an 
improved version of Theorem 1 by introducing a slack vari​able to decouple these product terms, which is more easily tractable for handling the filtering problems. 
Theorem 2: Consider the system of (1). 
For a prescribed 
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for all nonzero 
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 and parameter trajectory, the filtering error system (4) is asymptotically stable with an H∞ noise attenuation level 
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 Proof: we will prove the theorem by showing the equivalence between (7) and (17). If (7) holds, (17) is readily established by choosing 
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 Therefore we can conclude from (17) that
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Performing congruence transformation to (18) by 
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In the LMI (17), 
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is additional slack variable, i.e., we don’t set any restriction on these two matri​ces. In such a way, LMI (17) exhibits a kind of decoupling between the system matrices and the posi​tive matrices (there is no product between them). 

 4    Robust H∞ Filtering Design

In this section, based on Theorem 2, we will develop linear filter of form (3) assuring robust H∞ performance for discrete-time state-delayed LPV system (1).                                                                                                         

The following theorem provides sufficient conditions for the existence of delay-dependent H∞ filters.

Theorem 3: Consider the system of (1). For a prescribed 
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Proof: First let some matrix variables in Theorem 2 be partitioned as
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Introduce matrices
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Define 
[image: image109.wmf]2

:{,,,,}

VV

JdiagJIIJI

=

and introduce the following matrix variables
                       
[image: image110.wmf])

(

:

)

(

,

)

(

:

)

(

),

(

:

)

(

,

)

(

:

)

(

,

:

,

:

,

:

1

11

21

21

1

11

21

21

21

21

11

1

11

11

r

r

r

r

r

r

r

r

F

F

F

F

F

T

F

F

T

F

T

T

D

D

V

V

C

C

B

W

B

V

V

A

W

A

W

V

V

U

V

F

W

E

=

=

=

=

=

=

=

-

-

-

-

 
[image: image111.wmf]V

T

T

V

T

J

P

P

P

J

P

P

P

P

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

=

)

(

)

(

*

)

(

)

(

)

(

*

)

(

:

)

(

3

2

1

3

2

1

r

r

r

r

r

r

r

                                                                   (23)

Then performing congruence transformation to (17) by 
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Therefore, from Theorem 3 we can conclude that the filter with a state-space realization
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 defined in (23) 
guarantees that the filtering error system (4) has an H∞ noise attenuation level 
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Remark 2: Notice that the PLMI conditions (19)- (20) correspond to infinite-dimensional con​vex prob​lems due to their parametric dependence. Using the gridding technique and the appropriate basis functions [3], infinite-dimensional PLMIs can be transformed to finite-dimensional ones, which can be solved numeri​cally using convex optimization techniques.Hence, by
choosing appropriate basis function 
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PLMIs can be approximated.
Remark 3: Theorem 3 casts the full-order robust H∞ filtering problem for system (1) into PLMIs feasibility test, and any feasible solution to (19) and (24) will yield a suitable filter. If we can find admissible robust H∞ filters for system (1) in the light of PLMIs (19) and (24) have feasible solutions, then the filter matrices can be calculated from the defini​tion (23). However, there seem to be no systematic ways to determine the matrices 
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Substituting the filter matrices with (23) and considering the relationship 
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Therefore, an admissible filter is given by
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Remark 4: Note that (19) and (24) are PLMIs not only over the matrix variables, bust also over the scalar 
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 can be included as one of the optimization variables for LMI (19) and (23) to obtain the minimum noise attenuation level. Then the minimum guaranteed cost of robust delay-dependent H∞ filter can be readily found by solving the following convex optimization prob​lem:

  Minimize 
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Remark 5: It can be shown that the time-varying delay of LPV system (1) is constant delay for 
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5   An Illustrative Example
Consider the following discrete-time LPV system with a state-delay. 
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Our objective is to design robust H∞ controllers. First choose appropriate basis functions 
[image: image151.wmf]1

)

(

1

=

r

f

, 
[image: image152.wmf]1

2

)

(

r

r

=

f

, 
[image: image153.wmf]2

3

)

(

r

r

=

f


Gridding the parameter space uniformly using 
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grids. The minimum noise attenuation level obtained by solving convex optimization problem for 
different 
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       From Table 1, we  can  see  that  the  effect of  the delay-varying magnitude on the attainable the minimum
Table 1  The minimum guaranteed cost
for different delay size
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guaranteed cost. The minimum noise attenuation level 
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The minimum noise attenuation level 
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Then we analyze the disturbance attenuation level of the filtering error system by connecting the two ob​tained filters to the original system. Figures 1 and 2 present the simulation curves of estimating the signal z(k) by the two filters respectively. Here we assume ((k) to be
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From the figure we can see that ((k) drives zF(k) to deviate from z(k). However, when ((k) is zero, the de​viation tends to be zero due to the asymptocally stability of the filter error system. Now we will further analyze the H∞ performance. Fig. 3 and 4 give the changing curves of the disturbance signal and the filter​ing error signal. From (31) and Fig. 3, we obtain that 
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, therefore, the H∞ filters can guarantee the prescribed noise disturbance attenua-

tion level. 

6    Concluding Remarks

In this paper, robust H∞ filters design is proposed for LPV discrete-time systems with constant and time-varying state delay. The filtering problems have been solved and cast into convex optimiza​tion problems in terms of PLMIs, which can be solved via efficient interior-point algorithms. A numerical example has shown the feasibility applicability of the proposed designs. 
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Figure 1   z(k) and zF(k) signals of filter error
   system with time-varying state delay 
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Figure 2   z(k) and zF(k) signals of filter error 
system with constant delay
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Figure 3   Disturbance and filtering error
 (Time-varying delay case)
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Figure 4   Disturbance and filtering error 
(Constant delay case)
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