
Nature and Science 2013;11(9) http://www.sciencepub.net/nature

http://www.sciencepub.net/nature 69 naturesciencej@gmail.com

Implementation of the False Position (Regula Falsi) as a Computational Physics Method for the
Determination of Roots of Non-Linear Equations using Java

1.*Makinde, V., 1.Akinboro, F.G., 1.Okeyode, I.C., 1Mustapha, A.O., 2.Coker, J.O., and 1.Adesina, O.S.

1.Department of Physics, Federal University of Agriculture, Abeokuta
2.Department of Physics, Lagos State Polytechnic, Ikorodu, Lagos

victor_makindeii@yahoo.com; betamagengineering@yahoo.com; kamiyolejoy2000@yahoo.com;
amidumustapha@gmail.com; cokerclara@yahoo.com; tundeblack2000@gmail.com

*Corresponding Author

Abstract: Computational Physics cuts across all branches of Physics, Engineering, and Sciences in general.
Determination of roots is one of the most common areas/topics that show up in various disciples where
Computational Physics is applied or utilized. In the computation and determination of the roots of non-linear
equations, various methods such as Root Bisection method, Regula Falsi method, Newton’s method among others
have been implemented using FORTRAN, C, Basic, among other programming languages. This work considered
the implementation of the False Position Method, otherwise known as the Regula Falsi method for the determination
of roots of non-linear equations using Java. Comparison between results obtained showed that there is faster
convergence and greater accuracy in the results obtained using Java than as in the results obtained using FORTRAN.
Hence a good working knowledge of Java might end up being advantageous to an average physicist.
[Makinde, V., Akinboro, F.G., Okeyode, I.C., Mustapha, A.O., Coker, J.O., and Adesina, O.S. Implementation of
the False Position (Regula Falsi) as a Computational Physics Method for the Determination of Roots of Non-
Linear Equations using Java. Nat Sci 2013; 11(9):69-]. (ISSN: 1545-0740). http://www.sciencepub.net/nature. 10

Keywords: Computational Physics Methods, Regular Falsi, FORTRAN, Java.

1. Introduction

 Computational Physics aims at obtaining
numerical solutions to physical problems in which
numerical analysis methods are used to provide
approximate solutions to problems in Physics (Gupta,
2010). The scale of modern day problems being solved
by computational physicist requires the use of
programming languages that are very easy to use;
provide features which makes it possible to re-use
existing codes; efficient; is capable of specifying
different operations to be executed simultaneously by
the computer; and that enable distributed programs to
be easily developed (Arfken et. al., 2012).. Java is such
a programming language.

 The relevance that computational physics,
numerical analysis or computational science in general
has today, is as a result of a lot of work that had been
done in the implementation of several computational
methods using computer programming languages.
Chapman (1998) extensively implemented
computational methods using FORTRAN 90/95.
FORTRAN, which was developed by IBM, is
essentially a computational tool; it has been used
extensively to develop programs in both the defense
and geophysical fields (Chapman, 1998). C, a language
developed by Dennis Ritchie in the 1960s, is another
language that has found extensive use in computational
science. C is most suitable for High Performance
Computing (HPC) because of its speed of execution
but is very susceptible to errors especially if used by a
not so skillful programmer.

 Java is a modern object oriented language
which facilitates disciplined approach to program
design (Deitel and Deitel, 2007). It has features that
make it suitable for modern day computation; these
include multithreading (parallel programming), object
orientation, support for internet, among others.

 Pang (2006) used Java extensively to
implement computational methods in his bid to show
the suitability of Java to computational science as well
as in introducing students to computational physics.

In this work, Java was used to implement the
computational methods because

i) it is a modern object oriented language which
facilitates a disciplined approach to program
design.

ii) it is suitable for modern day computation as it
provide fully for the needs of the modern day
computational physicists which include
parallel programming, object orientation,
support for the internet, among others.

iii) FORTRAN and C have been used extensively
in the implementation of computational
physics problems.

2. Objectives
The objectives of this work include:

i) Implementation of the Regula Falsi method
using Java.

ii) Testing the implemented method with
examples obtained from other academic
sources.

Nature and Science 2013;11(9) http://www.sciencepub.net/nature

http://www.sciencepub.net/nature 70 naturesciencej@gmail.com

iii) Evaluating the Java implementation of the
computational physics methods by comparing
them with similar implementations done with
other programming languages.

3. Determination of the Roots of Non-Linear

Equations
Given a function f(x), if f(x) = 0, then the

values of the variable x that satisfies the condition f(x)
= 0 are called the roots of the equation. These are also
known as the zeros of f(x).
It is quite easy to find the roots of some equations.

 For example, if the function f(x) is linear in
nature may be given as f(x) = 3x - 12, then 3x - 12 = 0,
is solved simply to obtain x = 4.

In a situation where f(x) is quadratic, then, there
exists a standard formula, the well known quadratic

formula, given by � =
�� ± ���� ���

��
 . that can be used

to obtain the roots of the equation.
However, as the power to which the variable x is

raised increases, finding the roots of the equation
becomes more difficult. It has been proven that no
general formula exists for polynomials of degree
greater than four meaning that there is no way to
exhibit the roots in terms of "ordinary" functions
(Gerald & Wheatley, 1999),. Such polynomials are
usually solved by successive approximations. Some of
the methods employed include: Root Bisection (or
Interval Halving), Secant Method, Regula Falsi
method, Fixed-Point Iteration method, Newton's
method, Muller's method, among others. This work
therefore focuses on solving these higher order
polynomials numerically to obtain one or more of the
roots of such equations.

The False Position (Regula Falsi - in Latin) Method

Theory

 The technique employed in the False Position
method is such that each next iterate is taken at an
arbitrary point between the pairs of x-values that is, the
two starting values rather than the midpoint as in other
methods such as the root bisection method. This may
result in an advantage of faster convergence than some
other methods, but at the expense of a more

complicated algorithm.
In achieving the goals of this work,

pseudocode for the False Position algorithm (regula
falsi) was developed and is given next:

To determine the root of f(x) = 0, given values X 1 and

X 2 that bracket a root, that is, f(X 1) and f(X 2),

 REPEAT

Set X 3 = X2 - f(X2) * (X1 - X2) / (f(X1) - f(X2))

IF f(X3) of opposite sign to f(X1)

Set X2 = X3

ELSE
Set X1 = X3

END IF
 UNTIL |f(X3)| < tolerance value

NOTE: The method may give a false root if f(x) is
discontinuous on the interval. The final value of X3
approximates the root within the accuracy of the
specified tolerance value (Gerald & Wheatley, 1999).

Implementation

 In implementing the False Position method,
classes RegulaFalsi and RegulaFalsiMethod were
created. Class RegulaFalsi extends class RootBisection
(Adesina, 2010). This feature of Java is called
Inheritance and it is a technique for enhancing code
reusability and for establishing what is known as a "is-
a" relationship between the inheriting classes and the
inherited class. The inheriting class is called the
subclass while the inherited class is called the
superclass.

 By allowing RegulaFalsi to inherit from
RootBisection, all the public methods of class
RootBisection are automatically available in the
RegulaFalsi class and can be called from within any
method in RegulaFalsi. Class RegulaFalsi overrides
thegetRoot() method of class RootBisection from which
it inherits by providing its own implementation. The
term "override" in the sense that because getRoot() is
declared and defined in RootBisection - the superclass,
the getRoot(), of the RegulaFalsi class, that
implements the False Position algorithm.

--
1 public double getRoot() {
2 int iterate = 0;
3 double mid, x1, x2, oppSign, fxmid;
4 x1 = getLowerLimitOfInterval();
5 x2 = getUpperLimitOfInterval();
6 setOutput("");
7 compileOutput(String.format("\n%15s%15s%15s%15s%15s\n", "ITR NO","X1", "X2", "X3",

"F(X3)"));
8 do {
9 iterate += 1;

Nature and Science 2013;11(9) http://www.sciencepub.net/nature

http://www.sciencepub.net/nature 71 naturesciencej@gmail.com

10 mid = x2 - (Function.getFofX(x2, getCoefficients()) * ((x1 - x2) / Function.getFofX(x1,
getCoefficients()) - Function.getFofX(x2, getCoefficients()))));

11 fxmid = Function.getFofX(mid, coefficients);

12 compileOutput(String.format("\n%15d%15.7f%15.7f%15.7f

%15.7f", iterate, x1, x2, mid, fxmid));
13 oppSign = fxmid * Function.getFofX(x1, coefficients);
14 if (oppSign < 0) {
15 x2 = mid;
16 } else {
17 x1 = mid;
18 }
19 } while (!((Math.abs(x1 - x2) < getTolerance()) || (iterate >= maxIteration)));
20 compileOutput(String.format("\n\n%s\n\n", "Program output for x1 = " +

getLowerLimitOfInterval() + ", x2 = " + getUpperLimitOfInterval() + ", tolerance = " +
tolerance));

21 return mid;
22 }
Code Listing 1: The getRoot() method of RegulaFalsi class.

 Adesina (2010), implemented the Root
Bisection Method using a similar algorithm. It could be
observed in Code Listing 1 that the lines 10 and 19 are
quite different from lines 10 and 19 of similar listing
for the Root Bisection method (Adesina, 2010). Line 1
of Code Listing 1 shows how the False Position
method differs from the Root Bisection method
algorithm developed by Adesina (2010). Line 19 of
Code Listing 1 compares the absolute value of the

difference between X1 and X2 directly with the
tolerance value rather than twice the tolerance value as
was done in the Root Bisection method.
Tests and Results

Illustration 1: Gerald and Wheatley (1999)
implemented the function f(x) = x3 + x2 - 3x - 3 = 0
with FORTRAN 90/95. The result obtained is as shown
in table 1.

Table 1: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4 as
implemented by Gerald and Wheatley (1999) using FORTRAN 90/95

ITR NO X1 X2 X3 F(X3)
1 1.000000 2.000000 1.500000 - 1.875000
2 1.500000 2.000000 1.750000 0.171875
3 1.500000 1.750000 1.625000 - 0.943359
4 1.625000 1.750000 1.687500 - 0.409424
5 1.687500 1.750000 1.718750 - 0.124786
6 1.718750 1.750000 1.734375 0.022030
7 1.718750 1.734375 1.726563 - 0.051756
8 1.726563 1.734375 1.730469 - 0.014957
9 1.730469 1.734375 1.732422 0.003512
10 1.730469 1.732422 1.731445 - 0.005728
11 1.731445 1.732422 1.731934 - 0.001109
12 1.731934 1.732422 1.732178 0.001202
13 1.731934 1.732178 1.732056 0.000045

 When the function f(x) = x3 + x2 - 3x - 3 = 0

obtained from Gerald and Wheatley (1999) was solved
using the Java implementation of the method of False
Position, the following results were obtained.

Table 2 reveals that the method of False
Position is faster to converge as can be seen in the
values of X3; it converges at iterate 9. The values of
X3 approach the true value of the root, which is 3

(1.732050808) as the number of iterations increase
unlike the Root Bisection method which is irregular in
that earlier estimates may be better than later ones.
However, one should note that the method of False
Position converges to the root from one side, which
slows it down, especially if that end of the interval is
farther from the root.

Nature and Science 2013;11(9) http://www.sciencepub.net/nature

http://www.sciencepub.net/nature 72 naturesciencej@gmail.com

Table 2: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4 by the
method of False Position

ITR NO X1 X2 X3 F(X3)
1. 1.0000000 2.0000000 1.5714286 - 1.3644315
2. 1.5714286 2.0000000 1.7054108 - 0.2477451
3. 1.7054108 2.0000000 1.7278827 - 0.0393306
4. 1.7278827 2.0000000 1.7314049 - 0.0061107
5. 1.7314049 2.0000000 1.7319509 - 0.0009459
6. 1.7319509 2.0000000 1.7320353 - 0.0001463
7. 1.7320353 2.0000000 1.7320484 - 0.0000226
8. 1.7320484 2.0000000 1.7320504 - 0.0000035
9. 1.7320504 2.0000000 1.7320508 - 0.0000005
10. 1.7320508 2.0000000 1.7320508 - 0.0000001
11. 1.7320508 2.0000000 1.7320508 - 0.0000000
12. 1.7320508 2.0000000 1.7320508 - 0.0000000
13. 1.7320508 2.0000000 1.7320508 - 0.0000000

Program output for x1 = 1.0, x2 = 2.0; tolerance = 1.0E-4

Illustration 2: The function f(x) = x4 - 2 = 0 obtained from Gerald & Wheatley (1999), was implemented with Java
for the Root Bisection Method. The following results, shown in table 3, were obtained.

Table 3: Finding the root of f(x) = x4 - 2 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4
ITR NO X1 X2 X3 F(X3)

1 1.0000000 2.0000000 1.5000000 3.0625000
2 1.0000000 1.5000000 1.2500000 0.4414063
3 1.0000000 1.2500000 1.1250000 - 0.3981934
4 1.1250000 1.2500000 1.1875000 - 0.0114594
5 1.1875000 1.2500000 1.2187500 0.2062693
6 1.1875000 1.2187500 1.2031250 0.0952845
7 1.1875000 1.2031250 1.1953125 0.0413893
8 1.1875000 1.1953125 1.1914063 0.0148350
9 1.1875000 1.1914063 1.1894531 0.0016555

10 1.1875000 1.1894531 1.1884766 - 0.0049100
11 1.1884766 1.1894531 1.1889648 - 0.0016293
12 1.1889648 1.1894531 1.1892090 0.0000126
13 1.1889648 1.1892090 1.1890869 - 0.0008085

 When the function f(x) = x4 - 2 = 0 obtained from Gerald & Wheatley (1999) was solved using Java
implementation of the method of False Position, the following results were obtained.

Table 4: Finding the root of f(x) = x4 - 2 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4 by the method of
False Position Approximate root = 1.189207115

ITR NO X1 X2 X3 F(X3)
1. 1.0000000 2.0000000 1.0666667 - 0.7054617
2. 1.0666667 2.0000000 1.1114413 - 0.4740298
3. 1.1114413 2.0000000 1.1405419 - 0.3078263
4. 1.1405419 2.0000000 1.1590327 - 0.1953924
5. 1.1590327 2.0000000 1.1706082 - 0.1222133
6. 1.1706082 2.0000000 1.1777857 - 0.0757337
7. 1.1777857 2.0000000 1.1822096 - 0.0466595
8. 1.1822096 2.0000000 1.1849261 - 0.0286439
9. 1.1849261 2.0000000 1.1865903 - 0.0175454
10. 1.1865903 2.0000000 1.1876085 - 0.0107327
11. 1.1876085 2.0000000 1.1882308 - 0.0065598
12. 1.1882308 2.0000000 1.1886110 - 0.0040073

Nature and Science 2013;11(9) http://www.sciencepub.net/nature

http://www.sciencepub.net/nature 73 naturesciencej@gmail.com

13. 1.1886110 2.0000000 1.1888432 - 0.0024473
14. 1.1888432 2.0000000 1.1889849 - 0.0014943
15. 1.1889849 2.0000000 1.1890715 - 0.0009123
16. 1.1890715 2.0000000 1.1891243 - 0.0005569
17. 1.1891243 2.0000000 1.1891566 - 0.0003400
18. 1.1891566 2.0000000 1.1891763 - 0.0002075
19. 1.1891763 2.0000000 1.1891883 - 0.0001267
20. 1.1891883 2.0000000 1.1891956 - 0.0000773

 Program output for x1 = 1.0, x2 = 2.0; tolerance = 1.0E-4

Regula Falsi Method applied to Quadratic Equations

 The Regula Falsi has already been implemented and shown to be realizable for non-linear polynomials of
order greater than 2. In order to buttress its applicability to all non-linear polynomials in general, further examples
elucidating its applicability to quadratic equations are shown in the following two examples:
Illustration 3: f(x) = x2 – 2 = 0 (Adapted from Stroud and Booth, 2003)
 WELCOME TO THE REGULA FALSI METHOD
THIS PROGRAM IMPLEMENTATION ALLOWS ONE TO FIND THE ROOT OF A POLYNOMIAL OR NON-
LINEAR EQUATION
Enter the lower limit of the interval, x1: 1
Enter the upper limit of the interval, x2: 2
Enter the degree of the polynomial: 2
Now, enter the elements of the coefficient vector one after the other.
Enter A0: -2
Enter A1: 0
Enter A2: 1
Enter the tolerance value: 0.00001
Enter the maximum number of iterations in case tolerance is not met: 20

Approximate root found: 1.414214

ITR NO X1 X2 X3 F(X3)
1 1.0000000 2.0000000 1.3333333 -0.2222222
2 1.3333333 2.0000000 1.4000000 -0.0400000
3 1.4000000 2.0000000 1.4117647 -0.0069204
4 1.4117647 2.0000000 1.4137931 -0.0011891
5 1.4137931 2.0000000 1.4141414 -0.0002041
6 1.4141414 2.0000000 1.4142012 -0.0000350
7 1.4142012 2.0000000 1.4142114 -0..0000060
8 1.4142114 2.0000000 1.4142132 -0.0000010
9 1.4142132 2.0000000 1.4142135 -0.0000002

10 1.4142135 2.0000000 1.4142136 -0.0000000
11 1.4142136 2.0000000 1.4142136 -0.0000000
12 1.4142136 2.0000000 1.4142136 -0.0000000
13 1.4142136 2.0000000 1.4142136 -0.0000000
14 1.4142136 2.0000000 1.4142136 -0.0000000
15 1.4142136 2.0000000 1.4142136 -0.0000000
16 1.4142136 2.0000000 1.4142136 -0.0000000
17 1.4142136 2.0000000 1.4142136 -0.0000000
18 1.4142136 2.0000000 1.4142136 -0.0000000
19 1.4142136 2.0000000 1.4142136 -0.0000000
20 1.4142136 2.0000000 1.4142136 -0.0000000

 Program output for x1 = 1.0, x2 = 2.0, tolerance = 1.0E-5

Illustration 4: f(x) = 2x2 – 9x + 5 = 0
 Results obtained from Java implementation Regula Falsi Method for this equation are as follows:
First Root

Nature and Science 2013;11(9) http://www.sciencepub.net/nature

http://www.sciencepub.net/nature 74 naturesciencej@gmail.com

Enter the lower limit of the interval, x1: 1
Enter the upper limit of the interval, x2: 4
Enter the degree of the polynomial: 2
Now, enter the elements of the coefficient vector one after the other.
Enter A0: 5
Enter A1: -9
Enter A2: 2
Enter the tolerance value: 0.00001
Enter the maximum number of iterations in case tolerance is not met: 20

Approximate root found: 3.850781

ITR NO X1 X2 X3 F(X3)
1 1.0000000 4.0000000 3.0000000 -4.0000000
2 3.0000000 4.0000000 3.8000000 -0.3200000
3 3.8000000 4.0000000 3.8484848 -0.0146924
4 3.8484848 4.0000000 3.8506787 -0.0006552
5 3.8506787 4.0000000 3.8507765 -0.0000292
6 3.8507765 4.0000000 3.8507809 -0.0000013
7 3.8507809 4.0000000 3.8507811 -0.0000001
8 3.8507811 4.0000000 3.8507811 -0.0000000
9 3.8507811 4.0000000 3.8507811 -0.0000000
10 3.8507811 4.0000000 3.8507811 -0.0000000
11 3.8507811 4.0000000 3.8507811 -0.0000000
12 3.8507811 4.0000000 3.8507811 -0.0000000
13 3.8507811 4.0000000 3.8507811 0.0000000
14 3.8507811 4.0000000 3.8507811 0.0000000
15 3.8507811 4.0000000 3.8507811 0.0000000
16 3.8507811 4.0000000 3.8507811 0.0000000
17 3.8507811 4.0000000 3.8507811 0.0000000
18 3.8507811 4.0000000 3.8507811 0.0000000
19 3.8507811 4.0000000 3.8507811 0.0000000
20 3.8507811 4.0000000 3.8507811 0.0000000

 Program output for x1 = 1.0, x2 = 4.0, tolerance = 1.0E-5

Second Root:
Enter the lower limit of the interval, x1: -1
Enter the upper limit of the interval, x2: 1
Enter the degree of the polynomial: 2
Now, enter the elements of the coefficient vector one after the other.
Enter A0: 5
Enter A1: -9
Enter A2: 2
Enter the tolerance value: 0.00001
Enter the maximum number of iterations in case tolerance is not met: 20

Approximate root found: 0.649219

ITR NO X1 X2 X3 F(X3)
1 -1.0000000 1.0000000 0.7777778 -0.7901235
2 -1.0000000 0.7777778 0.6941176 -0.2834602
3 -1.0000000 0.6941176 0.6646267 -0.0981829
4 -1.0000000 0.6646267 0.6544741 -0.0335943
5 -1.0000000 0.6544741 0.6510076 -0.0114465
6 -1.0000000 0.6510076 0.6498273 -0.0038946
7 -1.0000000 0.6498273 0.6494258 -0.0013245
8 -1.0000000 0.6494258 0.6492893 -0.0004503
9 -1.0000000 0.6492893 0.6492429 -0.0001531

Nature and Science 2013;11(9) http://www.sciencepub.net/nature

http://www.sciencepub.net/nature 75 naturesciencej@gmail.com

10 -1.0000000 0.6492429 0.6492271 -0.0000521
11 -1.0000000 0.6492271 0.6492217 -0.0000177
12 -1.0000000 0.6492217 0.6492199 -0.0000060
13 -1.0000000 0.6492199 0.6492193 -0.0000020
14 -1.0000000 0.6492193 0.6492190 -0.0000007
15 -1.0000000 0.6492190 0.6492190 -0.0000002
16 -1.0000000 0.6492190 0.6492190 -0.0000001
17 -1.0000000 0.6492190 0.6492189 -0.0000000
18 -1.0000000 0.6492189 0.6492189 -0.0000000
19 -1.0000000 0.6492189 0.6492189 -0.0000000
20 -1.0000000 0.6492189 0.6492189 -0.0000000

 Program output for x1 = -1.0, x2 = 1.0, tolerance = 1.0E-5

4. Conclusion

 The scale of modern day problems being solved
by computational physicist requires the use of
programming languages that are very easy to use;
provide features which make it possible to re-use
existing codes; is capable of specifying different
operations to be executed simultaneously by the
computer; and that enable distributed programs to be
easily developed (Dass, 2010). Java is such a
programming language, and has been used in this work
to determine roots of non-linear equations as set out.
The relevance that computational physics, numerical
analysis or computational science in general has today,
is as a result of a lot of work that had been done in the
implementation of several computational methods
using computer programming language (Stroud and
Booth, 2001).

 Implementation of the Regula Falsi method
using both FORTRAN and Java implemented and
compared in this work has shown that

i) Java implementation is more robust than
FORTRAN implementation;

ii) Java is more adaptable in shorter listings
than FORTRAN;

iii) Regula Falsi is fast and regular in
convergence.

 It therefore means that Java, a modern object
oriented language which facilitates disciplined
approach to program design with features that make it
suitable for modern day computation is highly effective
in the implementation of basic computational physics
methods in such a way that makes the realization of
computational objectives easy to achieve (Chow, 2000;
DeVries, 1993). It is also robust in adaptation and
implementation (Kiusalaas, 2005); and therefore a

veritable tool in the implementation of various
computational physics methods.

References
1. Adesina, O.S. (2010) Implementation of Basic

Computational Physics Methods using Java.
Unpublished B.Sc. Thesis, Federal University of
Agriculture, Abeokuta, Nigeria

2. Arfken, G.B., Weber, H.J., and Harris, F.E. 2012.
Mathematical Methods for Physicists. 7th Edition.
Associated Press. New York, U.S.A. pp 1205.

3. Chapman, S.J 1998. FORTRAN 90/95 for Scientists
and Engineers. McGraw-Hill, USA pp 431.

4. Chow, T.L. 2000. Mathematical Methods for Physicists
– A Concise Introduction. Cambridge University Press.
U.S.A. pp 569.

5. Dass, H.K. 2010. Advanced Engineering Mathematics.
S Chand and Co. Publishers. New Delhi, India. pp
1358.

6. Deitel, P.J. and Deitel, H.M. 2007. Java: How to
Program. Pearson Education Inc, New Jersey, USA. pp
317.

7. DeVries, P.L. 1993. A First Course in Computational
Physics. John Wiley & Sons, New York, U.S.A. pp
435.

8. Gerald, C.F. and Wheatley, P.O. 1999. Applied
Numerical Analysis. Dorling Kindersley, India. pp 698.

9. Gupta, B.D. 2010. Mathematical Physics. 4th Edition.
Vikas Publishing House, New Delhi, India. pp 1417.

10. Kiusalaas, J. (2005). Numerical Methods in
Engineering with MATLAB. Cambridge University
Press. U.S.A. pp 435.

11. Pang, T. 2006. Introduction to Computational Physics.
Cambridge University Press, New York, USA. pp 528

12. Stroud, K.A., and Booth, D.J. 2001. Engineering
Mathematics. Palgrave Macmillan, New York, USA.
pp 1236.

13. Stroud, K.A., and Booth, D.J. 2003. Advanced
Engineering Mathematics. Palgrave Macmillan, New
York, USA. pp 1057.

4-1-2013

