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Abstract: Computational Physics cuts across all branches of Physics, Engineering, and Sciences in general. 
Determination of roots is one of the most common areas/topics that show up in various disciples where 
Computational Physics is applied or utilized. In the computation and determination of the roots of non-linear 
equations, various methods such as Root Bisection method, Regula Falsi method, Newton’s method among others 
have been implemented using FORTRAN, C, Basic, among other programming languages. This work considered 
the implementation of the False Position Method, otherwise known as the Regula Falsi method for the determination 
of roots of non-linear equations using Java. Comparison between results obtained showed that there is faster 
convergence and greater accuracy in the results obtained using Java than as in the results obtained using FORTRAN. 
Hence a good working knowledge of Java might end up being advantageous to an average physicist. 
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1. Introduction 

 Computational Physics aims at obtaining 
numerical solutions to physical problems in which 
numerical analysis methods are used to provide 
approximate solutions to problems in Physics (Gupta, 
2010). The scale of modern day problems being solved 
by computational physicist requires the use of 
programming languages that are very easy to use; 
provide features which makes it possible to re-use 
existing codes; efficient; is capable of specifying 
different operations to be executed simultaneously by 
the computer; and that enable distributed programs to 
be easily developed (Arfken et. al., 2012).. Java is such 
a programming language.  

 The relevance that computational physics, 
numerical analysis or computational science in general 
has today, is as a result of a lot of work that had been 
done in the implementation of several computational 
methods using computer programming languages. 
Chapman (1998) extensively implemented 
computational methods using FORTRAN 90/95. 
FORTRAN, which was developed by IBM, is 
essentially a computational tool; it has been used 
extensively to develop programs in both the defense 
and geophysical fields (Chapman, 1998). C, a language 
developed by Dennis Ritchie in the 1960s, is another 
language that has found extensive use in computational 
science. C is most suitable for High Performance 
Computing (HPC) because of its speed of execution 
but is very susceptible to errors especially if used by a 
not so skillful programmer.  

 Java is a modern object oriented language 
which facilitates disciplined approach to program 
design (Deitel and Deitel, 2007). It has features that 
make it suitable for modern day computation; these 
include multithreading (parallel programming), object 
orientation, support for internet, among others. 

 Pang (2006) used Java extensively to 
implement computational methods in his bid to show 
the suitability of Java to computational science as well 
as in introducing students to computational physics. 

In this work, Java was used to implement the 
computational methods because  

i) it is a modern object oriented language which 
facilitates a disciplined approach to program 
design.  

ii) it is suitable for modern day computation as it 
provide fully for the needs of the modern day 
computational physicists which include 
parallel programming, object orientation, 
support for the internet, among others. 

iii) FORTRAN and C have been used extensively 
in the implementation of computational 
physics problems. 

 
2. Objectives  
The objectives of this work include:  

i) Implementation of the Regula Falsi method 
using Java. 

ii) Testing the implemented method with 
examples obtained from other academic 
sources. 
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iii) Evaluating the Java implementation of the 
computational physics methods by comparing 
them with similar implementations done with 
other programming languages. 

 
3. Determination of the Roots of Non-Linear 

Equations 
Given a function f(x), if f(x) = 0, then the 

values of the variable x that satisfies the condition f(x) 
= 0 are called the roots of the equation. These are also 
known as the zeros of f(x).  
It is quite easy to find the roots of some equations.  

 For example, if the function f(x) is linear in 
nature may be given as f(x) = 3x - 12, then 3x - 12 = 0, 
is solved simply  to obtain x = 4. 

In a situation where f(x) is quadratic, then, there 
exists a standard formula, the well known quadratic 

formula, given by � =  
�� ± ���� ���

��
 . that can be used 

to obtain the roots of the equation.  
However, as the power to which the variable x is 

raised increases, finding the roots of the equation 
becomes more difficult. It has been proven that no 
general formula exists for polynomials of degree 
greater than four meaning that there is no way to 
exhibit the roots in terms of "ordinary" functions 
(Gerald & Wheatley, 1999),. Such polynomials are 
usually solved by successive approximations. Some of 
the methods employed include: Root Bisection (or 
Interval Halving), Secant Method, Regula Falsi 
method, Fixed-Point Iteration method, Newton's 
method, Muller's method, among others. This work 
therefore focuses on solving these higher order 
polynomials numerically to obtain one or more of the 
roots of such equations.  
 
The False Position (Regula Falsi - in Latin) Method 
 
Theory  

 The technique employed in the False Position 
method is such that each next iterate is taken at an 
arbitrary point between the pairs of x-values that is, the 
two starting values rather than the midpoint as in other 
methods such as the root bisection method. This may 
result in an advantage of faster convergence than some 
other methods, but at the expense of a more 

complicated algorithm.  
In achieving the goals of this work, 

pseudocode for the False Position algorithm (regula 
falsi) was developed and is given next: 
 
To determine the root of f(x) = 0, given values X 1 and 

X 2 that bracket a root, that is, f(X 1) and f(X 2),  
 
 REPEAT  

Set X 3 = X2 - f(X2) * (X1 - X2) / (f(X1) - f(X2))  

IF f(X3) of opposite sign to f(X1)  

Set X2 = X3  

ELSE  
Set X1 = X3  

END IF  
 UNTIL |f(X3)| < tolerance value  

NOTE: The method may give a false root if f(x) is 
discontinuous on the interval. The final value of X3 
approximates the root within the accuracy of the 
specified tolerance value (Gerald & Wheatley, 1999). 
 
Implementation 

 In implementing the False Position method, 
classes RegulaFalsi and RegulaFalsiMethod were 
created. Class RegulaFalsi extends class RootBisection 
(Adesina, 2010). This feature of Java is called 
Inheritance and it is a technique for enhancing code 
reusability and for establishing what is known as a "is-
a" relationship between the inheriting classes and the 
inherited class. The inheriting class is called the 
subclass while the inherited class is called the 
superclass.  

 By allowing RegulaFalsi to inherit from 
RootBisection, all the public methods of class 
RootBisection are automatically available in the 
RegulaFalsi class and can be called from within any 
method in RegulaFalsi. Class RegulaFalsi overrides 
thegetRoot() method of class RootBisection from which 
it inherits by providing its own implementation. The 
term "override" in the sense that because getRoot() is 
declared and defined in RootBisection - the superclass, 
the getRoot(), of the RegulaFalsi class, that 
implements the False Position algorithm.  

-------------------------------------------------------------------------------------------------------------------------------- 
1 public double getRoot() { 
2  int iterate = 0; 
3  double mid, x1, x2, oppSign, fxmid;  
4  x1 = getLowerLimitOfInterval(); 
5  x2 = getUpperLimitOfInterval(); 
6  setOutput(""); 
7 compileOutput(String.format("\n%15s%15s%15s%15s%15s\n", "ITR NO","X1", "X2", "X3", 

"F(X3)")); 
8  do { 
9   iterate += 1; 
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10 mid = x2 - (Function.getFofX(x2, getCoefficients()) * ((x1 - x2) / Function.getFofX(x1, 
getCoefficients()) - Function.getFofX(x2, getCoefficients())))); 

11   fxmid = Function.getFofX(mid, coefficients); 
    
12  compileOutput(String.format("\n%15d%15.7f%15.7f%15.7f 

%15.7f", iterate, x1, x2, mid, fxmid)); 
13   oppSign = fxmid * Function.getFofX(x1, coefficients); 
14   if ( oppSign < 0 ) { 
15    x2 = mid; 
16   } else { 
17    x1 = mid; 
18   } 
19 } while ( !((Math.abs(x1 - x2) < getTolerance() ) || (iterate >= maxIteration)) ); 
20 compileOutput(String.format("\n\n%s\n\n", "Program output for x1 = " + 

getLowerLimitOfInterval() + ", x2 = " + getUpperLimitOfInterval() + ", tolerance = " + 
tolerance)); 

21  return mid; 
22 } 
Code Listing 1: The getRoot() method of RegulaFalsi class. 
 

 Adesina (2010), implemented the Root 
Bisection Method using a similar algorithm. It could be 
observed in Code Listing 1 that the lines 10 and 19 are 
quite different from lines 10 and 19 of similar listing 
for the Root Bisection method (Adesina, 2010). Line 1 
of Code Listing 1 shows how the False Position 
method differs from the Root Bisection method 
algorithm developed by Adesina (2010). Line 19 of 
Code Listing 1 compares the absolute value of the 

difference between X1 and X2 directly with the 
tolerance value rather than twice the tolerance value as 
was done in the Root Bisection method. 
Tests and Results 

Illustration 1: Gerald and Wheatley (1999) 
implemented the function f(x) = x3 + x2 - 3x - 3 = 0 
with FORTRAN 90/95. The result obtained is as shown 
in table 1. 
 

 
Table 1: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4 as 
implemented by Gerald and Wheatley (1999) using FORTRAN 90/95 

ITR NO X1 X2 X3 F(X3) 
1 1.000000 2.000000 1.500000 - 1.875000 
2 1.500000 2.000000 1.750000 0.171875 
3 1.500000 1.750000 1.625000 - 0.943359 
4 1.625000 1.750000 1.687500 - 0.409424 
5 1.687500 1.750000 1.718750 - 0.124786 
6 1.718750 1.750000 1.734375 0.022030 
7 1.718750 1.734375 1.726563 - 0.051756 
8 1.726563 1.734375 1.730469 - 0.014957 
9 1.730469 1.734375 1.732422 0.003512 
10 1.730469 1.732422 1.731445 - 0.005728 
11 1.731445 1.732422 1.731934 - 0.001109 
12 1.731934 1.732422 1.732178 0.001202 
13 1.731934 1.732178 1.732056 0.000045 

 
 When the function f(x) = x3 + x2 - 3x - 3 = 0 

obtained from Gerald and Wheatley (1999) was solved 
using the Java implementation of the method of False 
Position, the following results were obtained. 

Table 2 reveals that the method of False 
Position is faster to converge as can be seen in the 
values of X3; it converges at iterate 9. The values of 
X3 approach the true value of the root, which is 3 

(1.732050808) as the number of iterations increase 
unlike the Root Bisection method which is irregular in 
that earlier estimates may be better than later ones. 
However, one should note that the method of False  
Position converges to the root from one side, which 
slows it down, especially if that end of the interval is 
farther from the root.  
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Table 2: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4 by the 
method of False Position 

ITR NO X1 X2 X3 F(X3) 
1. 1.0000000 2.0000000 1.5714286 - 1.3644315 
2. 1.5714286 2.0000000 1.7054108 - 0.2477451 
3. 1.7054108 2.0000000 1.7278827 - 0.0393306 
4. 1.7278827 2.0000000 1.7314049 - 0.0061107 
5. 1.7314049 2.0000000 1.7319509 - 0.0009459 
6. 1.7319509 2.0000000 1.7320353 - 0.0001463 
7. 1.7320353 2.0000000 1.7320484 - 0.0000226 
8. 1.7320484 2.0000000 1.7320504 - 0.0000035 
9. 1.7320504 2.0000000 1.7320508 - 0.0000005 
10. 1.7320508 2.0000000 1.7320508 - 0.0000001 
11. 1.7320508 2.0000000 1.7320508 - 0.0000000 
12. 1.7320508 2.0000000 1.7320508 - 0.0000000 
13. 1.7320508 2.0000000 1.7320508 - 0.0000000 

Program output for x1 = 1.0, x2 = 2.0; tolerance = 1.0E-4 
 
Illustration 2: The function f(x) = x4 - 2 = 0 obtained from Gerald & Wheatley (1999), was implemented with Java 
for the Root Bisection Method. The following results, shown in table 3, were obtained.  
 
Table 3: Finding the root of f(x) = x4 - 2 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4 
ITR NO X1 X2 X3 F(X3) 

1 1.0000000 2.0000000 1.5000000  3.0625000 
2 1.0000000 1.5000000 1.2500000  0.4414063 
3 1.0000000 1.2500000 1.1250000 - 0.3981934 
4 1.1250000 1.2500000 1.1875000 - 0.0114594 
5 1.1875000 1.2500000 1.2187500  0.2062693 
6 1.1875000 1.2187500 1.2031250  0.0952845 
7 1.1875000 1.2031250 1.1953125  0.0413893 
8 1.1875000 1.1953125 1.1914063  0.0148350 
9 1.1875000 1.1914063 1.1894531  0.0016555 

10 1.1875000 1.1894531 1.1884766 - 0.0049100 
11 1.1884766 1.1894531 1.1889648 - 0.0016293 
12 1.1889648 1.1894531 1.1892090  0.0000126 
13 1.1889648 1.1892090 1.1890869 - 0.0008085 

 When the function f(x) = x4 - 2 = 0 obtained from Gerald & Wheatley (1999) was solved using Java 
implementation of the method of False Position, the following results were obtained. 
 
Table 4: Finding the root of f(x) = x4 - 2 = 0 starting with X1 = 1, X2 = 2, and tolerance of 1E-4 by the method of 
False Position Approximate root = 1.189207115 

ITR NO X1 X2 X3 F(X3) 
1. 1.0000000 2.0000000 1.0666667 - 0.7054617 
2. 1.0666667 2.0000000 1.1114413 - 0.4740298 
3. 1.1114413 2.0000000 1.1405419 - 0.3078263 
4. 1.1405419 2.0000000 1.1590327 - 0.1953924 
5. 1.1590327 2.0000000 1.1706082 - 0.1222133 
6. 1.1706082 2.0000000 1.1777857 - 0.0757337 
7. 1.1777857 2.0000000 1.1822096 - 0.0466595 
8. 1.1822096 2.0000000 1.1849261 - 0.0286439 
9. 1.1849261 2.0000000 1.1865903 - 0.0175454 
10. 1.1865903 2.0000000 1.1876085 - 0.0107327 
11. 1.1876085 2.0000000 1.1882308 - 0.0065598 
12. 1.1882308 2.0000000 1.1886110 - 0.0040073 
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13. 1.1886110 2.0000000 1.1888432 - 0.0024473 
14. 1.1888432 2.0000000 1.1889849 - 0.0014943 
15. 1.1889849 2.0000000 1.1890715 - 0.0009123 
16. 1.1890715 2.0000000 1.1891243 - 0.0005569 
17. 1.1891243 2.0000000 1.1891566 - 0.0003400 
18. 1.1891566 2.0000000 1.1891763 - 0.0002075 
19. 1.1891763 2.0000000 1.1891883 - 0.0001267 
20. 1.1891883 2.0000000 1.1891956 - 0.0000773 

 Program output for x1 = 1.0, x2 = 2.0; tolerance = 1.0E-4 
 
Regula Falsi Method applied to Quadratic Equations 

 The Regula Falsi has already been implemented and shown to be realizable for non-linear polynomials of 
order greater than 2. In order to buttress its applicability to all non-linear polynomials in general, further examples 
elucidating its applicability to quadratic equations are shown in the following two examples: 
Illustration 3: f(x) = x2 – 2 = 0 (Adapted from Stroud and Booth, 2003) 
 WELCOME TO THE REGULA FALSI METHOD 
THIS PROGRAM IMPLEMENTATION ALLOWS ONE TO FIND THE ROOT OF A POLYNOMIAL OR NON-
LINEAR EQUATION 
Enter the lower limit of the interval, x1: 1 
Enter the upper limit of the interval, x2: 2 
Enter the degree of the polynomial: 2 
Now, enter the elements of the coefficient vector one after the other. 
Enter A0: -2 
Enter A1: 0 
Enter A2: 1 
Enter the tolerance value: 0.00001 
Enter the maximum number of iterations in case tolerance is not met: 20 
 
Approximate root found: 1.414214 

ITR NO X1 X2 X3 F(X3) 
1 1.0000000 2.0000000 1.3333333 -0.2222222 
2 1.3333333 2.0000000 1.4000000 -0.0400000 
3 1.4000000 2.0000000 1.4117647 -0.0069204 
4 1.4117647 2.0000000 1.4137931 -0.0011891 
5 1.4137931 2.0000000 1.4141414 -0.0002041 
6 1.4141414 2.0000000 1.4142012 -0.0000350 
7 1.4142012 2.0000000 1.4142114 -0..0000060 
8 1.4142114 2.0000000 1.4142132 -0.0000010 
9 1.4142132 2.0000000 1.4142135 -0.0000002 

10 1.4142135 2.0000000 1.4142136 -0.0000000 
11 1.4142136 2.0000000 1.4142136 -0.0000000 
12 1.4142136 2.0000000 1.4142136 -0.0000000 
13 1.4142136 2.0000000 1.4142136 -0.0000000 
14 1.4142136 2.0000000 1.4142136 -0.0000000 
15 1.4142136 2.0000000 1.4142136 -0.0000000 
16 1.4142136 2.0000000 1.4142136 -0.0000000 
17 1.4142136 2.0000000 1.4142136 -0.0000000 
18 1.4142136 2.0000000 1.4142136 -0.0000000 
19 1.4142136 2.0000000 1.4142136 -0.0000000 
20 1.4142136 2.0000000 1.4142136 -0.0000000 

 Program output for x1 = 1.0, x2 = 2.0, tolerance = 1.0E-5 
 
Illustration 4: f(x) = 2x2 – 9x + 5 = 0  
 Results obtained from Java implementation Regula Falsi Method for this equation are as follows: 
First Root 
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Enter the lower limit of the interval, x1: 1 
Enter the upper limit of the interval, x2: 4 
Enter the degree of the polynomial: 2 
Now, enter the elements of the coefficient vector one after the other. 
Enter A0: 5 
Enter A1: -9 
Enter A2: 2 
Enter the tolerance value: 0.00001 
Enter the maximum number of iterations in case tolerance is not met: 20 
 
Approximate root found: 3.850781 

ITR NO X1 X2 X3 F(X3) 
1 1.0000000 4.0000000 3.0000000 -4.0000000 
2 3.0000000 4.0000000 3.8000000 -0.3200000 
3 3.8000000 4.0000000 3.8484848 -0.0146924 
4 3.8484848 4.0000000 3.8506787 -0.0006552 
5 3.8506787 4.0000000 3.8507765 -0.0000292 
6 3.8507765 4.0000000 3.8507809 -0.0000013 
7 3.8507809 4.0000000 3.8507811 -0.0000001 
8 3.8507811 4.0000000 3.8507811 -0.0000000 
9 3.8507811 4.0000000 3.8507811 -0.0000000 
10 3.8507811 4.0000000 3.8507811 -0.0000000 
11 3.8507811 4.0000000 3.8507811 -0.0000000 
12 3.8507811 4.0000000 3.8507811 -0.0000000 
13 3.8507811 4.0000000 3.8507811 0.0000000 
14 3.8507811 4.0000000 3.8507811 0.0000000 
15 3.8507811 4.0000000 3.8507811 0.0000000 
16 3.8507811 4.0000000 3.8507811 0.0000000 
17 3.8507811 4.0000000 3.8507811 0.0000000 
18 3.8507811 4.0000000 3.8507811 0.0000000 
19 3.8507811 4.0000000 3.8507811 0.0000000 
20 3.8507811 4.0000000 3.8507811 0.0000000 

 Program output for x1 = 1.0, x2 = 4.0, tolerance = 1.0E-5 
 
Second Root: 
Enter the lower limit of the interval, x1: -1 
Enter the upper limit of the interval, x2: 1 
Enter the degree of the polynomial: 2 
Now, enter the elements of the coefficient vector one after the other. 
Enter A0: 5 
Enter A1: -9 
Enter A2: 2 
Enter the tolerance value: 0.00001 
Enter the maximum number of iterations in case tolerance is not met: 20 
 
Approximate root found: 0.649219 

ITR NO X1 X2 X3 F(X3) 
1 -1.0000000 1.0000000 0.7777778 -0.7901235 
2 -1.0000000 0.7777778 0.6941176 -0.2834602 
3 -1.0000000 0.6941176 0.6646267 -0.0981829 
4 -1.0000000 0.6646267 0.6544741 -0.0335943 
5 -1.0000000 0.6544741 0.6510076 -0.0114465 
6 -1.0000000 0.6510076 0.6498273 -0.0038946 
7 -1.0000000 0.6498273 0.6494258 -0.0013245 
8 -1.0000000 0.6494258 0.6492893 -0.0004503 
9 -1.0000000 0.6492893 0.6492429 -0.0001531 
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10 -1.0000000 0.6492429 0.6492271 -0.0000521 
11 -1.0000000 0.6492271 0.6492217 -0.0000177 
12 -1.0000000 0.6492217 0.6492199 -0.0000060 
13 -1.0000000 0.6492199 0.6492193 -0.0000020 
14 -1.0000000 0.6492193 0.6492190 -0.0000007 
15 -1.0000000 0.6492190 0.6492190 -0.0000002 
16 -1.0000000 0.6492190 0.6492190 -0.0000001 
17 -1.0000000 0.6492190 0.6492189 -0.0000000 
18 -1.0000000 0.6492189 0.6492189 -0.0000000 
19 -1.0000000 0.6492189 0.6492189 -0.0000000 
20 -1.0000000 0.6492189 0.6492189 -0.0000000 

 Program output for x1 = -1.0, x2 = 1.0, tolerance = 1.0E-5 
 
4. Conclusion 

 The scale of modern day problems being solved 
by computational physicist requires the use of 
programming languages that are very easy to use; 
provide features which make it possible to re-use 
existing codes; is capable of specifying different 
operations to be executed simultaneously by the 
computer; and that enable distributed programs to be 
easily developed (Dass, 2010). Java is such a 
programming language, and has been used in this work 
to determine roots of non-linear equations as set out. 
The relevance that computational physics, numerical 
analysis or computational science in general has today, 
is as a result of a lot of work that had been done in the 
implementation of several computational methods 
using computer programming language (Stroud and 
Booth, 2001). 

 Implementation of the Regula Falsi method 
using both FORTRAN and Java implemented and 
compared in this work has shown that  

i) Java implementation is more robust than 
FORTRAN implementation; 

ii) Java is more adaptable in shorter listings 
than FORTRAN; 

iii) Regula Falsi is fast and regular in 
convergence. 

 It therefore means that Java, a modern object 
oriented language which facilitates disciplined 
approach to program design with features that make it 
suitable for modern day computation is highly effective 
in the implementation of basic computational physics 
methods in such a way that makes the realization of 
computational objectives easy to achieve (Chow, 2000; 
DeVries, 1993). It is also robust in adaptation and 
implementation (Kiusalaas, 2005); and therefore a 

veritable tool in the implementation of various 
computational physics methods. 
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