Carbon Footprint for Paddy Rice Production in Egypt
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Abstract: Emissions resulting from rice cultivation are estimated in this paper including emissions from mechanical operations, field burning and N fertilization. The estimates are constructed using data and procedures from the IPCC guidelines for emissions estimation Coupled with Life Cycle Analysis procedures. The results show that the larger amounts of emissions come from Lower Egypt (Nile Delta). The regions with higher emissions are located as a rice belt in the Northern of the Nile Delta, Methane emission from the flooded rice fields are the main source of GHG emissions, contributing about 53.25 % of the total emissions. Rice straw burning after harvesting is the second largest source contributing 35.82 %. Nitrogen fertilization contributes out 9.92% and mechanical activities contribute about 1%. Finally, the carbon footprint for paddy rice is 1.90 Kg CO2eq / Kg paddy rice.
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Abbreviation:
Carbon footprint (CFP) – also named Carbon profile - is the overall amount of carbon dioxide (CO2) and other greenhouse gas (GHG) emissions (e.g. methane, nitrous oxide, etc.) associated with a product. The carbon footprint is a sub-set of the data covered by a more complete Life Cycle Assessment (LCA) (ISO, 14040)
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1.Introduction
With the accumulating evidence on climate change, there has been interest in examining the greenhouse gas (GHG) contribution of production practices and products as a mean of identifying intensive emitting options that could be target of GHG mitigation actions.  Such a GHG emission level estimation is often called a carbon footprint[footnoteRef:1]. Agriculture is one target of such activity as emission levels are about13% of the annual GHG emissions that are related to all human activities (Olivier et al., 2005 and Harada et al., 2007).	 [1: ] 

Rice cultivation is one activity that has received attention as a GHG emitter (IPCC, 2007).  Rice is important in Egyptian agriculture, with Egypt being the largest rice producer in the Near East region (Abdulla, 2007). Total area used for rice cultivation is approximately 600 thousand ha or about 22% of all cultivated area in Egypt during summer (Tantawi and Sabaa, 2001). The average yield is 8.2 tons/ha with an approximate straw production of 5-7 tons/ha (Sabaa and Sharaf, 2000; Badawi, 2004).	
Rice is an important emitter of methane (CH4), one of the major greenhouse gases (GHG). According to the Intergovernmental Panel on Climate Change (IPCC), the warming contribution of CH4 is 19–25times higher than that of CO2 per unit of weight based on 100-yr global warming potentials (IPCC, 2007).
Agricultural activities are responsible for approximately 50% of the anthropogenic emissions of CH4, with rice paddies contributing over 10% (Scheehle and Kruger, 2006; USEPA, 2006).
The Intergovernmental Panel on Climate Change (IPCC, 2007) estimated the annual global emission rate from paddy fields averages 60 Tg/yr, with a range of 20 to 100 Tg/yr. This is about 5-20 per cent of the total CH4 emissions from anthropogenic sources. This figure is mainly based on field measurements from paddy fields in the United States, Spain, Italy, China, India, Australia, Japan and Thailand (IPCC,1997).This carbon foot print is mostly composed of the methane production from flooded rice (67%) and the deforestation effect (29%) due to the persistence of 149 000 ha of hill side slash-and-burn land use change for rice production (Bockel et al., 2010).
Observed seasonal rice methane emissions from around the world show large ranges, reflecting the effects of local as well as regional differences in agricultural, biological, and climatic factors. (Wassmann et al., 2000) compute an average median emission value of 27.23 g m2, with a range from less than 1 g m2 to 155 g m2.
The burning of rice residue is a another emission source yielding carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), plus pollutants such as carbon monoxide (CO), particulate matter (PM), and toxic polycyclic aromatic hydrocarbons (PAHs)(Lemieux  et al., 2004 and Duan et al., 2004).
Emissions of N2O may also occur. Direct sources include emissions from cultivated and fertilized soils. Indirect emissions result from transport of N from agricultural systems into ground and surface waters with subsequent emission as ammonia or nitrogen oxides (Xuet al., 1997; Mosier et al., 1998). Methodologies for calculating both direct and indirect emissions of N2O related to agricultural production take into account anthropogenic N inputs including synthetic fertilizers, animal wastes and other organic fertilizers, biological nitrogen fixation by crops, cultivation of organic soils, and mineralization of crop residues returned to the field (IPCC, 1997).
With reference to CO2 emissions, agricultural practices may be grouped into primary, secondary and tertiary sources (Gifford, 1984). The main sources of farm level CO2 emissions are either due to cropping operations (e.g., tillage, sowing, harvesting and transport) or stationary operations (e.g., pumping water, grain drying). Therefore, reducing emissions implies enhancing use efficiency of these operations by conserving inputs used in the operations, and using other CO2-efficient alternatives (Lal, 2004).	
The aim of this study was to estimate the GHG emissions from Egyptian rice fields in terms of the emission from rice cultivation, mechanical operations(irrigation pumping, tillage, harvesting), nitrogen fertilization and  burning rice straw. Finally we calculate the carbon footprint taking into account all GHGs associated with paddy rice (kg-CO2eq / Kg paddy rice)  

2. Material and Methods
2.1 Study area
This study focus on the major rice cultivation areas in Egypt especially that along the Northern Coast. This study considers emissions in four major regions Lower, Middle, and Upper Egypt plus lands out of the Nile Valley. The cultivated area of each governorate was collected from the statistics of the Ministry of Agriculture and Land Reclamation forth years 2008 to 2011. Rice in Egypt is planted as a summer season crop generally under flooded conditions. Urea and synthetic fertilizers are predominantly applied with significant organic matter application (about 15 -20 cubic meters of cattle manure per hectare). Rice straw is normally left in the fields after harvest in September and October, and most of it is burned. Greenhouse gas emissions from rice occur during the growing season and upon burning rice straw.
2.2 Methane emissions from rice cultivation
The annual amount of CH4 emitted from rice is a function of the number and duration of crops grown, water regimes before and during the cultivation period, and organic and inorganic soil amendments (Neue and Sass, 1994; Minami, 1995; Harada et al., 2007). Soil type, temperature, and rice cultivar also affect CH4 emissions. Therefore, the basic equation to estimate CH4 emissions from rice cultivation is shown in Equation (1) Based on IPCC (2006). CH4 emissions are estimated by multiplying daily emission factors by cultivation period of rice and annual harvested areas.


Where:
CH4 Rice= annual methane emissions from rice cultivation, in Gg CH4 yr-1
EFijk= a daily emission factor for i, j, and k conditions, in kg CH4 ha-1 day-1
tijk = cultivation period of rice for i, j, and k conditions, in days
Aijk= annual harvested area of rice for i, j, and k conditions, in ha yr-1
i, j, and k = represent different ecosystems, water regimes, type and amount of organic amendments, and other conditions under which CH4 emissions from rice may vary
Emissions for each different region considered are adjusted by multiplying a baseline default emission factor by various scaling factors as shown in Equation (2). The calculations are carried out for each water regime and organic amendment separately as shown in Equation 1.


Where:
EFij = adjusted daily emission factor for a particular harvested area
EFc = baseline emission factor for continuously flooded fields without organic amendments
SFw = scaling factor to account for the differences in water regime during the cultivation period (Continuously flooded = 1, error range= 0.79-1.26 based on??)
SFpj = scaling factor to account for the differences in water regime in the pre-season before the cultivation period (less than 30 days= 1.90, error range=1.65-2.18 source)
SFo = scaling factor that accounts for differences in both type and amount of organic amendment applied (from Equation3) source
SFs,r = scaling factor for soil type, rice cultivar, etc., 
On an equal mass basis, more CH4 is emitted from organic amendments containing higher amounts of easily decomposable carbon and emissions also increase as more of each organic amendment is applied. Equation (3) and the default conversion factor for farm yard manure present an approach to vary the scaling factor according to the amount of farm yard manure applied. (IPCC,2007).


Where:
SFo = scaling factor for both type and amount of organic amendment applied
ROAi= application rate of organic amendment i, in dry weight for straw and fresh weight for others in tonne ha-1
CFOAi= conversion factor for organic amendment i(in terms of its relative effect with respect to straw applied shortly before cultivation) 
According to IPCC 2006, Guidelines for National Greenhouse Gas Inventories, the default conversion factor for farm yard manure is equal 0.14 with an error range of 0.07-0.20.

2.3 Greenhouse gases emission from field burning 
Based on 2006, IPCC Guidelines, the emission factors for burning of rice residue can be estimated using equation 4.

Where:  the burning emissions in Mg ha-1 is the amount of emission from burning of rice residue; RB (Mg) is the amount of rice residue on a dry matter basis that is burned in the field in kg ha-1; EF (g kg-1 dm) is emission factor.  The default emission values for rice straw burning of different greenhouse gases are tabulated in Table 1.

Table(1): Default value for emission factors for rice residues open burning. 
	
	Gef (g kg-1dm)

	CO2
	1185

	CO
	113.2

	CH4
	2.7

	N2O
	0.07

	NOx
PM2.5
PM10
Black Carbon
	3.1
27.63
13
0.69


According to 2006 IPCC Guidelines

2.4 Greenhouse gases emissions from Fertilizer application
The average nitrogen fertilizer application for cultivated rice is about 285 kg. N / ha. The emission of N2O from rice field was estimated following Bouwman (1996), using the following equation for N2O emissions from agricultural soils:



Where E is the emission rate (kg N2O-N ha-1), the 1 gives the background emission rater and F is the fertilizer application rate (kg N ha-1 y-1).
There is also one ton CO2 per ton of N applied that is generated in manufacturing.

2.5 Greenhouse gases emission from fuel consumption
Egyptian agricultural engineers have compiled average values for power requirements and fuel used per hectare for specific farming tasks in those regions as shown in Table 2 (Grisso et al., 2004) these figures assume typical conditions and average working depths and may be used to make fuel estimates for the indicated operations.

Predicting fuel consumption for a specific operation can be estimated using the following calculation according to ASAE (1998):

Qi = Qs x Pdb    (6) 
Where:
Qi = estimated fuel consumption for a particular operationin L.h-1
Qs = specific fuel consumption for the given Tractor L/Kw.h 
While, a specific fuel consumption (Qs) estimate may be calculated from the equation as follows(Grisso et al., 2004):- 

    Qs = 2.64 x + 3.91 – 0.203 (738 x + 173)0.5(7)

Where; (x) is the ratio of equivalent PTO power required by an operation to that maximum available from the PTO, this ratio depending on draft and speed of implement.
Power requirements for thresher and mower:
 To estimate the engine power during threshing and mowing operation, the fuel use was measured immediately after each treatment. The following formula was used to estimate ending used engine power (EP) according to Hunt Donnell (1983).

EP = [ ƒ.c (1/3600 )PE  x L.C.V x 427 x ηthb x ηm x 1/75 x 1/1.36 ]          (8)

Where :
ƒ.c  =     The fuel consumption, (L/h)
PE  =    The density of fuel,   (kg/L) ( 0.823 kg/L)
 L.C.V = The lower calorific value of fuel, (11000 k.cal/kg)
ηthb = Thermal efficiency of the engine, ( 35 % for Diesel )
427 = Thermo-mechanical equivalent, (Kg.m/k.cal)
ηm   =    Mechanical efficiency of the engine, ( 80 % for Diesel )




Table(2):Average energy-use rates and fuel requirements for farming tasks
	Operation
	Energy-use rate, PTO hp-hrs/acre
	Diesel fuel, gal/acre
	Diesel fuel Liter/ha

	Chisel plow
	16
	1.1
	13.4

	Combine, small grains
	11
	1
	12.2

	Mower
	25
	1.8
	21.6

	Thresher 
	20
	1.4
	16.8

	Water pump (8 hp)
	24
	1.7
	20.4




3. Results and Discussion
3.1 Distribution of rice cultivation in Egypt:
Total rice cultivated and burned from 2008―2011 is tabulated in Table 2. Note the burned rice residue is smaller with composting, manufacturing and other uses being employed on about 40% of the land (according to EEAA, 2009). We assumed that the amount burned is stable during the studied period (Table 3).
The largest rice cultivation area a occurs in the Behira, Kafr_El Sheikh, Dakahlia, and Sharkia governorates and these area Northern Coastal zone Governorates in  the Egyptian “rice belt”..  After that region, the Lower Egypt region (Nile Delta) has the next largest rice cultivation area.
The highest total rice cultivation was recorded at 2008 at about 739 thousand hectares, these area was decreased by about 170 thousand hectares in 2009 years (after a new policy regarding flood irrigation). The rice cultivation area decreased again at 2010 to be about 456 thousand hectares, but this area increased again at 2011 to be about 588 thousand hectare, but then the rice cultivation area increased in 2011 perhaps due to the 25 January revolution and a lack of government enforcement.

3.2 Annual CO2 Emission from Machinery activities: 
Table 3 shows the calculation results for annual CO2 emission from machinery activities from 2008 till 2011. Most (76%) of the CO2 emission production result from irrigation water pumping using diesel pumps.GHG emissions from mower activities contributes about 7.7 % of the total machinery emissions while thresher and combine together contribute about 10 %. The highest annual machinery emission was recorded in 2008 due to the high amount of rice cultivation area. Lower Egypt has the highest GHG emissions because has the largest rice cultivated area (Table 4). 
In Egypt flood irrigation predominates for rice production, water is poured into a paddy field until reaches a certain height relevant to plant stage of development. Periodically the irrigation is repeated until the crops are mature and ready for the dry harvest. The roots are kept under water for most of the crop life. The energy required to pump water depends on numerous factors including the water flow rate and the pumping system efficiency (IPCC, 2006). The energy use depends on the water table depth or the lift height. The diesel pump system could be as close as possible to the water source or be made floatable to be moved along the irrigation canal. The overall irrigation efficiency is higher as less percolation and drainage losses occur along the open ditch conveying systems. This system need slots of pumping energy and thus pumping uses the most fuel (Abdulla, 2007; Tantawi and Sabaa, 2001). 

3.3 Annual CH4 and CO2 Emissions from rice cultivation: 
Data in Table 5 illustrate the annual emissions of methane and carbon dioxide from flooded rice field from 2008 till 2011 for different regions (Lower Egypt, Middle Egypt, Upper Egypt and Out the valley). Regarding to CH4 emissions, the flooded rice fields are a significant source of atmospheric CH4. The emission is the net result of opposing bacterial processes, production in anaerobic micro environments, and consumption and oxidation in aerobic micro environments, both of which can be found side by side in flooded rice soils. The annual CH4emissions from the cultivated area was estimated at 285323 Tonnes for 2008, withCH4decreasingduring 2009, 2010 and 2011 due to smaller cultivated area. Normally, the decomposition of organic matter in soil is caused by microbiological activity with wetlands soils showing rapid decrease in oxygen due to heavy microbiological activity during growth (Cabangon et al., 2002). Hence, the soil in wetlands is identified as anaerobic, a condition affecting the chemical and biochemical processes when compared to aerobic soils (Lemieux et al., 2004 ; Duan et al., 2004). The minus value results from the anaerobic condition of soils that have been long used for rice cultivation and results in conditions of oxygen deficiency, greatly reducing the oxidation reduction potential (Wassmann et al., 2000 ; Badawi, 2004;  Bockel et al., 2010).

3.4 Annual N2O from applied nitrogen fertilizers: 
Estimates of N2Oemissions from nitrogen fertilization are presented in Table 6. We again find the highest N2O emissions during 2008 again due to highest cultivated area of rice. Table 5 also shows the total nitrogen used under the assumption of a constant application rate of 285 kg N per hectare. In turn the highest N2O emission was also in Lower Egypt. Direct emission of N2O produced naturally in soils through the microbial processes of nitrification and denitrification, has been shown to be influenced by agricultural management, such as water regime, organic amendments and cropping type (Jiang et al., 2003). 

3.5 Annual CO2 Emission from burning rice straw: 
Annual output of rice straw per hectare in recent years is almost stable with a value of about 7- 8 Tons per hectare, while the total national output differs due to changes the total rice cultivated area (Table2). The estimated annual emissions from rice straw burning are presented in Table 7.  
The highest GHG emissions again occur in the 2008 season and in Lower Egypt, These findings are in line with estimates in Gupta et al. (2004).  The major constraint in reducing these emissions is the short time available between rice harvesting and sowing of next crop. 

3.6 Total Annual CO2 Emission and carbon footprint: 
The estimated levels of CO2eqacross all sources (Machinery, Cultivation, Nitrogen fertilization and rice straw burning) are tabulated in Table 8. Again here the highest total CO2eqwas occurred in 2008 season and in the Lower Egypt region. The carbon footprint was also estimated at 1.90 Kg CO2eq / Kg is the same in all regions and years because of the assumptions of equal quantity of water and nitrogen fertilizer application in all regions as well as the assumption of constant yields (8.0 tonnes rice grain per hectare and 6.6 tonnes rice straw per hectare). 
The carbon footprint of a product is the quantity of greenhouse gases (GHG), expressed in carbon dioxide equivalent (CO2eq) units, emitted across the supply chain for a single unit of that product. Indeed, CFP is a mean for the government to sensitize citizens and industrials to climate change and to reach its GHG reduction target. Moreover, it has a significant advantage for private companies to label their product with the government support since they increase their credibility (Gerber et al., 2010). Measuring the carbon footprint of a product across the supply chain is a recent trend that has several benefits. By giving consumers the choice to turn consumption toward more carbon effective products and by advising them on their own reduction opportunities, CFP labels sensitize the population in order to switch to a low carbon economy. Thus, standards systems such as carbon foot printing, potentially can contribute to a low carbon economy through (i) market differentiation, (ii) driving performance and (iii) platforms for discussion and synergies (Brenton et al., 2010).



3.7 The contribution of GHG emission sources for rice production
Figure1 shows the percentage contributions from the different aspects and field practices. Methane emissions are the main source of emissions contributing about 53.25 % of the total. Rice straw burning is second contributing 35.82 %, while the machinery activities contribute about 1%. Moreover, nitrogen fertilization contributes about 10% of total GHGs.
Mitigation may be possible and perhaps could generate tradable, income enhancing carbon credits (Tsuruta et al., 1997). To reduce emissions one could replace burning of rice straw with some other use, decrease ploughing and take steps to slow organic decomposition and increase photosynthesis. For methane reduction, agriculturists could reduce fertilization, improve soil quality by increasing aeration and drain water from the paddies prior to the panicle formation stage. For N2O reduction, farmers can add organic fertilizer instead of chemical fertilizer (Chun et al., 2003, Scheehle and Kruger, 2006; USEPA, 2006).


[image: ]
Fig 1: The average percentage of different sources of the GHG resulted from different field practices of rice production in Egypt during the studied period from 2008to 2011.

Uncertainty in emission estimations
Several factors may affect the accuracy of the estimation of emission estimates above. The calculations rely heavily on inferences from limited statistical information and extrapolations of emission factors from limited literature.
	
Conclusions
This paper presents a detailed calculation of GHG emission from Egyptian rice production. The main sources are methane releases, field burning and nitrogen fertilization. Lower Egypt is the region with the largest emissions. Additionally the carbon footprint per kg paddy rice was computed and some possible mitigation strategies discussed.



Table (3): Distribution of the rice cultivation in Egypt from 2008 – 2011.
	Governorates
	Total Cultivated area /ha
	Total Burnt area/ ha

	
	2008
	2009
	2010
	2011
	2008
	2009
	2010
	2011

	Alexandria
	1870
	850
	955
	1059
	1122
	510
	573
	635

	Behera
	97056
	83432
	64513
	87869
	58234
	50059
	38708
	52721

	Gharbia
	74378
	52840
	43705
	51377
	44627
	31704
	26223
	30826

	Kafr_El Sheikh 
	149293
	135262
	115183
	123549
	89576
	81157
	69110
	74129

	Dakahlia
	203940
	149875
	119732
	175675
	122364
	89925
	71839
	105405

	Damietta 
	30831
	26968
	23522
	28830
	18499
	16181
	14113
	17298

	Sharkia
	140995
	106807
	77874
	98522
	84597
	64084
	46724
	59113

	Ismailia
	1968
	1648
	1346
	2269
	1181
	989
	808
	1361

	Port Said
	8924
	8408
	6481
	9337
	5354
	5045
	3889
	5602

	Suez
	0
	0
	0
	0
	0
	0
	0
	0

	Qalyoubia
	11300
	4142
	2200
	6903
	6780
	2485
	1320
	4142

	Cairo
	14
	4
	3
	0
	8
	2
	2
	0

	Lower Egypt
	720568
	570235
	455514
	585390
	432341
	342141
	273308
	351234

	BeniSuef
	700
	209
	60
	148
	420
	125
	36
	89

	Fayoum
	12605
	0
	0
	0
	7563
	0
	0
	0

	Middle Egypt
	13305
	209
	60
	148
	7983
	125
	36
	89

	Assuit
	81
	5
	0
	0
	49
	3
	0
	0

	Upper Egypt
	81
	5
	0
	0
	49
	3
	0
	0

	Within the valley
	733954
	570450
	455574
	585538
	440372
	342270
	273344
	351323

	New Valley
	4498
	378
	1135
	2830
	2699
	227
	681
	1698

	Noubaria
	726
	55
	53
	108
	436
	33
	32
	65

	Out the valley
	5225
	432
	1188
	2938
	3135
	259
	713
	1763

	Total
	739178
	570882
	456762
	588477
	443507
	342529
	274057
	353086



Table (4): Emissions of carbon dioxide from different mechanical operations during 2008 – 2011.
	Region
	Area
	Irrigation
	Chisel plow
	Mower
	Thresher 
	Combine
	Total

	
	ha
	Tonnes CO2

	2008
	 

	Lower Egypt
	720568
	84775
	8298
	8641
	7272
	2263
	111249

	Middle Egypt
	13305
	1565
	153
	159.6
	134
	42
	2054

	Upper Egypt
	81
	10
	1
	1.0
	1
	0.25
	13

	Out the valley
	5225
	615
	60
	0.6
	53
	16
	745

	Total
	739179
	86964
	8513
	8802
	7460
	2322
	114060

	%
	76.24
	7.46
	7.72
	6.54
	2.04
	100

	2009
	 

	Lower Egypt
	570235
	67088
	6567
	6838
	5755
	1791
	88039

	Middle Egypt
	209
	25
	2
	2.11
	0.38
	0.66
	30

	Upper Egypt
	5
	0.6
	0.06
	0.05
	0.01
	0.02
	1

	Out the valley
	432
	51
	5
	4.36
	0.79
	1.36
	62

	Total
	570881
	67164
	6574
	6845
	5756
	1793
	88132

	%
	76.21
	7.46
	7.77
	6.53
	2.03
	100

	2010

	Lower Egypt
	455514
	53591
	5246
	5463
	4596
	1431
	70327

	Middle Egypt
	60
	7
	1
	0.1
	0.1
	0.2
	8

	Upper Egypt
	0
	0
	0
	0
	0
	0
	0

	Out the valley
	1188
	140
	14
	2.2
	1.3
	4
	161

	Total
	456762
	53738
	5260
	5465
	4597
	1435
	70495

	%
	76.23
	7.46
	7.75
	6.52
	2.04
	100

	2011

	Lower Egypt
	585390
	68871
	6741
	7020
	5907
	1839
	90378

	Middle Egypt
	148
	17
	1.7
	0.2
	0.5
	0.5
	20

	Upper Egypt
	0
	0
	0
	0
	0
	0
	0

	Out the valley
	2938
	346
	34
	3.2
	10
	9
	402

	Total
	588476
	69234
	6777
	7023
	5917
	1848
	90800

	%
	76.25
	7.46
	7.74
	6.52
	2.04
	100





Table (5): Emissions of Methane and carbon dioxide from rice fields during 2008 – 2011.
	Region
	Area
	CH4
	CO2eq *

	
	ha
	Tonnes
	Tonnes

	2008

	Lower Egypt
	720568
	278139
	5840924

	Middle Egypt
	13305
	5135
	107850

	Upper Egypt
	81
	31
	657

	Out the valley
	5225
	2016
	42354

	Total
	739179
	285323
	5991785

	2009

	Lower Egypt
	570235
	220110
	4622325

	Middle Egypt
	209
	80.674
	1694

	Upper Egypt
	5
	2
	41

	Out the valley
	432
	166
	3502

	Total
	570881
	220360
	4627561

	2010

	Lower Egypt
	455514
	175828
	3692396

	Middle Egypt
	60
	23
	486

	Upper Egypt
	0
	0
	0

	Out the valley
	1188
	458
	9630

	Total
	456762
	176310
	3702513

	2011

	Lower Egypt
	585390
	225960
	4745171

	Middle Egypt
	148
	57
	1200

	Upper Egypt
	0
	0
	0

	Out the valley
	2938
	1134
	23815

	Total
	588476
	227152
	4770186


· CO2eq: the value of CH4 multiplied by 21

Table (6): Emissions of nitrous oxide and carbon dioxide from rice field during 2008 – 2011.
	Region
	Area
	Total applied N
	N2O
	CO2

	
	ha
	kg
	kg
	Tonnes

	2008

	Lower Egypt
	720568
	205361880
	2567025
	1087842

	Middle Egypt
	13305
	3791925
	47400
	20087

	Upper Egypt
	81.0
	23085
	290
	122.3

	Out the valley
	5225
	1489125
	18615
	7888

	Total
	739179
	210666015
	2633329
	1115939

	2009

	Lower Egypt
	570235
	162516975
	2031463
	860884

	Middle Egypt
	209
	59565
	746
	316

	Upper Egypt
	5.0
	1425
	18.8
	7.5

	Out the valley
	432
	123120
	1540
	652

	Total
	[bookmark: _GoBack]570882
	162701085
	2033768
	861859

	2010

	Lower Egypt
	455514
	129821490
	1622770
	687689

	Middle Egypt
	60
	17100
	215
	91

	Upper Egypt
	0.0
	0.0
	0.0
	0.0

	Out the valley
	1188
	338580
	4233
	1794

	Total
	456762
	130177170
	1627218
	689574

	2011

	Lower Egypt
	585390
	166836150
	2085453
	883763

	Middle Egypt
	148
	42180
	528
	223

	Upper Egypt
	0
	0
	0
	0

	Out the valley
	2938
	837330
	10468
	4435

	Total
	588476
	167715660
	2096449
	888422





Table (7): Emission of CO2, CO, CH4, N2O, NOx, PM2.5, PM10 and black carbon from rice straw during 2008 – 2011.
	Region
	Area
	Tonnes

	
	ha
	CO2eq
	CO
	CH4
	N2O
	NOx
	PM2.5
	PM10
	Black carbon
	Total CO2

	 
	
	2008

	Lower Egypt
	432341
	3381337
	380079
	7704
	19.97
	8846
	79697
	37095
	197
	3929399

	Middle Egypt
	7983
	62435
	7018
	142
	0.37
	163
	1472
	685
	3.64
	72555

	Upper Egypt
	48.6
	380
	42.7
	0.87
	0.00
	0.99
	8.96
	4.17
	0.02
	441.7

	Out the valley
	3135
	24519
	2756
	55.9
	0.14
	64.14
	577.90
	268.98
	1.43
	28493.0

	Total
	443507
	3468671
	389896
	7903
	20
	9074
	81755
	38053
	202
	4030889

	2009

	Lower Egypt
	342141
	2675885
	300783
	6097
	15.81
	7000
	63070
	29356
	156
	3109604

	Middle Egypt
	125
	981
	110
	2
	0.01
	2.57
	23.12
	10.76
	0.06
	1139.7

	Upper Egypt
	3.00
	23
	2.64
	0.05
	0.00
	0.06
	0.55
	0.26
	0.00
	27.3

	Out the valley
	259
	2027
	228
	4.6
	0.01
	5.30
	47.78
	22.24
	0.12
	2355.8

	Total
	342529
	2678916
	301124
	6104
	16
	7008
	63141
	29389
	156
	3113127

	2010

	Lower Egypt
	273308
	2137545
	240271
	4870
	12.63
	5592
	50381
	23450
	124
	2484007

	Middle Egypt
	36.0
	282
	31.6
	1
	0.00
	0.74
	6.64
	3.09
	0.02
	327.2

	Upper Egypt
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.0

	Out the valley
	713
	5575
	627
	12.7
	0.03
	14.58
	131.40
	61.16
	0.32
	6478.4

	Total
	274057
	2143401
	240929
	4884
	13
	5607
	50519
	23514
	125
	2490813

	2011

	Lower Egypt
	351234
	2747001
	308777
	6259
	16.23
	7186
	64746
	30136
	160
	3192247

	Middle Egypt
	88.8
	695
	78.1
	2
	0.00
	1.82
	16.37
	7.62
	0.04
	807

	Upper Egypt
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.0

	Out the valley
	1763
	13787
	1550
	31.4
	0.08
	36.07
	325
	151
	0.80
	16022

	Total
	353086
	2761482
	310405
	6292
	16
	7224
	65087
	30295
	161
	3209076



Table (8): Carbon footprint for paddy rice based on the estimation of the total emission of CO2 from different rice production activities during 2008 to 2011.
	Region
	Area
	CO2
	CO2

	
	ha
	tonnes
	Gg

	2008

	Lower Egypt
	720568
	10969414
	10969

	Middle Egypt
	13305
	202546
	203

	Upper Egypt
	81
	1233
	1.23

	Out the valley
	5225
	79480
	79.48

	Total
	739178
	11252673
	11253

	Carbon footprint Kg Co2eq / Kg paddy rice
	1.90

	2009

	Lower Egypt
	570235
	8680852
	8681

	Middle Egypt
	209
	3180
	3.18

	Upper Egypt
	5
	76
	0.08

	Out the valley
	432
	6572
	6.57

	Total
	570882
	8690679
	8691

	Carbon footprint Kg Co2eq / Kg paddy rice
	1.90

	2010

	Lower Egypt
	455514
	6934420
	6934

	Middle Egypt
	60
	912
	1

	Upper Egypt
	0
	0
	0.00

	Out the valley
	1188
	18063
	18.06

	Total
	456762
	6953395
	6953

	Carbon footprint Kg Co2eq / Kg paddy rice
	1.90

	2011

	Lower Egypt
	585390
	8911560
	8912

	Middle Egypt
	148
	2250
	2

	Upper Egypt
	0
	0
	0.00

	Out the valley
	2938
	44674
	44.67

	Total
	588477
	8958484
	8958

	Carbon foot print Kg Co2eq / Kg paddy rice
	1.90









Corresponding author
Farag, A. A
Central Laboratory for Agricultural Climate, Agricultural Research Center,  Dokki 12411, Giza-Egypt
awny_a@yahoo.com

References
Abdulla, H.M., 2007. Enhancement of rice straw composting by lignocellulolyticactinomycete strains. International Journal of Agriculture Biology9, 106–109.
Badawi, T., 2004. Rice Based Production Systems for Food Security and Poverty Alleviation in the Near East and North Africa. FAO Conf. Rice.FAO, Rome, Italy.
Bockel,  L., T. Marianne and G .Armel, 2010. Carbon Balance of Rice Value Chain  Strategic Scenarios in Madagascar towards 2020. Prepared for the FAO Policy and Programmer Development Support Division, FAO, Rome, Italy.
Bohm, P. 1998. International Greenhouse Gas Emission Trading – With Special Reference to the Kyoto Protocol, Nordic Council of Ministers, Copenhagen.
Bouwman, A. F. 1996. Direct emissions of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46, 53-70.
Brenton, P, G. Edwards-Jones, and M. Friis-Jensen, 2010, Carbon Footprints and Food Systems,Do Current Accounting Methodologies Disadvantage Developing Countries? World Bankhttp://www.fao.org/fileadmin/templates/ex_act/pdf/Policy_briefs/C_footprint_draft.pdf
Cabangon, R. J., T. P. Tuong and N. B. Abdullah, 2002. Comparing water input and water productivity of transplanted and direct-seed rice production systems. Agricultural Water Management 57:11–31
Chun, G, J. H. Yoon and J. H. Ham, 2003. Mass balance analysis in Korean paddy rice culture. Paddy and Water Environment 2, 99–106.
Duan, F., X. Liu, T. Yu, and H. Cachier, 2004. Identification and estimate of biomass burning contribution to the urban aerosal organic carbon concentrations in Beijing, Atmospheric Environment, vol. 38, pp. 1275- 1282.
Egyptian Environmental Affairs Agency (EEAA), 2009. Egypt Environmental Profile. Fact sheet Available at: www.eeaa.gov.eg/english/main/envprofile.asp.
Gerber, P., T. Vellinga, C.Opio, B. Henderson,  and H. Steinfeld.(2010).Greenhouse Gas Emissions from the Dairy Sector, A Life Cycle Assessment.FAO Food and Agriculture Organisation of the United Nations. Animal Production and Health Division, Rome.
Grisso, R.D., M.F.Kocher, and D.H. Vaughan, "Predicting Tractor Fuel Consumption", 2004. Biological Systems Engineering: Papers and Publications. Paper 164 University of Nebraska - Lincoln
Gifford, R. M. 1984. Energy in different agricultural systems: renewable and nonrenewable sources. In: Stanhill G, editor. Energy and agriculture. Berlin: Springer-Verlag;. p. 84–112
Gupta, P., S. Sahai, , N.Singh, C. Dixit, D. Singh, C. Sharma, M. Tiwari, R Gupta and S. Garg, 2004. Residue burning in rice-wheat cropping system: causes and implications, Current Science, 87: 1713-1717 
Harada. H., H. Kobayashiand H. Shindo, 2007. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: Life-cycle inventory analysis. Soil Science and Plant Nutrition.53:668 - 677.
Hunt Donnell ,1983. Farm power and machinery management, 8th edition.
IPCC, 1997. Nitrous oxide and carbon dioxide in agriculture; OECD/IPCC/IEA phase II development of IPCC guidelines for natural greenhouse gas inventory methodology, Workshop Report, 4-6 December, 1995, OECD, IPCC, IEA (Geneva).
IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4, Prepared by the National Greenhouse Gas Inventories Programme, edited by: Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., the Institute for Global Environmental Strategies (IGES), Hayama, 2006. http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch4ref5.pdf
IPCC, 2007. Climate change 2007: mitigation, B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, L. A. Meyer (Eds.), Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
 International Organization for Standardization (ISO), 2006. ISO 14040: Environmental management – Life Cycle Assessment – Principles and framework. International Organization for Standardization, Geneva. www.iso.org.
Lal, R. 2004. Carbon emissions from farm operations Environment International: 30: 981–990
Lemieux, P. M., C. C. Lutes, and D. A. Santoianni, 2004. “Emissions of organic air toxics from open burning: a comprehensive review,” Progress in Energy and Combustion Science, 30, 1-32,.
Mosier, A., C. Kroeze, C.Nevison, O.Oenema, S.Seitzinger, and O.vanCleemput.1998. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle: OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology, Nutrient Cycling in Agroecosystems, 52: 225–248.
Minami, K. 1995. The effect of nitrogen fertilizer use and other practices on methane emission from floodedrice. Fertilizer Res. 40:71-84.
Neue, H.U. and R. Sass (1994). Trace gas emissions from rice fields. In: Prinn R.G. (ed.) Global Atmospheric-Biospheric Chemistry. Environmental Science Res. 48. Plenum Press, New York, pp. 119-148.
Olivier, J., J. Van Aardenne, F. Dentener, V.Pagliari, L. Ganzeveld, L. and J. Peters, 2005. Recent trends in global greenhouse gas emissions: regional trends 1970e2000 and spatial distribution of key sources. Journal of Integrative Environmental Sciences 2, 81-99.
Sampanpanish, P. 2012. Use of organic fertilizer on paddy fields to reduce greenhouse gases. Science Asia38 : 323–330
Sabaa, M. F., and M. F. Sharaf, 2000. Egyptian policies for rice development. Cahiers Options Mediterraneennes 40.81-99.
Scheehle, E.A. and D. Kruger, 2006. Global anthropogenic methane and nitrous oxide emissions, Energy Journal., 22, 33–44.
Tantawi, B. A., and F. Sabaa, 2001. Egyptian policies for rice processing and marketing after liberalization in Egypt. In Chataigner J. (ed.) .Research strategies for rice development in transition economies .Montpellier : CIHEAM-IAMM, 2001. p. 71-86.
Tsuruta, H., K. Kanda, and T. Hirose, 1997. Nitrous oxide emission from a rice paddy field in Japan. Nutrient Cycling in Agroecosystems 49, 51–8.
United Nations Conference On Trade And Development UNCTAD. 1998. Greenhouse Gas Emissions Trading, Defining the Principles, Modalities, Rules and Guidelines for Verification, Reporting & Accountability. UNCTAD, August 1998.
USEPA, 2006. Global anthropogenic non-CO2 greenhouse gas emissions: 1990-2020 (June 2006 Revised), available at: ttp://www.epa.gov/climatechange/economics/downloads/ GlobalAnthroEmissionsReport.pdf, Office of Atmospheric Programs, USEPA, Washington, DC.
Wassmann, R. H., U. Neue, R. S. Lantin, L.V. Buendia and H. Rennenberg, 2000. Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutrient Cycling in Agroecosystems 58: 1-12.
Xu, H., G. Xing, Z. C. Cai, and H. Tsuruta, 1997. Nitrous oxide emissions from three rice paddy fields in China. Nutrient Cycling in Agroecosystems, 49, 23-28.









image1.wmf
 

(5)

   

F

 

X

 

0.0125

 

+

1

 

=

E


oleObject1.bin

image2.png
m Machinery
B cultivation
burning

35.82
m Nitriougen





