
Nature and Science 2015;13(6)                                                    http://www.sciencepub.net/nature  

 

 144

Calculation of phase shift for p+40Ca elastic scattering at low energy 
 

A.M. Khalaf 1, M.M. Khalifa 1, A.H.M Solieman 2, M.N.H. Comsan 2 
 

1. Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt 
2. Experimental Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt 

*mkhalifa1186.@gmail.com 
 
Abstract: The theoretical analysis of the experimental proton elastic scattering on 40Ca taken in the energy range 9 
to 22 MeV has been studied within the framework of the optical model employing Woods-Saxon and its derivative 
forms for potentials. Using SCAT2000 FORTRAN code and selected set of optical model parameters (OMPs) the 
contribution of different partial waves to scattering amplitude and cross section are studied. Based on phase shift 
values the significant number of partial waves in terms of their corresponding angular momenta at a given projectile 
energy is determined.  
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1. Introduction 

Study of nuclear scattering is an important 
source that provides information about the nuclear 
structure. Especially the scattering of protons is 
sensitive to details of the nuclear wave function [1]. 
Therefore the phase shift of the partial waves, for 
the elastic scattering nucleon-nucleus interaction, is 
considered a significant parameter that can be used 
to study the contribution of partial waves to the 
scattering amplitude, and hence to the cross section 
and polarization results [2].  Previously, phase 
shifts were calculated by Gross et al, for p+40Ca 
elastic scattering in the range of 30 ≤ Ep ≤ 45 MeV 
to get simultaneous fit to the polarization and cross-
section data with a reasonable set of optical-model 
parameters[3]. They concluded that the calculated 
phase shifts gave no indication of elastic scattering 
resonances in the considered energy range. The 
phase shifts, for proton elastic scattering on light 
nuclei in the range of 15 ≤ A ≤ 40 and 14 ≤ Ep ≤ 44 
MeV, were used by Fabrici et al. for determining 
the partial waves that are most significant and 
responsible for x2 improvement of polarization for 
proton-light nuclei at low energy. They used phase 
shift analysis for x2 minimization for every nucleus 
and incident energy [4]. In addition, the phase 
shifts can be used to study anomalous absorption of 
the scattered partial waves of proton-nucleus 
interaction by the optical potential [5-6]. 

In the present work the elastic scattering of 
P+40Ca will be discussed within optical model in 
energy range 9 ≤ Ep ≤ 22 MeV. The purpose is the 
determination of partial waves of most contribution 
to the scattering amplitude or the cross section 
values based on the phase shift calculation. 

Moreover, the reflection coefficients dependence 
on angular momentum is studied. 
2. Theory 
 In nucleon-nucleus elastic scattering problems, 
Schrodinger equation must include optical potential 
to get the scattering observables [7-8]. By numerical 
solution of Schrodinger equation one can obtain the 
reflection coefficient and phase shift that will be 
discussed in the next sections. In this section 
theoretical method of calculation that was used in 
SCAT2000 code is outlined. The radial wave 
equation ��(�)  that includes optical potential can 
be written as: 
    

�
��

��� − ���(�) + �� −
�(���)

��
���(�) = 0       (1)  

 
where  k� = 2μE/ℏ� and μ = mM /(m + M ) are the 
wave number and reduced mass of the system, 
respectively. E is the center of mass energy is in 
ℏ being the Planck constants, �  is the angular 

momentum, 
�(���)

��  is the centrifugal potential, and 

���  is the optical potential representing the 

interaction. 
 

 ���(�) = ��(�) − [��(�)�(�� ) − 4����(�)�(��)] 

−�[��(�)�(�� ) − 4����(�)�(��)] 

+�����(�) + ����(�)�� (���).�⃗.�⃗�                (2) 
 
where ��(�) , ��(�) , ��(�) , ��(�) , ���(�) , and 
���(�) are the potential depths of the real volume, 
real surface, imaginary volume, imaginary surface, 
real spin orbit, and imaginary spin orbit terms, 
respectively. The terms�(�� ), �(��), and � (���)  
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are the Wood- Saxon and its derivative forms that 
can be defined as: 

�(�� ) = (1 + ��� )��,   �� = (� − �� ) ��⁄ . 
    �� = �� ��/�             � = �� �� ��           (3) 

�(��) =
�

��
 �(��) =

1

��

[��� (1 + ���)�⁄ ], 

�� = (� − ��) ��⁄ . 
 �� = ����/�,  � = �� �� ��                            (4) 
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 ��� = (� − ���)/���.           ��� = �����/�         (5) 

��� = �
ћ

���
�

�

= 2.00���                      (6)   

 �⃗.�⃗ = 1/2[�(� + 1) − �(� + 1) − �(� + 1)]     (7) 
  
where �� (�= �, � ��� ��) represents the constant of 
radius parameter ��  and ��  ( �= �, � ��� ��) 
represents the diffuseness parameter. Considering the 
incident proton as a point charge and the target as a 
uniformly charged sphere with radius �� , the 
coulomb energy has the form. 
  

 ��(�) =
����

2��

�3 −
��

��
��  ��� ≤ ��,                            

            =
����

�
                      ���  � ≥ ��.             

 �� = ����/�                                              (8) 
 
where ���  is the Thomas constant,  �  total angular 
momentum, �  spin of incident projectile,  �  and � 
atomic number of target and projectile and �� is the 
constant of coulomb radius parameter. Equation (1) 
was solved numerically by using Cowell method [7]. 
The obtained result of the numerical solution is the 
transmission coefficients defined as: 
 

��� = 1 − �����
�
.                                         (9) 

 
where ��� is the reflection coefficient. 

 

��� =  ������                                                 (10)  

 
Expressing complex phase shifts in terms of real and 
imaginary parts, then 
  

��� =  ���(���
�������

��)      

      = ������
��

������
��

                                 (11) 
 

where   ������
��

  is the phase amplitude coefficient. If 

������
��

= 1, the intensity of the outgoing wave is 
equal to that of the incoming wave and reflection is 
complete. However there are non-elastic processes 
(absorbed wave functions), the intensity of the 

outgoing elastically scattered wave must be less than 

that of the incident wave so that ������
��

<  1 [9-11].  
The value of phase shift (���) vector magnitude is: 
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3. Optical model parameters 
              Three OMPs sets are used to calculate the 
elastic scattering phase shifts for p+40Ca interaction. 
Two of them are of Koning [12] and Xiaohua [13] 
which are obtained from literature by using the 
reference input parameters library (RIPL-2) [14]. 
These parameter sets are extracted from (RIPL-3) by 
FORTRAN code (MOM) [15]. This code is available 
on the web site of IAEA. The other set is our OMPs 
set which is obtained by fitting to get better 
agreement with experimental data. This set is 
presented in tables 1. The results of three OMPs 
angular distribution were discussed in details in 
previous paper [16].  
 

Table 1. OMPs set of our work that was used for 
fitting the experimental data [16] 

 

E 
(MeV) 

�� 
(MeV) 

�� 
(MeV) 

�� 
(MeV) 

�� 
(MeV) 

��.� 
(MeV) 

��.� 
(MeV) 

9.860 49.413 2.400 0.525 2.610 5.000 -0.044 
10.370 49.112 2.332 0.544 2.801 5.000 -0.045 
11.420 48.492 2.112 0.586 3.199 5.000 -0.048 
12.440 47.890 1.898 0.628 3.587 5.000 -0.052 
13.950 46.999 1.581 0.694 4.161 5.000 -0.061 
14.520 46.663 1.461 0.720 4.378 5.000 -0.065 
15.570 46.044 1.240 0.770 4.777 5.000 -0.074 
15.970 45.810 1.151 0.789 4.929 5.000 -0.077 
16.570 45.454 1.030 0.820 5.157 5.000 -0.083 
17.570 44.864 0.820 0.870 5.537 5.000 -0.094 
18.570 44.274 0.613 0.922 5.917 5.000 -0.110 
19.570 43.678 0.398 0.977 6.300 5.000 -0.120 
20.570 43.094 0.190 1.032 6.677 5.000 -0.130 
21.680 42.440 0.000 1.093 7.100 5.000 -0.150 

 
r��

(fm) = 1.246 

 
a��

(fm )  =  0.650  

 
���

(fm )  =  1.280 

 
���

(fm )  =  0.700 

 
���

(fm )  =  1.246 

 
���

(fm )  =  0.570 

 

���
(fm )  =  1.246  

 
���

(fm )  =  0.570  

 

���.�
(fm )  =  1.280 

 
���.�

(fm )  =  0.742 

���.�
(fm )  =  1.280 

 
���.�

(fm )  =  0.742 

��(fm )  =  1.300  

 
4. Results and Discussion 
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               The reflection coefficients η��
±   are plotted in 

figure 1. The figure represents the value of η��
±   versus 

angular momentum l at energies 9.86, 15.57, and 
21.57 MeV.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Reflection coefficients (η�
±)  for Koning, Xiaohua, and Our OMPs  as function of angular momentum (l) at 

different energy, the plus sign refers to η�
� at j = l+1/2 and minus sign refers to  η�

� at j = l-1/2. 
  
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Phase shifts (δ�
±)  for Koning, Xiaohua, and Our OMPs  as function of angular momentum (l) at different 

energy, the plus sign refers to δ�
� at j = l+1/2 and minus sign refers to  δ�

� at j = l-1/2. 
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The minus sign refers to the spin down of 

the incident protons, i.e. � =  � −
�

�
. The plus sign 

refers to the spin up of the incident protons, i.e.� =

 � +
�

�
. The reflection coefficient η��

±  as mentioned is 

the ratio of the reflected partial waves to the total 
incident partial waves. The value of the reflection 

coefficient is restricted between 0 ≤ η��
± ≤ 1. As seen 

in figure 1 the magnitudes of η��
± , at � = 9.86  for 

three OMPs, display large fluctuation between 0.1 
and 0.8 at small values of angular momentum l . This 
is due to an anomalous absorption of the partial 

waves [5-6]. Then the fluctuation of η��
±  becomes 

small at � = 15.57  MeV and the absorbed partial 
waves become larger as E increases. Finally at 

� = 21.68  MeV the fluctuation of η��
±  becomes 

smaller with value between 0.1 and 0.3 at small value 
of l, this means large absorption of partial waves is 
occurred, then it tends to unity i.e. ≈ 1 at large value 
of l indicating that total reflection of partial waves 

occurred. If the value of η��
± = 0  the nucleus will 

become black and it can absorb all incident partial 
waves. However this cannot occur due to the strong 
reflection by the centrifugal potential.[10-11]. 

In order to investigate the contribution of the 
partial waves the value of phase shifts for each partial 
wave should be calculated. The calculated phase 
shifts that are plotted in figure 2 can be used to 
determine the significant partial waves. For fixed 
energy, the number of partial waves that can 
contribute to the cross section is calculated by 
SCAT2000 according to this relation [7]. 
   

���� = [5(��
�.�) + 7]   

 �� = ���    &   �� =
�

�
������ + 7���   j = 1, 2, 3   (13) 

where ��  and ��  are the radius parameter and 
diffuseness respectively. The index j refers to the 
types of the real volume, imaginary volume, and 
imaginary surface potentials. This relation determines 
the number of significant partial up to ���� i.e. ���� 
is the upper limit of contribution of partial waves to 
cross sections. 

According to the phase shifts analysis in 
figure 2, the significant number of partial waves can 
be cut at  ��������  which is defined as the angular 
momentum l at which the value of its phase shift 
equals  1% of  the maximum value of δ�  at a given 
energy. In such case all partial waves that have 
� > ��������  can be ignored. The difference between 

����  of SCAT2000 calculations and ��������  of 

phase shift calculation is plotted in figure 3. The 

number of significant partial waves at 9.86 MeV 
equals 6 and 8 at 21.68 MeV as shown in figure 3. 
The values of total cross section according to ���� 
and ��������  are shown in tables 2. 
 
Table 2. Numerical values of cross section calculated 

for ���� and ��������  partial waves 

 
E (MeV) ��(��) for ���� ��(��) for �������� 

9.860 1671.100 1671.000 

13.950 1740.400 1740.200 
17.570 1698.000 1697.900 
21.680 1720.000 1719.980 

 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Number of partial waves ��(�) at ���� and 
�������� 

 
 
 
On the other hand, the behavior of vector 

magnitude of phase shifts for the three OMPs are 
studied to know the dependence of the phase shift on 
energy and the differences between the OMPs sets as 
shown in figure 4. The behavior of phase shifts, for 
��/�   at � > 12 MeV in addition to ��/� and ��/�  at 
9.86, 19.58, and 21.68 MeV, displays broad peaks. 
These peaks may be attributed to the effect of the 
interaction that takes place in the interior region of 
the nucleus, where low partial have high contribution. 
The similarity of phase shifts behavior for Xiaohua 
and our OMPs may be attributed to the similarity of 
our OMPs and those of Xiaohua. While as directed 
outword of the nuclear surface at higher ��/�  , 

��/� ,…… ��/�  partial waves, the behavior of this 
partial waves become smoother [17-18].  
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Figure 4. Phase shifts (δ�
±), that are calculated by Koning, Xiaohua, and Our OMPs, as function of incident proton 

energy for number of partial waves (l = 0, 1, 2, 3,4 and s = ± 1/2). Plus and minus signs mean that δ�
� at j = l+1/2 

and δ�
� at j = l-1/2 
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5. Conclusion 
Three OMPs sets were used to calculate 

reflection coefficients and phase shifts of elastic 
scattering for p+40Ca. The calculations were 
performed by means of SCAT2000. The calculated 
phase shifts were used to study of the contribution of 
partial waves to cross section. According to the 
results of phase shift analysis the significant number 
of partial waves to be taken in calculation has an 
upper limit �������� , in contrary to SCAT 2000 in 

which calculations are performed up to ����  . Our 
used scheme to determine the ��������  based on 

phase shift approach yealds cross sections that agree 
well with those of SCAT2000 based on ����. Using 
��������  means less number of partial waves and 

hence reducing the calculation time.  
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