Websites: http://www.sciencepub.net/nature http://www.sciencepub.net

Emails: naturesciencej@gmail.com editor@sciencepub.net

Assessing the per capita water footprint of crops in Egypt and calculating the virtual water imported and exported

Samia M. El-Marsafawy^{1,*}, A. I. Mohamed², M. Khalia³ and K. A. I. Mohamed⁴

^{1, *} Soils, Water & Environment Research Institute, Agricultural Research Centre, Giza, Egypt ²Agricultural Economic Research Institute, Agricultural Research Centre, Giza, Egypt ³Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt ⁴Teacher at Al-Azhar University, Sadat branch – Faculty of Agriculture, Egypt *<u>samiaelmarsafawy797@hotmail.com</u>

Abstract: The current research aims to calculate the water footprint of Egyptian crops, estimate the water footprint per capita from the crops under study, and determine the percentage of dependence on external water sources versus self-sufficiency. Additionally, the study assesses the national self-sufficiency of water available for agriculture and Egypt's total exports and imports of virtual water for the crops under examination.

Monthly weather data was sourced from NASA from 2019 to 2022. The Crop-Wat model was utilized to calculate both green and blue water footprints. The water footprint of 59 crops was analyzed, encompassing a range of field crops and vegetables cultivated during Egypt's winter, summer, and Nili seasons. However, due to insufficient export and import data for certain selected crops, the research narrowed its focus to 25 crops for which this data is available, enabling the pursuit of the study's other objectives. The results indicated that the average total water footprint during the study period was 508, 275, 1578, 385, and 563 m³/ton for the respective crop groups: winter field crops, winter vegetables, summer field crops, summer vegetables, and Nili crops. The overall average was 662 m³/ton. Regarding the average water footprint per capita in Egypt for the study noted that the percentage of dependence on external virtual water versus self-sufficiency registered the highest values for soybeans (99%), dry faba beans (85%), sunflower (79%), wheat (55%), and maize (54%). Most vegetable crops achieved national self-sufficiency and even surpassed it, with some being exported. Finally, the research revealed that Egypt's total virtual water exports for the studied crops amounted to 231 million m³, while imports reached about 27 billion m³.

[Samia M. El-Marsafawy, A. I. Mohamed, M. Khalia, and K. A. I. Mohamed. Assessing the per capita water footprint of crops in Egypt and calculating the virtual water imported and exported. *Nat Sci* 2025,23(3):8-21]. ISSN 1545-0740 (print); ISSN 2375-7167 (online). <u>http://www.sciencepub.net/nature</u> 02. doi:10.7537/marsnsj230325.02

Keywords: Green-blue water footprint; Egyptian crops; National Water Self-Sufficiency; National water dependency versus water self-sufficiency

1. Introduction

The growing global population, enhanced living standards, evolving consumption patterns, and the expansion of irrigated agriculture are the key factors driving the increase in global water demand (Ercin and Hoekstra, 2014). Approximately 1.8 to 2.9 billion people experience severe water scarcity for at least 4 to 6 months yearly. Additionally, around half a billion people face severe water scarcity year-round. Among those, 180 million reside in India, 73 million in Pakistan, 27 million in Egypt, 20 million in Mexico, 20 million in Saudi Arabia, and 18 million in Yemen. In Saudi Arabia and Yemen, the entire populations of these countries are affected, placing them in an extremely vulnerable position. Other nations with a significant portion of their populations experiencing year-round severe water scarcity include Libya and Somalia, where 80 to 90% of the population is affected, as well as Pakistan, Morocco, Niger, and Jordan, where 50 to 55% of the population faces similar challenges (Mekonnen and Hoekstra, 2016).

The agricultural sector in Egypt is the largest consumer of water, which makes effective management of this vital resource essential. Effective water management is essential for securing a sufficient water supply and ensuring food security for the population. Properly managing water resources is vital to address the limited availability in these areas and to achieve sustainable development, food security, and stability (El-Marsafawy and Mohamed, 2021).

In 2002, the water footprint (WF) concept was introduced to provide a consumption-based indicator of water use, offering additional insights beyond the traditional production-sector-based indicators (Hoekstra and Hung, 2002). A nation's WF is defined as the total volume of freshwater used to produce the goods and services consumed by its residents. Since not all goods consumed in a particular country are produced domestically, the WF comprises domestic water resources and water imported from outside the country's borders. The Water Footprint (WF) consists of three components: green, blue, and grey water footprints. The blue water footprint represents the volume of surface water and groundwater that is consumed or evaporated during the production of a product. The green water footprint refers to the amount of rainwater consumed. Lastly, the greywater footprint indicates the volume of freshwater needed to dilute the pollutants produced, based on current ambient water quality standards (Mekonnen and Hoekstra, 2010).

The WF concept is closely related to the idea of virtual water. Virtual water is the amount required to produce a specific commodity or service. This concept was introduced by Allan in the early 1990s (Allan, 1993, 1994) while studying the feasibility of importing virtual water as a solution to water scarcity issues in the Middle East. Allan proposed that virtual water imports— which accompany food imports— could help alleviate the pressure on limited domestic water resources.

While many countries trade water-intensive goods, few governments consider the alternative of conserving water by importing these products, thereby leveraging their water abundance for additional benefits (Hoekstra and Mekonnen, 2012). Evaluating the sustainability of the water footprint throughout the supply chain of products and sharing pertinent information will become increasingly crucial for investors (Hoekstra, 2013).

Hoekstra and Chapagain (2007) calculated the WF for each nation in the world from 1997 to 2001. Their results indicated that the USA has an average WF of 2,480 m³ per capita per year, while China has an average of 700 m³ per capita per year. The global average WF is 1,240 m³ per capita per year. The four major factors that directly influence a country's water footprint are: the volume of consumption (which is related to gross national income), consumption patterns (for example, high versus low meat climate (which affects growth consumption), conditions), and agricultural practices (including water use efficiency). In addition, Mekonnen and Hoekstra (2011a) reported that the global water footprint for crop production between 1996 and 2005 was 7,404 billion cubic meters per year, comprising 78% green water, 12% blue water, and 10% gray water. Notably, wheat had the largest total water footprint at 1,087 billion cubic meters per year, followed closely by rice at 992 billion cubic meters per year, and maize at 770 billion cubic meters per year. Wheat and rice together accounted for 45% of the global blue water footprint, making them significant contributors.

Alamri and Reed (2019) estimated the virtual water trade for 20 crops in Saudi Arabia from 2000 to 2016. Their findings indicated that the annual virtual water trade was 12.6 billion m³/year. Saudi Arabia had net virtual water imports, with the most significant imports occurring for cereals, alfalfa, and vegetables. Additionally, there was a virtual water export for fruits. This virtual water trade helped reduce pressure on the country's water resources by 54%.

Cao et al. (2018) reported that water scarcity is the main limiting factor for crop production in arid and semi-arid regions. In their study, they calculated the crop production water footprint in Shandong Province, in China, from 1996 to 2015 and analyzed the factors influencing it. The results showed that the annual CPWF was 173.1 billion cubic meters (G m³), with blue, green, and grey water footprints accounting for 12.7%, 64.6%, and 22.7%, respectively. Additionally, the water footprints of grain and fruit crops made up more than 80% of the total water footprint. In the same direction, ElFetyany et al. (2021) highlighted that the water footprint is a metric that quantifies both direct and indirect water use throughout a product's life cycle. This indicator measures how much freshwater a product consumes, enabling the assessment of water efficiency by determining the optimal amount of water needed to achieve the highest return for one cubic meter of water. Furthermore, the water footprint can enhance sustainable agricultural practices and inform international trade structures. It emphasizes the necessity of integrating water resource management policies with agricultural and trade strategies to create a comprehensive national water accounting system.

Mehla (2022) highlighted that assessing the water footprint allows us to identify the impacts and limitations of our current systems. By recognizing vulnerabilities across different regions and timeframes, we can prepare suitable actions to enhance water productivity and promote sustainable water use. Technology and effective management practices are crucial in minimizing unnecessary water consumption.

However, climate change, water scarcity, and increasing demands from various sectors complicate this effort. Therefore, it has become essential to promote efficient and sustainable water use through improved planning (Hoekstra, 2017). There is a pressing need to develop better water management policies to satisfy current and future demands, ensuring food security while addressing domestic and industrial needs.

The research aims to calculate the water footprint of Egyptian crops both inside and outside the Nile Valley and Delta. It will also analyze Egypt's per capita water footprint associated with these crops. Furthermore, the study will evaluate the percentage of dependence on external water sources and assess the national water self-sufficiency in agriculture. Additionally, it will estimate the volume of virtual water exported and imported for crops, highlighting the significance of international water trade in enhancing water and food security in Egypt.

2. Materials and Methods

The Arab Republic of Egypt is situated in northeastern Africa, extending into Asia, where the Sinai Peninsula is located in the southwestern part of the continent of Asia. Egypt primarily experiences a dry tropical climate, except for its northern regions, which fall within the temperate greenhouse zone. This northern area is characterized by a Mediterranean climate, featuring hot and dry summers and mild winters, accompanied by light rainfall that increases slightly along the north coast. In addition, Egypt is characterized by diverse climatic regions that differ from one area to another, offering opportunities to enhance both the quantity and quality of its agricultural production. The country can be divided into three main climatic zones: the Mediterranean coast, particularly near Alexandria and Port Said; the inland areas, which include the Nile Valley and the Nile Delta; and the western and eastern deserts. (https://www.worlddata.info/africa/egypt/climate.php).

Additionally, the Sustainable Agricultural Development Strategy 2030 (SADS, 2009) categorizes Egypt into five geographical regions based on agricultural considerations. These regions are the East Delta, West Delta, Middle Delta, Middle Egypt, and Upper Egypt. This classification encompasses all old and new agricultural lands inside and outside the Nile Valley and Delta.

2.1. Study areas:

This study focused on 14 agricultural climatic areas representing the old and new lands inside and outside the Nile Valley and the Delta. Table 1 shows the study areas and their coordinates.

2.2 Data collection

2.2.1. Agricultural meteorological data were obtained from the NASA website (POWER | Data Access Viewer (nasa.gov) according to the coordinates of each study area, from 2019 to 2022. Figures 1 and 2 illustrate the trends in reference evapotranspiration under the conditions of the studied areas, along with the monthly mean during the study period

2.2.2. Data on crop productivity for the winter, summer, and Nili seasons were obtained from the Economic Affairs Sector of the Ministry of Agriculture and Land Reclamation (EAS-MALR, Volumes 2019 to 2023).

2.2.3. The data for the population census was obtained from CAPMAS (2021-2023).

2.2.4. The data on imported and exported crops and total crop production for the crops under study were obtained from the Food Balance in the Arab Republic of Egypt (EAS-MALR) and CAPMAS.

2.3. Selected crops

In Egypt, there are two main seasons for cultivating field and vegetable crops: the winter season (October through April), and the summer season (May through September). Additionally, there is sometimes a third season known as the Nili season (July through August), along with perennial crops that grow yearround. For this study, 59 crops were selected, representing all seasons except for the perennial crops. A list of the chosen crops can be found in Table 2.

2.4. Methodology

The present study utilized the CropWat 8.0 model (Allen et al., 1998) to calculate the green and blue water footprints. The calculations were performed on 59 crops, representing various planting seasons, including winter, summer, and Nili, for both field crops and vegetables.

Crop water requirements have been calculated for each crop and each area under study. The crop water requirement refers to the amount of water needed for evapotranspiration under ideal growth conditions, which is measured from planting to harvest. "Ideal conditions" means that sufficient soil moisture is maintained through rainfall and/or irrigation, ensuring that neither plant growth nor crop yield is limited (Hoekstra et al., 2011). The crop water requirement is determined by multiplying the reference crop evapotranspiration (ETo) by the crop coefficient (Kc): CWR = Kc × ETo.

It is assumed that crop water requirements are fully met, so crop evapotranspiration (ETc) will equal the crop water requirement: ETc = CWR. Values of Kc for various crops throughout their growing season were obtained from FAO No. 56, with some adjustments based on actual field trials conducted in Egypt.

The irrigation requirement (IR) is calculated as the difference between the crop water requirement and effective precipitation. If effective rainfall exceeds the crop water requirement, the irrigation requirement is zero: IR = max (0, CWR - Peff). It is assumed that the irrigation requirements are fully satisfied.

National water footprints can be evaluated in two ways. The bottom-up approach involves calculating the sum of all goods and services consumed multiplied by their respective virtual water content, which varies depending on the location and conditions of production. In contrast, the top-down approach calculates a nation's water footprint by adding the total use of domestic water resources to the virtual water flows entering the country and subtracting the virtual water flows leaving the country (Chapagain and Hoekstra, 2004).

In this study, we employ two approaches: the bottom-up method to calculate the water footprint of crops, and a second method to assess the per capita water footprint along with the total virtual water linked to the imports and exports of the crops being studied.

Calculation of the water footprint associated with national consumption of crops:

The water footprint of a country (in cubic meters per year) refers to the total volume of water used, either directly or indirectly, to produce the goods and services consumed by its inhabitants (Chapagain and Hoekstra, 2004; Hoekstra et al., 2011). A national water footprint consists of two components: the internal water footprint and the external water footprint. The internal water footprint is defined as the use of domestic water resources to produce goods and services consumed within the country. It represents the total volume of water drawn from domestic resources for the national economy, minus the volume of virtual water exported to other countries, which relates to the export of domestically produced products. This study focuses solely on the agricultural sector, excluding the industrial and domestic sectors.

Calculation Procedures Step 1: Calculate the national consumption water footprint (WF_{cons,nat}):

The water footprint was analyzed using the methodology outlined by Hoekstra et al. (2011). The total water footprint of growing crops (WF_{proc}) is the sum of the green, blue, and grey components.

$WF_{proc} = WF_{proc,green} + WF_{proc,blue} + WF_{proc,grey}$ (1)

This study did not calculate the gray water footprint due to a lack of necessary data. The green and blue water footprints (WF_g and WF_b) are calculated as follows:

$$WF_{g} = \underbrace{V}_{Y}$$
(2)

$$WF_{b} = \underbrace{V}_{Y}$$
(3)

$$WF_{cons,nat} = TWF_{per\ crop} + VW_i - VW_e$$
 (4)

The terms CWU_{green} and CWU_{blue} represent the crop water use for green and blue water sources, respectively. The symbol "Y" indicates crop yield. The term 'WF_{cons,nat}' refers to the national water footprint

for the crops being studied. 'TWF_{per crop}' denotes each crop's internal national water footprint, which is measured in cubic meters per ton (m³/ton). This value is then multiplied by the total production to calculate the overall water footprint for that crop. 'VW_i' indicates the virtual water imported for each crop, while 'VW_e' represents the virtual water exported.

Step 2: Water footprint per capita per crop (WF_{pc}, m³/ capita/ season):

Egypt's per capita water footprint is determined by $WF_{cons,nat}$, divided by the number of inhabitants

Step 3: National water import dependency versus water self-sufficiency

According to Mekonnen and Hoekstra (2011b), virtual water dependency (WD, %) for a nation is defined as the ratio of its external water footprint (VW_{ext}) to the total water footprint associated with national consumption (WF_{cons,nat}).

$$WD = \underbrace{VW_{ext}}_{WF_{cons,nat}} x \ 100$$
(6)

Step 4: National Water Self-Sufficiency (WSS,

%): Water self-sufficiency is defined as the ratio of the internal water footprint (WF_{con,nal,int}) to the national water footprint (WF_{cons,nat}).

$$WSS = \frac{WF_{con,nal,int}}{WF_{cons,nat}} \times 100$$
(7)

Step 5: National water savings (S_n) related to international trade of agricultural products:

National water savings (S_n) associated with international trade in agricultural products are determined by calculating the difference between a country's net import volume of a specific commodity and its export volume. It is important to note that these calculated savings can be negative, which indicates a national net loss of water rather than an actual saving (Mekonnen and Hoekstra, 2011b).

$$S_n = VW_i - VW_e \tag{8}$$

Go	vernorate/ area	Latitude	Longitude		
	Lower Egypt				
	Behyra	31.02	30.28		
	Kafr El-Sheikh	31.07	30.57		
elta	Dakhalia	31.03	31.23		
1d D	Sharkia	30.24	31.25		
Inside the Nile Valley and Delta	Monofya	30.36	31.01		
Valle	Midd	le Egypt			
file	Bani Sweif	29.04	31.06		
he N	Fayoum	29.18	30.51		
de tl	Minya	28.05	30.44		
Insi	Upper Egypt				
	Asyout	27.03	31.01		
	Sohag		31.42		
	Qena	26.1	32.43		
the lley slta	El-Wady El-Gadeed	24.55	27.17		
side e Va d De	Matrouh	31.2	27.13		
Outside the Nile Valley and Delta	Nubaria	30.39	30.42		

Table 1: Locations of study areas along with their latitude and longitude coordinates

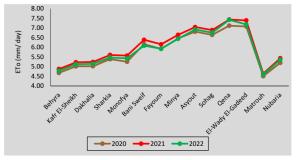


Figure 1: Average annual reference evapotranspiration (ETo) in the studied governorates

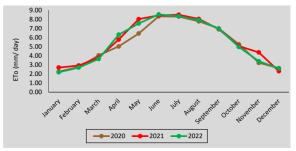


Figure 2: Average monthly reference evapotranspiration (ETo) in Egypt from 2020 to 2022.

3. Results

3.1. Water footprint for Egyptian crops

The results presented in Figure 3 show the average green and blue water footprints (WF_g and WF_b) of winter field crops in Egypt, based on data collected over three years from 2019/2020 to 2021/2022. The WF_g varied significantly, ranging

from 15.5 m³/ton for onions to 259.5 m³/ton for chickpeas. In contrast, the average WF_b during the same period ranged from 102.5 m³/ton for onions to 838.7 m³/ton for dry faba beans. Overall, the average WF_g and WF_b for all the winter field crops studied were 104.0 and 403.6 m³/ton, respectively.

Table 2: Selected crops for the study across different seasons (59 crops)

		Nili field
Winter field	Summer field	and
crops (W)	crops (S)	vegetable
		crops (N)
Barley	Cotton	Beans (g)
Chickpeas	Ground nut	Beans (d)
Faba bean (g)	Maize	Cabbage
Faba bean (d)	Onion	Cantaloupe
Flax	Soybean	Carrot
Garlic	Sunflower	Cucumber
Onion	Sugarcane	Eggplant
Sugar beet	Summer vegetables (S)	Maize
Wheat	Beans (g)	Pepper
Winter vegetables (W)	Beans (d)	Potato
Beans (g)	Cabbage	Squash
Beans (d)	Cantaloupe	Sunflower
Cabbage	Carrot	Tomato
Cantaloupe	Cucumber	
Carrot	Eggplant	
Cucumber	Okra	
Eggplant	Pepper	
Lettuce	Potato	
Peas (g)	Squash	
Peas (d)	Taro	
Pepper	Tomato	
Potato	Watermelon	
Squash		
Strawberry		
Tomato		
Watermelon		

Note: "W" signifies the winter season; "S" represents the summer season; "N" indicates the Nili season; "d" stands for dry crops; "g" denotes green crops.

In terms of the water footprint for winter vegetable crops, the results presented in Figure 4 indicate that the WF_g ranged from 7.4 to 192.1 m³/ton, while the WF_b ranged from 62.6 to 1347.2 m³/ton. The overall average water footprint for the winter vegetable group was 33.9 m³/ton for the WF_g and 241.1 m³/ton for the WF_b.

Figure 5 illustrates the water footprint values for summer field crops. The WF_g varied from 0.3 to 32.3 m³/ton, while the WF_b ranged from 156.5 to 2350.2 m³/ton. The WF for the summer field crop group was 5.9 m³/ton for the WF_g and 1571.8 m³/ton for the WF_b .

The results for the summer vegetable group showed that the WF_g ranged from 2.1 to 150.1 m³/ton, while the WF_b varied between 80.5 and 1567.3 m³/ton (as seen in Figure 6). The overall average for the WF_g and WF_b were 25.3 and 359.7 m³/ton, respectively.

Concerning the Nili crop group under study, results as indicated in Figure 7 showed that the WF_g ranged from 0.1 to 113.7 m³/ton, whereas the WF_b ranged from 186.7 to 1822.3 m³/ton. The overall averages for this group were recorded at 12.1 m³/ton for the WF_g and 550.7 m³/ton for the WF_b .

Effective rainfall plays a minor role in the total water footprint, with contribution percentages of 26%, 14%, 0.4%, 7%, and 2% for winter fields, winter vegetables, summer fields, summer vegetables, and Nili crop groups, respectively (see Figure 8).

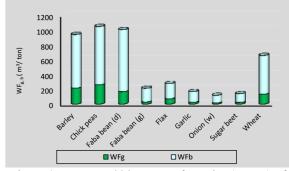


Figure 3: Green and blue water footprint $(WF_{g,b})$ of winter field crops over three seasons (2019/2020-2021/2022)

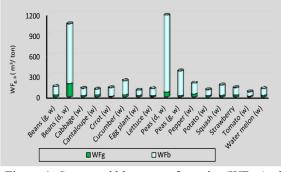


Figure 4: Green and blue water footprint (WF_{g, b}) of winter vegetables over three seasons (2019/2020-2021/2022)

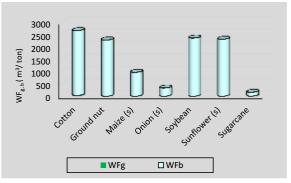


Figure 5: Green and blue water footprint $(WF_{g,b})$ of summer field crops over three seasons (2020-2022)

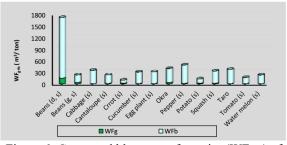


Figure 6: Green and blue water footprint $(WF_{g,b})$ of summer vegetables over three seasons (2020-2022)

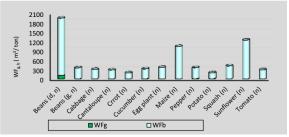


Figure 7: Green and blue water footprint (WF_{g, b}) of Nili crops over three seasons (2020-2022)

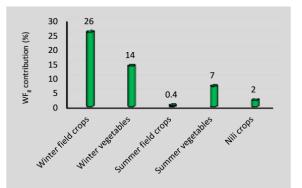


Figure 8: Contribution of the green water footprint to the total water footprint of Egyptian crops

3.2. Average total water footprint (WF_{g+b}) inside and outside the Nile Valley and Delta over three years of study

Figures 9-13 illustrate the average total water footprint of different crop groups studied inside and outside the Nile Valley and the Delta. The results indicate the following average total water footprints: for winter field crops, 563 m3/ton inside the Nile Valley and 489 m³/ton outside; for winter vegetables, 322 m3/ton inside and 279 m3/ton outside; for summer field crops, 1,673 m3/ton inside and 1,481 m3/ton outside; for summer vegetables, 420 m3/ton inside and 366 m³/ton outside; and for Nili crops, 547 m³/ton inside and 559 m³/ton outside. These data show that crop groups grown outside the Nile Valley and the Delta generally have a lower water footprint than those grown inside the Nile Valley and the Delta. The only exception is the Nili crop group, which performs slightly better in terms of water footprint inside the Nile Valley and the Delta.

Based on the previous results, it can be concluded that the average total green and blue water footprint (WF_{g+b}) for the crops during the study period was recorded at 508, 275, 1,578, 385, and 563 m³/ton for the following crop groups: winter fields, winter vegetables, summer fields, summer vegetables, and Nili, respectively (Table 3). The overall average water footprint of Egyptian crops was 662 m³/ton. These findings are consistent with the study by El-Marsafawy and Mohamed (2021), which reported an average water footprint of Egyptian crops of 680 m³/ton.



Figure 9: Average total water footprint of winter field crops inside and outside the Nile Valley and Delta

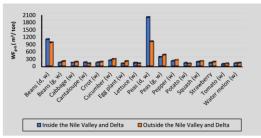


Figure 10: Average total water footprint of winter vegetables inside and outside the Nile Valley and Delta

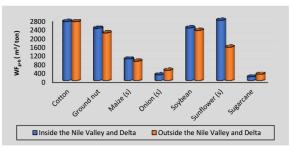


Figure 11: Average total water footprint of summer field crops inside and outside the Nile Valley and Delta

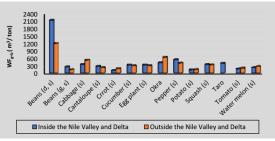


Figure 12: Average total water footprint of summer vegetables inside and outside the Nile Valley and Delta

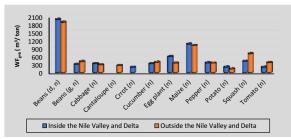


Figure 13: Average total water footprint of Nili crops inside and outside the Nile Valley and Delta.

Note: In the graphs, the absence of any crop columns indicates that the crops are not planted in this area or during this agricultural season.

Crop groups	1st season	2nd season	3rd season	Average 3 seasons
Winter field crops	512	535	477	508
Winter vegetables	287	268	270	275
Summer field crops	1551	1590	1594	1578
Summer vegetables	365	408	381	385
Nili crops	527	558	603	563
Overall average	648	672	665	662

Table 3: Average total water footprints (WF $_{g+b}$) for the crop groups under study

3.3. Water footprint per capita (WF_{pc}) for the crops studied

Due to the unavailability of essential data, such as export and import figures, the remaining studies will focus on only 25 crops. Table 4 illustrates the average WF_{pc} for the crops under study. The findings indicate that the average WF_{pc} for the winter field crop group varied widely, ranging from 0.7 m³/capita for garlic to about 130 m³ for wheat. Summer and Nili field crop groups showed a similar range, with a WF_{pc} of 1.4 m³ for sunflower and 163 m³ for maize. Regarding vegetables, the WF_{pc} ranged from 0.2 m³ for carrots to 8.5 m³ for potatoes and 10.7 m³ for tomatoes.

3.4. Dependence on imported virtual water versus water self-sufficiency (WD, %)

Table 5 presents the percentage of dependence on external virtual water versus the water selfsufficiency of the crops under study. The results indicate that, for the winter field crop group, the average dependence rate on external virtual water varied from zero for sugar beet to 85% for dry faba beans. Summer and Nili field groups ranged from 0.01 % for sugarcane to 99% for soybeans. In contrast, vegetable crops showed a very low dependence on external water, suggesting a high level of national water self-sufficiency for most of these crops.

Tuble II Water rootprint per supra (Wr cp) in Egypt for berested erops during times beasens	Table 4: Water footprint per c	capita (WF _{cp}) in Egypt for selected	crops during three seasons
---	--------------------------------	--	----------------------------

Grand	• · · · · · ·	Average 3 seasons		
Crops	1st season	2nd season	3rd season	(WF_{pc}, m^3)
		Field crops (W)	· · · · · ·	
Barley	1.4	1.7	1.2	1.4
Faba bean (d)	7.5	8.1	5.7	7.1
Garlic	0.6	0.7	0.8	0.7
Onion	4.8	5.7	7.9	6.2
Sugar beet	14.7	19.9	17.0	17.2
Wheat	143.4	133.1	113.3	129.9
		Field crops (S, N)	
Cotton (S)	7.1	8.7	12.8	9.6
Ground nut (S)	3.5	3.1	4.1	3.6
Maize (S, N)	166.3	158.0	165.7	163.3
Soybean (S)	111.3	106.9	94.0	104.0
Sunflower (S, N)	1.7	1.4	1.0	1.4
Sugarcane (S)	24.7	26.1	25.4	25.4
		Vegetables (W, S,	N)	
Beans (g)	0.4	0.3	0.2	0.3
Cabbage	0.0	1.2	1.3	0.8
Carrot	0.0	0.3	0.2	0.2
Cucumber	1.6	1.6	2.5	1.9
Eggplant	0.0	4.5	4.9	3.1
Peas (g)	0.6	0.8	0.5	0.6
Pepper	2.9	3.0	4.1	3.4
Potato	9.1	8.1	8.4	8.5
Squash	0.0	1.2	1.7	0.9
Strawberry	0.3	0.4	0.4	0.4
Taro	0.4	0.6	0.7	0.6
Tomato	10.9	10.2	11.0	10.7
Watermelon	1.8	1.7	1.7	1.7

3.5. National water self-sufficiency (WSS, %)

The results in Table 6 indicate the percentage of water self-sufficiency over the three years of study. The findings reveal that the average national water self-sufficiency for the winter field crop group varied, with dry faba beans at 14.8% and sugar beet at 100%.

In the case of the summer and Nili field crops group, the range was from 1% for soybean to 99.99% for sugarcane. For the vegetable crops group, the percentage is around 100%.

Nature and Science

Websites: http://www.sciencepub.net/nature http://www.sciencepub.net

Emails: naturesciencej@gmail.com editor@sciencepub.net

Averag

Table 6: National water self-sufficiency (WSS, %) for

WSS (%)

Egyptian crops across three growing seasons

water (WD%) versus water self-sufficiency					
		Average			
Crops	1st	2nd	3rd	(WD,	
	seaso	Seaso	Season	%)	
		d crops (V			
Barley	5.5	7.2	0.0	4.2	
Faba bean	85.5	83.2	86.8	85.2	
Garlic	2.9	1.9	4.6	3.1	
Onion	0.2	0.0	0.1	0.1	
Sugar beet	0.0	0.0	0.0	0.0	
Wheat	59.9	54.3	49.6	54.6	
	Field	crops (S,	N)		
Cotton (S)	41.6	28.6	25.5	31.9	
Ground	2.7	2.1	0.5	1.8	
Maize (S,	55.3	54.1	51.5	53.6	
Soybean	99.2	99.2	98.5	99.0	
Sunflower	85.4	81.7	69.8	79.0	
Sugarcane	0.02	0.01	0.01	0.01	
	Vegeta	ubles (W,	S, N)		
Beans (g)	0.0	0.0	0.0	0.0	
Cabbage		0.0	0.0	0.0	
Carrot		0.0	0.0	0.0	
Cucumber	0.5	0.3	0.1	0.3	
Eggplant		0.0	0.0	0.0	
Peas (g)	4.6	1.4	3.3	3.1	
Pepper	0.0	0.0	0.0	0.0	
Potato	1.9	2.3	2.4	2.2	
Squash		0.00	0.00	0.0	
Strawberry	0.0	0.0	0.0	0.0	
Taro	0.0	0.0	0.0	0.0	
Tomato	0.3	0.2	0.1	0.2	
Watermelo	0.0	0.0	0.0	0.0	

Table 5: Percentage of dependence on external virtual water (WD%) versus water self-sufficiency

	(VU) dd W		milling	
Crops	1st	2^{nd}	3rd	WSS
_	Season	Season	Season	(%)
Barley	94.5	92.8	100.0	95.8
Faba bean	14.5	16.8	13.2	14.8
Garlic	97.1	98.1	95.4	96.9
Onion	99.8	100.0	99.9	99.9
Sugar beet	100.0	100.0	100.0	100.0
Wheat	40.1	45.7	50.4	45.4
	Field	crops (S, N	1)	
Cotton (S)	58.4	71.4	74.5	68.1
Ground nut	97.3	97.9	99.5	98.2
Maize (S,	44.7	45.9	48.5	46.4
Soybean	0.8	0.8	1.5	1.0
Sunflower	14.6	18.3	30.2	21.0
Sugarcane	99.98	99.99	99.99	99.99
	Vegetab	oles (W, S,	N)	
Beans (g)	100.0	100.0	100.0	100
Cabbage		100.0	100.0	100
Carrot		100.0	100.0	100
Cucumber	99.5	99.7	99.9	99.7
Eggplant		100.0	100.0	100
Peas (g)	95.4	98.6	96.7	96.9
Pepper	100.0	100.0	100.0	100
Potato	98.1	97.7	97.6	97.8
Squash		100.0	100.0	100
Strawberry	100.0	100.0	100.0	100
Taro	100.0	100.0	100.0	100
Tomato	99.7	99.8	99.9	99.8
Watermelo	100.0	100.0	100.0	100

3.6. National water savings (S_n) from virtual water trade in crops.

Table 7 provides an overview of the net international trade of virtual water related to the crops under study, highlighting the increase and decrease in Egypt's water resources. It is important to note that a negative value in this table indicates the export of virtual water from Egypt, while non-negative values represent Egypt's imports of virtual water through agricultural products. The analysis revealed the following average values over the three years studied: - For the winter field crops group, the values ranged from -151 million m³ (onions) to 7 billion m³ (wheat).

- In the summer and Nili field crops group, values ranged from -141 million m³ (ground nuts) to 10.5 billion m³ (soybeans).

- Values ranged from approximately -103 million m³ (potatoes) to -911 thousand m³ (squash) for the vegetable crops group.

Nature and Science

Websites: http://www.sciencepub.net/nature http://www.sciencepub.net

Emails: naturesciencej@gmail.com editor@sciencepub.net

Table 7: National water savings in Egypt's agricultural sector resulting from crop trading

Cuena	Virtual Water Imported	Virtual Water Exported	Water saving (S _n)	
Crops	Average	Average 3 seasons		
Barley	10,285,500	7,898,667	2,386,833	
Faba bean (d)	614,733,000	34,129,000	580,604,000	
Garlic	2,265,333	6,359,667	-4,094,333	
Onion	638,000	151,686,333	-151,048,333	
Sugar beet	0	0	0	
Wheat	7,281,533,333	285,128,333	6,996,405,000	
	Field c	rops (S, N)		
Cotton (S)	297,683,133	171,762,589	125,920,544	
Ground nut (S)	6,108,333	147,155,667	-141,047,333	
Maize (S, N)	8,937,073,667	8,933,000	8,928,140,667	
Soybean (S)	10,508,510,000	0	10,508,510,000	
Sunflower (S, N)	N) 111,019,000 12,060,000		98,959,000	
Sugarcane (S)	329,000	276,000	53,000	
	Vegetabl	es (W, S, N)		
Beans (g)	0	10,624,222	-10,624,222	
Cabbage	0	1,062,000	-1,062,000	
Carrot	0	3,210,667	-3,210,667	
Cucumber	481,778	4,922,778	-4,441,000	
Eggplant	0	1,394,667	-1,394,667	
Peas (g)	1,749,333	5,830,000	-4,080,667	
Pepper	0	2,320,667	-2,320,667	
Potato	18,966,000	121,829,000	-102,863,000	
Squash	0	910,500	-910,500	
Strawberry	0	42,912,000	-42,912,000	
Taro	0	1,403,667	-1,403,667	
Tomato	2,351,889	56,744,778	-54,392,889	
Watermelon	0	1,746,833	-1,746,833	

4. Discussion

Egypt's agricultural sector faces several significant challenges, including rapid population growth, limited water resources, and its classification as a dry region with less than 200 mm of annual rainfall. These factors have contributed to a gap between agricultural production and consumption. Table 8 presents the self-sufficiency rates of major crops in Egypt from 2020 to 2022. The data shows that the self-sufficiency ratios for several important field crops, including wheat, maize, soybeans, dry faba beans, and sunflower seeds, have declined by more than 50%.

Conversely, the international trade in virtual water, represented through the exchange of crops, has improved the circumstances for countries struggling

with self-sufficiency. Table 9 shows the average net import and export of virtual water during the study period. Egypt's total virtual water exports reached approximately 231 million m³, while the virtual water imports amounted to 26.9 billion m³. It is important to note that these figures relate only to the 25 crops included in the study. Therefore, it can be concluded that Egypt has effectively added about 27 billion m³ of virtual water to its overall water resources. This addition has played a crucial role in maintaining water security and enhancing food security in the country.

Although Egypt imports large quantities of virtual water in the form of various crops, it stands out regarding the water footprint of individual crops, measured in cubic meters per ton. In this research, we utilized total global green and blue water footprint data from a study by Mekonnen and Hoekstra conducted in (2011a). Our objective was to compare this data with the water footprints of the crops we investigated to determine whether land and water resources are managed effectively.

Table 8: Self-sufficiency in Egypt for some crops	
during the period from 2020 to 2022.	

Crea	Self-sufficiency (%)				
Crop	2020	2021	2022	Average	
Field crops					
Wheat	42.4	46.6	51.5	47	
maize	44.8	46.0	48.5	46	
Soybean	0.8	0.8	1.5	1	
Faba bean	17.3	21.1	20.9	20	
Sunflower	19.5	29.6	41.5	30	
Ground nut	133.6	151.4	133.3	139	
Onion	123.4	120.6	126.8	124	
Vegetables					
Beans	116.0	134.6	162.8	138	
Cucumber	102.1	102.0	107.7	104	
Potato	105.1	110.6	113.7	110	
Strawberry	194.7	221.6	223.7	213	
Tomato	104.7	105.0	105.2	105	
Watermelon	101.0	100.9	101.0	101	

Source: EAS-MALR, Volumes 2020 to 2022

Table 9: Total national water savings from virtual international water trade for various studied crops (three-year average).

Crop	$S_n(m^3)$
Field crops	26,944,789,044
Vegetable crops	-231,362,778
Total	26,713,426,266

Table 10 presents the average water footprints of the crops studied alongside their global counterparts. The results indicate that the water footprints of Egyptian crops are generally more efficient than the global averages for most crops examined. This discrepancy can be attributed to effective land and water management practices in Egypt, as well as various environmental factors that influence production. These factors include a favorable climate, high-yielding crop varieties, a short growing season, and soil fertility, among others. In contrast, the contribution of green water to Egypt's total water footprint is relatively small compared to the global average. This emphasizes the challenges Egypt faces, as the country relies heavily on blue water to fulfill its agricultural water requirements.

In this context, Agro Der (2012) noted that, on a global scale, the contributions of green, blue, and

grey water were rated at 74%, 11%, and 15%, respectively. In the same direction, Chapagain et al. (2006) noted that Egypt's crop water requirements are relatively high compared to those of its trading partners. However, this is somewhat offset by the country's impressive wheat yields, which are more than twice the global average. Consequently, water productivity-measured as water use per unit of product-in wheat production in Egypt exceeds that of Canada, Turkey, and Australia. It's important to highlight that wheat production in Egypt relies on limited blue water resources, while partner countries utilize effective rainfall, known as green water. The net global water loss associated with wheat exports from Canada and other countries to Egypt arises because the volume of blue water resources required for domestic production in Egypt is smaller than the volume of green water used in Canada and similar countries. Blue and green water resources differ significantly in their applications and associated opportunity costs. To effectively analyze and interpret global water savings or losses, it is essential to separate these figures into blue and green water components

5. Conclusion

The current research focuses on analyzing the water footprint of Egyptian crops and calculating the per capita water footprint based on the crops studied. It also examines the volume of exports and imports of virtual water in the form of these crops, highlighting the significance of international trade in virtual water for maintaining water and food security in Egyptian agriculture.

The findings revealed that the average total water footprint for the crop groups studied ranged from 118 to 1,049 m³/ton for winter field crops, from 73 to 1,188 m³/ton for winter vegetables, from 165 to 2,656 m³/ton for summer field crops, from 102 to 1,717 m³/ton for summer vegetables, and from 192 to 1,936 m³/ton for Nili crops.

The comparison of water footprints inside and outside the Nile Valley and the Delta showed that most crops outside the Nile Valley and the Delta had lower water footprints. Regarding average WF per capita during the study period, maize, wheat, and soybean had the highest values, reporting 163.3, 129.9, and 104.0 m³/capita/year, respectively.

The national water self-sufficiency (WSS, %) for the studied crop groups showed that the minimum percentages recorded were 1% for soybeans, 14.8% for dry faba beans, 21.0% for sunflower, 46.4% for maize, and 45.4% for wheat, based on the average over the three years analyzed. Additionally, the amount of virtual water associated with the crops under study was approximately 231.4 million m³ for exports and 26.9 billion m³ for imports.

	Egyptian WF (m ³ /ton)		Global WF (m ³ /ton)			
Crop	(Average 3 ye	ears, m ³ /ton)	(Average 10 years, m ³ /ton)		
	WFg	WF _b	Total WF _{g+b}	WFg	WF _b	Total WF _{g+b}
Barley	216.3	724.5	941	1213	79	1292
Chickpeas	259.5	789.3	1049	2972	224	3196
Faba bean (d)	167.3	838.7	1006	1317	205	1522
Garlic	23.7	144.6	168	337	81	418
Onion	8.25	216.05	224	192	88	280
Sugar beet	21.8	118.7	141	82	26	108
Wheat	133.7	523.1	657	1277	342	1619
Cotton	32.3	2624	2656	2282	1306	3588
Ground nut	0.7	2272.4	2273	2469	150	2619
Maize	0.8	999.5	1000	947	81	1028
Soybeans	0.8	2350.2	2351	2037	70	2107
Sunflower	0.85	1771.15	1772	3017	148	3165
Sugarcane	5.1	156.5	162	139	57	196
Beans (d)	152.0	1552.5	1704	3945	125	4070
Beans (g)	23.1	224.0	247	320	54	374
Cabbage	6.4	254.1	261	181	26	207
Carrot	9.7	132.8	143	106	28	134
Cucumber	16.5	271.6	288	206	42	248
Eggplant	9.7	271.2	281	234	33	267
Lettuce	12.4	107.6	120	133	28	161
Okra	37.6	361.9	400	474	36	510
Peas (d)	68.5	1347.2	1416	1453	33	1486
Peas (g)	16.1	361.7	378	382	63	445
Potato	15.1	128.8	144	191	33	224
Squash	12.1	296.9	309	228	24	252
Strawberry	23	111.1	134	201	109	310
Tomato	6.1	172.0	178	108	63	171
Watermelon	11.6	199.1	211	147	25	172

Table 10: Comparison of the green and blue water footprints (WFg,b) of Egyptian crops versus their global counterparts.

Author Contributions:

Conceptualization, S.M.E.-M. and M.K.; Methodology, S.M.E.-M.; Data collection of crop productivity A.I.M., K.A.I.M.; Data collection of population growth, A.I.M., K.A.I.M.; Data collection of imported and exported crops, A.I.M., K.A.I.M., S.M.E.-M.; Software and validation, S.M.E.-M.; Writing-Original Draft Preparation, S.M.E.-M., and M.K.; Writing-Review & Editing, S.M.E.-M.

References

- 1. Agro Der (2012). The water footprint of Mexico in the context of North America. WWF Mexico and Agro Der. Mexico DF.
- Alamri Y. and M. Reed (2019). Estimating Virtual Water Trade in Crops for Saudi Arabia. American Journal of Water Resources, 2019, Vol. 7, No. 1, 16-22
- Allan J.A. (1993) Fortunately there are substitutes for water otherwise our hydropolitical futures would be impossible. In: Priorities for water resources allocation and management, ODA, London, pp 13–26
- Allan JA (1994) Overall perspectives on countries and regions. In: Rogers P, Lydon P (eds) Water in the Arab World: perspectives and prognoses. Harvard University Press, Cambridge, Massachusetts, pp 65–100
- Allen RG, LS Pereira, Raes D, and M. Smith (1998). Crop evapotranspiration - Guidelines for computing crop water requirements – FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy,

http://www.fao.org/docrep/X0490E/x0490e00.ht

- Cao X C , D Chen, S H Tang, and X P Guo (2018). Assessing the crop production water footprint in Shandong Province of China. International Conference on Civil and Hydraulic Engineering (IConCHE 2018). IOP Conf. Series: Earth and Environmental Science 189 (2018) 052036
- CAPMAS (2021-2023). Central Agency for Public Mobilization and Statistics. Arab Republic of Egypt. Statistical Yearbook
- Chapagain A.K. and A.Y. Hoekstra (2004). Water footprints of nations. Volume 1: Main Report. November 2004, Value of Water Research Report Series No. 16. Website <u>www.unesco-ihe.org</u>
- Chapagain A. K., A. Y. Hoekstra, and H. H. G. Savenije (2006). Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci., 10, 455–468, 2006 www.hydrol-earth-syst-sci.net/10/455/2006/
- 10. EAS-MALR, Volumes 2019-2023. Economic Affairs Sector- Ministry of Agriculture and Land Reclamation. Bulletin of Important Indicators of the Agricultural Statistics.
- ElFetyany M., H. Farag, H. S. H. Abd El Ghany (2021). Assessment of national water footprint versus water availability - Case study for Egypt. Alexandria Engineering Journal (2021) 60, 3577–3585
- 12. El-Marsafawy Samia M. and A. I. Mohamed (2021). Water footprint of Egyptian crops and its economics. Alexandria Engineering Journal

(2021) 60, www.elsevier.com/locate/aej, www.sciencedirect.com

13. Ercin A. E. and A. Y. Hoekstra (2014). Water footprint scenarios for 2050: A global analysis. Environ. Int.64, 71–82.

4711-4721.

- Hoekstra A. Y. (2013). The Water Footprint of Modern Consumer Society (Routledge, London, 2013).
- Hoekstra A. Y. (2017). Water footprint assessment: evolvement of a new research field. Water Resources Management 31(10):3061– 3081 DOI 10.1007/s11269-017-1618-5.
- Hoekstra A. Y. and A. K. Chapagain (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour Manage 21:35–48
- Hoekstra, A.Y., A. K. Chapagain, M.M. Aldaya, and M.M. Mekonnen (2011) The water footprint assessment manual: Setting the global standard, Earthscan, London, UK. <u>www.earthscan.co.uk</u>. Water Footprint Network 2011
- 18. Hoekstra A.Y. and M. M. Mekonnen (2012). The water footprint of humanity. 3232–3237 | PNAS | February 28, 2012 | vol. 109 | no. 9 www.pnas.org/cgi/doi/10.1073/pnas.110993610 9
- Hoekstra A. Y, and P. Q. Hung (2002) Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade.Value of Water Research Report Series No. 11, UNESCO-IHE Institute for Water Education, Delft, The Netherlands, <u>http://www.waterfootprint.org/Reports/Report11</u> .pdf
- Mehla M. K. (2022). Regional water footprint assessment for a semi-arid basin in India. PeerJ 10:e14207 DOI 10.7717/peerj.14207
- Mekonnen. M. M. and A.Y. Hoekstra (2010). The green, blue and grey water footprint of crops and derived crop products. Volume 1: main report. December 2010, Value of Water Research Report Series No. 47. UNESCO-IHE Institute for Water Education
- 22. Mekonnen M. M. and A. Y. Hoekstra (2011a). The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci., 15, 1577–1600, 2011. <u>www.hydrol-earthsyst-sci.net/15/1577/2011/</u>
- 23. Mekonnen M. M. and A.Y Hoekstra (2011b) National water footprint accounts: the green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO-IHE, Delft, the Netherlands.

24. Mekonnen M. M. and A. Y. Hoekstra (2016). Four billion people facing severe water scarcity. Sustainability, Sci. Adv. 2016; 2: e1500323. <u>http://advances.sciencemag.org/</u> on February 12, 2016

2/1/2025

25. SADS (2009). Sustainable Agricultural Development Strategy towards 2030. Ministry of agriculture and land reclamation. Arab Republic of Egypt, Cairo 2009.