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Abstract: Nonlinear-nonstationary time series analysis has become highly imperative with the advances in Time 
series analysis. Existing methods are selected specific to the application and hence not suitable for general purpose. 
Wavelet Neural Networks (WNN) or wavelet networks are universal approximators and achieve faster 
convergence. Various methods of study currently used are affected by the presence of Outliers in the input data and 
also by the approximation error in case of discontinuities in the data. Wavelet Networks provide a solution to such 
existing problems. [Nature and Science 2010;8(8):27-30]. (ISSN: 1545-0740).  
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I.      INTRODUCTION 

A   time series is stationary when its 
properties are statistically invariant over time.  There 
are various forms of stationarity like weak sttionarity 
which requires constant mean for the series. Linear 
models are widely used to study 
time series.  Linear  models  under stationarity 
assumption are a powerful tool in the analysis. For 
instance, Moving Average or Auto-Regressive 
models are well known models. When the underlying 
series is nonlinear and nonstationary, new methods 
are to be developed.  
 A fundamental problem in Time Series 
Analysis is developing models from an observed 
series which is frequently referred to as function 
approximation. Artificial Neural Networks (ANN) is 
seen to be a good choice because they provide 
flexible nonlinear models whose parameters are 
adapted according to the available 
data. ANN are valuable for under-standing the 
fundamental problem of function learning or 
developing models from observed data  as  they are 
capable of learning rather complicated 
functions. Mathematically, the 
unknown mapping between the observed input-output 
data pairs is expressed as a combination of activation 
functions of the nodes.  If the activation functions are 
local basis functions, the network is more suitable for 
learning functions with local variations and 
discontinuities. If the basis functions are orthogonal 
also, then the representation in their terms is unique.  

Wavelets are functions that have excellent 
approximation properties and can be used for non 
stationary case also [1]. Replacing the basis function 
in  a feed forward neural network by  an orthonormal 
basis consisting of a family  of  wavelets a WNN is 
formed.  Wavelet decomposition makes use of 

the   theory of functional analysis where the ordinary 
basis functions are substituted by members of a 
wavelet family.  This approach is so  helpful that now 
there is the concept of adaptive wavelet shape as per 
the training data instead of adapting the parameters of 
a fixed shape basis function. [2], [3]. Networks 
having multi resolution hierarchies are also capable 
of providing answers to the problems of non–
uniformly distributed input –output spaces. 

In many applications   Time Series obtained 
are non-stationary and non linear. There are methods 
like ANN and Nonlinear Autoregressive Moving 
Average with Exogenous Inputs (NARMAX) model 
to handle non linear modeling. When the given  time 
series is nonlinear and nonstationary WNN provides 
is a good choice.            

There are interruptive events such as strike, 
out breaks of war or even unnoticed errors of typing 
and recording which influence time series 
observation.  Consequently there will be spurious 
observations that are inconsistent with the rest of the 
series; such observations are usually referred to as 
outliers [4].  When the timing and causes of 
interruption are known their effects can be accounted 
for by using intervention models in time series 
analysis. But usually they are unknown. Outliers 
make the resultant inference in data analysis 
unreliable or even invalid.  Hence much effort has 
been devoted to tackle their presence in experimental 
input and output data.  In an experimental 
observation outliers may be due to the offset of 
sensors, analog to digital conversion errors or even 
by the malfunctioning of transmission device. Such 
errors are difficult to pick up before processing the 
data. 

There is a non–ignorable error in function 
approximation in the presence of discontinuities in 
the input time series similar to the Gibbs 
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phenomenon in Fourier series [5]. As a 
function approximator, Wavelet network is successful 
in capturing the shapes of the function accurately.  
Increasing the size of the network or increasing the 
network parameters do not quite   solve the problem 
in ANN. How this can be handled in a wavelet 
network is discussed below.  
In this paper the methods for eliminating the effects 
of outliers and eliminating the ripples in function 
approximation due to discontinuity   are discussed. In 
section II, a review of wavelets and WNN are 
considered, in section III a discussion of outlier 
problems is included, in section IV 
various methods are proposed, experimental 
verification is included in section V and conclusions 

are included in section VI.  

II.  WAVELETS AND WAVELET NEURAL NETWORK 

A family of wavelets is derived from the 
translations and dilations of a single function.  If 

( )xϕ  is the starting function, the members of the 

family in the discrete domain are given by 

( )kxm

m

−−
−

22 2 ϕ  for Zkm ∈, , the set of all 

integers.  The function ( )xϕ  is called a wavelet. 

Next, consider a continuous, square integrable 

function ( ) ( ).2 RLxF ∈  Taking 
m2  as the sampling 

interval, denote ( ) ( )xFAxF mm = as the 

approximation of ( )xF  at the resolution 

m. So with increasing m, the approximation ( )xF
m

 

becomes coarser. If 
m

V  denotes the vector space 

containing all possible approximations of F(x) at the 

resolution 
m2 , then Am is a projection 

operator on the space Vm. [6], [7].  
 Mallat has shown that translations and dilations of a 

scaling function ( )
0

Vx ∈φ  form an orthonormal basis 

for Vm.  Since, ( )
mm

VxFA ∈  we have 

( ) ( )xFAxF
mm

= = ( ),xa mkmkφ∑  the 

coefficients  
mk

a   being the projections of F(x) onto 

the orthonormal basis function 
mk

φ .  Suppose Wm 

denotes the orthogonal complement of Vm in Vm-1 . 
Then the (m–1)th approximation of F(x) is 

( ) ( ) ( )xFDxFAxFA
mmm

⊕=
−1

 where Dm is a 

projection operator on  Wm . Thus the difference of 
information contained in the two approximations at 
resolutions m and m – 1 is given by DmF(x) which is 
called the detail of F(x) at the resolution m.  Mallat 

has shown that these exists a unique function ( )xϕ , 

called a wavelet, ( )x
mk

ϕ   whose translations and 

dilations form an unconditional orthonormal basis of 
Wm.  So, 

 ( ) ( );∑=
k

mkmkm xdxFD ϕ  where dmk are wavelet 

coefficients.  

Thus ( ) ( ) ( ).
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∑∑
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The multi resolution analysis is a sequence … V-2, V-

1, V0, V1 …of spaces of functions defined on R such 
that the following conditions are satisfied: 

1. Vn is a closed subspace of L2(IR) for every    
.Zn ∈  

2. Vn+1 ⊂  Vn for every Zn ∈ . 

3.  U
∞

∞=n

n
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0
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0

V  such that { }Zk
k

∈:
,0

ϕ  is 

an orthonormal basis in 
0

V , ϕ  is the   scaling 

function  or father wavelet [8] .  Given an   n–element 
training set the over all response of a WNN 

is ( ) ∑
=
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ˆ ϕ    where 

p
N the 

number of wavelet nodes in the hidden layer and 
i

w  

is the synaptic weight of wavelet network. There are 
different ways of constructing a wavelet network [9]. 
After the initial network is constructed it is further 
trained by the gradient descent algorithms like Least 
Minimum Squares (LMS) to minimize the mean-
squared error: 

( ) ( )[ ]
2

1

ˆ
1
∑

=

−=
N

i

i wyy
n

wJ  where ( )wŷ    is the real 

output from a trained wavelet network at the fixed 
weight vector W  [9]. 

A feed forward neural network with wavelets as 
activation functions is a wavelet network. They have 
universal approximation properties, i.e., if  ℑ  is a set 

of functions on dR  where U n
ℑ=ℑ  where  

n
ℑ   are 

subsets of functions. In the case of wavelet networks 

n
ℑ  is the set of all wavelet networks with scale  

.2Mn =  Then ℑ   is said to possess the property of 
universal approximation if it is dense in the space of 
continuous functions C(U) supported on a compact 

subset U of dR . This means for any f in C(U)  there 
is a sequence 

nn
f ℑ∈      such that ff

n
→  

uniformly [10]. In addition wavelet networks for 
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certain classes of problems achieve the same quality 
of approximation as neural networks with a 
considerably reduced size [11]. 

III. OUTLIER PROBLEM 

The presence of outliers causes serious problems in 
data analysis. The outliers may be due to the 
contamination in the input space or due to the 
contamination in the output space. In the former case 
they do not contribute directly to the residuals but in 
the latter case they do.  It is very difficult to eliminate 
them  from the data. The reason for this can be 
explained as follows. 

For simplicity, consider a network with a simple 
input node ( )xf . Assume that θ  is the parameter set 

of the network whose parameters are adjusted at each 
time step by minimizing a given function E and  

( )
∑

=

+
∂

∂
−=

M

p k

p

kk

rE

1

1
θ

ηθθ   

 where ( ),
ppp
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pattern with desired value 
p

t , Here η  is a step size 

parameter and ( )
p

rE  is often referred to as the 

objective function of the network. The gradient is 
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p

p
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∂

∂
 is known 

as the influence function. To accept the performance 
of the networks, the difference between the out put of 
the network and the desired output should approach 
zero for all training patterns, i.e. .0≡

p
r  For 

terminating training, the criterion is 
( )

.0≡
∂

∂
∑

k

p
rE

θ
 

i.e., value of the parameter network tend to be nearly 

the same. In the Least Square Criterion, 
( )

.
p

p

p
r

r

rE
=

∂
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When the underlying error distribution is Gaussian, 
Least Square approach provides the optimal results. 
But this may not be true in real situations [12].    

IV.   APPROACH TO SOLUTION 

Suppose we modify the objective function E 
discussed in section III.  Following the discussion in 
[12], a class of objective functions can be formed 
such that (1) they pass through the origin (2) they 
have a unique maximizing   point ‘a’ for .0>r  They 
have a unique minimizing point ‘–a’ for .0<r   We 
take the interval with these two extreme points as end 
points called the confidence interval of the 
residual.  Now define the class of objective functions 

with the form ( ) ( ) ( )[ ]∑
=

−=
P

p

ppR rrE
1

0φφ  where 

( )prφ is a continuous function,  ( )0φ  is a constant 

and P is the total number of inputs.  
 Assuming that average of the residuals of all training 
patterns should be capable of representing the 
residual distribution, the average of all residuals 
represent the error incurred  by the 
approximation. This reduction of confidence interval 
is similar to designing a low–pass filter for reduction 
of noise effect in signal processing applications. It 
may be noted that the detail coefficients in the 
wavelet expansion act as a low pass filter.  So an idea 
about the form of the objective function may be 
obtained from it.  After calculating the average of all 

residuals as ( )[ ]∑ −=
p ppave

pxftr / , where p is the 

total number of training patterns, the confidence 

interval of the residual is   [ ]aveave rcrc .,.− where c 

is a constant. Let Ψ(r) = derivative of φ(r). 
Selecting Ψ(r) as the first derivative of 

Gaussian function, 
σ2/2re−

the objective function is 

obtained as ( )σσ 2/2

1)( rerE −−= . This is a robust 

objective function as explained above and in [14]. 
Thus the problem of outliers can be resolved with 
derivative of Gaussian wavelet as activation function 
in the wavelet network. 

Now, the approximation  
a

da
SghS aa .**, ∫=

ρ

ε

ρε       

where h is the analyzing wavelet and g 
is the synthesizing wavelet, 

( ) ( ) .*
1

,*
0

, τ

τ
τερε

d
gh

t
trwhereSrS

t

∫==  

Hence ( ) ( ) .12)(*2 −== ∫
∞−

duurtSignrtG
t

 [14]. 

Whenever r(t)<0 ,for t>tN, the largest zero of r(t), the 
above approximations Sε,∝ shows the rippling in the 
approximation similar to Gibbs phenomenon. For 

1)(21 ≤≤− tG  no such error is observed. So by 

conveniently choosing the wavelets g and h, as the 
first derivative of Gaussian wavelet, the error in 
approximation can be made to disappear. As wavelet 
network basically uses a wavelet expansion, using 
this Gaussian wavelet in wavelet network we can 
eliminate the error. 

V.  EXPERIMENTAL VERIFICATION 

The above assertions can be verified 
using a function which is discontinuous at zero in a 
wavelet network. In figure (1), the plot of the input 
function having discontinuity at zero and the 
predicted function using wavelet network are shown. 
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The original function is shown as solid line. 

  
Figure(1) Input function having discontinuity and  its 
output function 

     
For verification in the outlier elimination case, a 
signal is formed by 
adding outliers to the sine function.  
The resultant signal is predicted using wavelet 
network. The plot of the original in the solid line and 
contaminated signal are shown in figure (2). It shows 
the robustness of wavelet network. 

  
 
Figure (2) input with  Outlier and its output function 
 
VI. CONCLUSION 
ANN are preferred for function  approximations. But 
they have major draw backs when handling outliers 
especially when localized activation functions are 
used. Also, ripples arise in the approximation due to 
the presence of discontinuity. Wavelet networks can 
be used to tackle these problems efficiently. A 
method used in the ANN is modified to handle 
outliers in wavelet networks and properties of 
wavelets are exploited to better function 
approximation.  
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