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Abstract: Essential physics associated with the conformational behavior of a linear semiflexible homopolymer chain have 
been derived from a model of directed self avoiding walk (DSAW) on a two dimensional rectangular lattice. The DSAW 
model has been solved analytically to study phase transitions occurring in the polymer chain and exact values of 
conformational properties and transition points have been reported. We have analyzed the variation of critical value of step 
fugacity and persistent length with bending energy of the semiflexible polymer chain for a case when the chain is in the 
bulk. In presence of an attractive impenetrable surface, variation of critical value of monomer-surface attraction with 
bending energy of the polymer chain shows that adsorption of a stiff polymer chain takes place at a smaller value of 
monomer surface attraction than a flexible polymer chain. We have compared the results obtained for a two dimensional 
rectangular lattice case to the corresponding results obtained using square lattice and found that qualitative nature of phase 
diagrams are similar in the case of both the lattices. [New York Science Journal. 2010;3(1):32-37]. (ISSN: 1554-0200). 
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1. Introduction 
    Biopolymers (e. g. DNA, protein) are known to be 
semiflexible polymer chains. The conformational properties 
of such chains have attracted considerable attention in 
recent years because of new developments in experimental 
techniques in which it has become possible to pull and 
stretch single Biopolymer to measure its elastic properties 
(Bustamante et al. 2000; Shivashankar et al. 1997). These 
studies will reveal a wealth of information about the 
conformational behavior of Biopolymers and of clear 
Biological importance.  
    The essential physics associated with the conformational 
behavior of a semiflexible polymer chain in the bulk and in 
presence of an attractive impenetrable surface can be 
derived in the lattice model from a model of self avoiding 
walk (SAW) or directed self avoiding walk (DSAW) on a 
suitable lattice (Privman and Svrakic, 1989; Mishra et al., 
2003, Giri et al., 2003; Mishra, 2009a, b). The analytical 
solutions for semiflexible polymer chain are limited to 
DSAW models (Privman and Svrakic, 1989; Mishra et al., 
2003 and Mishra, 2009a, b) and WLC (worm like chain) 
model (Kratky and Porod, 1949). The WLC model has been 
used extensively to study conformational properties of a 
semiflexible polymer chain and it can not mimic exactly the 
dimensional behavior of semiflexible polymer chain 
(Semjon, 2001). On the other hand DSAW models are 
analytically solvable, simple to report quantitative behavior 
and provides clear picture of the phase diagram of a 
semiflexible polymer chain in the bulk and in presence of 
an attractive impenetrable surface.  
    Lattice models are useful in analyzing the modifications 
in the conformational properties of the polymer chain when 
it is near an attractive impenetrable surface (Eisenriegler, 

1993; Singh et al. 1999; 2000 and references therein). Since, 
impenetrable attractive surface introduces constrain on the 
polymer chain and therefore reduces its entropy and due to 
attractive interaction between monomer of the polymer 
chain and the surface, the polymer chain gains internal 
energy. A competition between the gain in internal energy 
and corresponding loss of entropy of the polymer chain is 
responsible for adsorption-desorption transition. This 
phenomenon of adsorption-desorption transition finds 
applications in lubrication, adhesion and surface protection.  
    In the past few years much attention have been paid to the 
study of conformational properties of a linear semiflexible 
polymer chain on square and cubic lattices using SAW and 
DSAW models (Privman and Svrakic, 1989; Mishra et al., 
2003; Giri et al., 2003 and references therein). Since, 
stiffness of the polymer chain controls bending of the chain 
and therefore modifies its conformational properties. This is 
to be noted that the universal features of a surface 
interacting polymer chain and qualitative nature of phase 
diagram will remain independent of the type of lattice 
(square, hexagonal or rectangular lattice in two dimension) 
chosen to model the polymer chain. 
    In the present communication we have extended the idea 
of DSAW model to a two dimensional rectangular lattice 
derived from a hexagonal lattice and solved the model 
analytically to study conformational changes in a linear 
semiflexible homopolymer chain in the bulk and in presence 
of an attractive impenetrable surface. The results so 
obtained have been compared with the corresponding results 
found using square lattice (Mishra et al., 2003) for the sake 
of completion. 
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2. Model and method 
     We define stiffness weight 

)/exp( Tkk Bbε−= where, )0(>bε is the energy required 

to introduce one bend in the polymer chain, Bk  is 
Boltzmann constant and T is temperature. If polymer chain 
is flexible ( 1→k or 0→bε ), the persistent length is very 
small in comparison to actual length of the polymer chain 
and if the polymer chain is stiff ( 0→k or ∞→bε ) the 
persistent length is of the order of the polymer chain length. 
However, if 10 << k or ∞<< bε0 , the polymer chain is 
known as a semiflexible polymer. 
    In the case of directed self avoiding walk model of 
polymer chain on a two dimensional rectangular lattice all 
the directions in space are not treated equally by the walker 
therefore model introduces stiffness in the polymer chain 
and angle of bending of the polymer chain is 900 for all the 
bends therefore model is restrictive. However, directed self 
avoiding walk model is exactly solvable therefore gives 
exact value of conformational properties, transition points 
and clear picture of phase diagram. In a case, when polymer 
chain is directed along +y direction, i. e. walker can take 
steps along ±x and +y directions, corresponds to the case of 
partially directed self avoiding walk (PDSAW) model. 
Another case, in which walker is directed along +x as well 
as +y direction, i. e. walker can not walk along -x and -y 
directions, model is known as fully directed self avoiding 
walk (FDSAW) model. We have taken lattice parameter 2:1 
along x:y directions respectively for the two dimensional 
rectangular lattice which is derived from a hexagonal lattice. 
    The grand canonical partition function of a semiflexible 

polymer chain can be written as, 

)1(),(
0

∑ ∑
∞=

=

=
N

N stepsNofwalksAll

NN bkxkxZ  

    In Eq. (1) bN is the number of bends in a walk 

of N monomers (steps), x is the step fugacity associated 
with each monomer of the polymer chain and k is stiffness 
of the chain. We define X as the sum of Boltzmann weight 
of all the walks whose first step is along any of the ±x 
directions and Y is sum of Boltzmann weight of all the 
walks with first step along +y direction. 
2. 1(a) PDSAW model 
    The generating function for PDSAW model on a two 
dimensional rectangular lattice (derived from a hexagonal 
lattice) can be written (as shown graphically in Fig. 1B) and 
solved to evaluate partition function, ),( kxZPD of the 
linear semiflexible homopolymer chain as follows. 
 

 
 
Fig. (1A) [Rectangular lattice derived from a two 
dimensional hexagonal lattice.]

 

 
 
Fig. (1B) [Recursion relations for PDSAW model are shown diagrammatically for an infinitely long linear semiflexible 
homopolymer chain on a rectangular lattice in two dimension. In the PDSAW model walks of the polymer chain are 
directed along +y direction. Step fugacity of each step is shown by x, k is stiffness associated with each bend of the polymer 
chain, X shows sum of Boltzmann weight of all the walks whose first step is along any of the directions ±x and Y shows 
sum of Boltzmann weight of all the walks having first step along +y direction.] 
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Components of recursion relations have been written 
according to Fig. (1B) and solved for partition function 

),( kxZPD  of the polymer chain as follows: 
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)3(222 2222 YkxkXxkxxY +++=  
Eqs. (2) and (3) can be solved for X and Y
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Therefore, partition function ),( kxZPD for PDSAW model can be written as, 

 

)5(
21

)442232),( 222

233322

kxx
kxkxxkxxxXkxZ PD ++−

−+−++−
=

(Y =+  

 

    The partition function ),( kxZPD of the polymer chain 
diverges for,  

) 6(021 222 =++− kxx
      From Eq. (6) we obtain critical value of step fugacity for 
polymerization of an infinitely long linear semiflexible 
polymer chain and it can be written in terms of stiffness 

as )21/(1 kxc += 2 . 
    However, critical value of step fugacity for PDSAW 
model on a square lattice in terms of stiffness of the chain is 

written as )2k1/(1xc += (Mishra et al., 2003). The 
dependency of step fugacity of a semiflexible polymer chain 
on its bending energy for PDSAW model is shown in Fig. 
(2) by up-triangle for a rectangular lattice and by star for a 
square lattice.  
    The persistent length ( pl ) defined by Mishra et al., 
(2003) can be calculated for PDSAW model of semiflexible 

polymer chain for the rectangular lattice and it can be 
written as 2)2/1(1 −+= kpl . Variation of persistent length 
with bending energy of the linear polymer chain for 
PDSAW model is shown in Fig. (3) by up-triangle for the 
rectangular lattice and by star for square lattice. 
2. 1(b) FDSAW model 
    The recursion relations for generating functions of 
FDSAW model on a two dimensional rectangular lattice can 
be written according to the method outlined above and 
easily solved for calculation of partition function of the 
semiflexible polymer chain as follows: 

)7()(22 kYXxxxX +++=  

)8()(22 kYXkxkxxY +++=  
On solving Eqs. (7) and (8) for X and Y, we find values of 
X and Y to calculate partition function ),( kxZFD as 
follows,
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Thus, partition function ),( kxZFD for FDSAW model is, 

)10
1

2),( 2

22

x
xkxxxYXkxZ FD +−

−++
−=+= (2

22

2333

kx
kxkx

+
−+  

 
    The critical value of step fugacity for polymerization of an 

infinitely long linear semiflexible chain can be obtained from 
singularity of ),( kxZFD , i. e., 

 )11(01 222 =++− kxx  
    Thus, in this case critical value of step 

fugacity 211 kxc += , its variation with bending energy of 
the polymer chain is shown in Fig. (2) by down-triangle for 
rectangular lattice. For a square lattice  

(Mishra et al., 2003) have been shown in Fig. (2) by plus 
symbol for FDSAW model to compare the results for 
different values of bending energy of the polymer   chain.  
    The value of persistent length of the semiflexible 

polymer chain for FDSAW model on the rectangular 
lattice ( 21 −+= kpl ) has been shown for different values 
of bending energy of the polymer chain in Fig. (3) by 
down-triangle and by plus symbol for square lattice 
( 11 −+ k=lp])1(1[ kxc = + ) (Mishra et al., 2003). 
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Fig. (2) [Variation of critical value of step fugacity for 
polymerization of an infinitely long linear semiflexible 
polymer chain has been shown for various values of bending 
energy of the polymer chain for PDSAW and FDSAW 
models on a two dimensional rectangular lattice and square 
lattice.]  

 
Fig. (3) [Variation of persistent length of an infinitely long 
linear semiflexible polymer chain has been shown for 
various values of bending energy of the polymer chain for 
PDSAW and FDSAW models on a rectangular lattice in two 
dimension and a square lattice.] 

2.2 Adsorption properties 
    In presence of an attractive impenetrable surface, 
conformational properties of the semiflexible polymer chain 
get modified due to constrain imposed by surface and 
attractive interaction of monomer of the chain with the 
surface. The attractive surface contributes an excess energy 
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)0(<sε for each step of the walk lying on the surface and 
thus leads to an increased probability, characterized by the 
Boltzmann weight )( se βεω −= , of making a step on the 
surface. Impenetrable surface constrains the polymer chain 
and therefore, reduces its entropy. The polymer chain may 
move away from the surface to increase its entropy and 
desorbed state will prevail. However, if polymer chain and 
surface attraction wins over the loss of entropy of the chain 
due to constrain imposed on the polymer chain by the 
impenetrable attractive surface, most of the parts of chain 
get attached to the surface and adsorbed state will prevail. 
Thus, transition between adsorbed and desorbed regimes is 

marked by a critical value ofω or monomer surface 
attraction energy.  
    In this section, PDSAW and FDSAW models of an 
infinitely long linear semiflexible polymer chain in the 
presence of an attractive impenetrable surface (i. e. a line 
y=0, for two dimensional space) have been solved on a two 
dimensional rectangular lattice and results obtained have 
been compared with corresponding results found using a 
square lattice. 
 2.2 (a) PDSAW model 
    We report the results found from analytical calculation 
for the adsorption of a directed semiflexible polymer chain 
on a surface. For a two dimensional space, surface is a line. 
Let S be the component of generating function along the 
surface. Following the method outlined above, we can write 
generating function for surface interacting chain, as written 
in Eq. (12). 
    Surface component of recursion relation for PDSAW 
model can be written using Fig. (4) as,

 

)12()1()......1()1()1( 53 <++++++++= sskYssskYssskYssS  
 
    Where, )( xs ω= is the weight associated with each step 
(monomer) lying on the surface. Above series can be 
summed for s < 1, such that, 

 
 

 
Fig. (4) [Recursion relation for an infinitely long linear 
semiflexible polymer chain interacting with an attractive 
impenetrable surface is shown diagrammatically for a two 
dimensional rectangular lattice. Surface is a line and shown 
by y=0. All the walks start from a point O lying on the 
surface and S represents sum of Boltzmann weight of all the 
walks whose first step is on the surface. Y is the component 
of generating function perpendicular to the surface.]    
 



New York Science Journal, 2010;3(1)                                                         Mishra, Pramod Kumar; Directed Self Avoiding   
 

http://www.sciencepub.net/newyork                                                                     

    Z )13()1(2),,( <+= sYSxks
PD ω

 The partition function, ),,( xkZ s
PD ω of the surface 

interacting semiflexible polymer chain is written as, 

 
We have taken value of Y from Eq. (4), thus,

 

)14()1()221)(21()21)(1(2),,( 2222

2222222

<
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= skxxxkkssxkxxssxkZ s

PD ω
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     For adsorption of an infinitely long linear semiflexible 
homopolymer chain on a surface perpendicular to the 
direction of directedness of walks has been found and its 
value in terms of stiffness can be written 

as
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221 kc +=ω . This value of cω has been obtained 

from singularities of Eq. (14). The variation of cω for the 
semiflexible polymer chain with bending energy of the 
chain is shown in Fig. (5) by up-triangle for PDSAW model 

on a rectangular lattice. The value of 1+kcω 2=  
(Mishra et al., 2003) for square lattice in the case of 
PDSAW model and its variation is shown in Fig. (5) by star 

for different values of bending energy of the polymer chain. 
 
2.2 (b) FDSAW model 
    In the case of FDSAW model the component of 
generating function along surface has same expression as 
we have obtained for PDSAW model. Therefore, partition 

function of the polymer chain for this model Z ),,( xks
FD ω  

can be written as, 

Z )15()1(),,( <+= sYSxks
FD ω

 

)16()1(
)1)(1(

)1)(1()1)(1(),,( 2222

2222222

<
++−−

+−++−−++−+
= s

kxxs
kxxxkkssxkxxssxkZ s

FD ω  

 
    In above Eq. (15) we have used value of Y from Eq. (9). 

The singularities of Z ),,( xks
FD ω  gives critical value of 

ω  for adsorption of the semiflexible polymer chain 

as, 21 kc +=ω  and its variation with bending energy of 
the semiflexible polymer chain is shown by down-triangle in 

Fig. (5) for FDSAW model on a rectangular lattice. 
However, in the case of a square lattice for FDSAW model 

kc 1ω = + and its variation with bending energy of the 
polymer chain is shown in Fig. (5) by plus symbol.

 

 
Fig. (5) [The variation of cω for adsorption of an infinitely long linear semiflexible polymer chain on an attractive 
impenetrable surface has been shown with bending energy of the chain for PDSAW and FDSAW models on a two 
dimensional rectangular lattice and square lattice.] 
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3. Result and discussion 
     We have solved PDSAW and FDSAW models for a 
linear semiflexible homopolymer chain on a two 
dimensional rectangular lattice and calculated exact value of 
step fugacity for polymerization of an infinitely long 
semiflexible chain. The variation of step fugacity and 
persistent length of the semiflexible polymer chain with its 
bending energy have been shown for directed walk models. 
The critical value of step fugacity for a flexible polymer 
chain is found to be 0.577.. and 0.707.. for PDSAW and 
FDSAW models respectively for the case of rectangular 
lattice. Persistent length of a flexible chain has value 1.5 for 
PDSAW model and 2 for FDSAW model on rectangular 
lattice. We have been able to obtain critical value of ω for 
adsorption of an infinitely long linear semiflexible polymer 
chain on a surface perpendicular to the direction along which 
chain is directed. The critical value of ω  for surface 
adsorption for a flexible chain is 732.1=cω in the case of 
PDSAW model and 1.414.. for FDSAW model on a two 
dimensional rectangular lattice. Our study also showed that 
the adsorption of a stiffer chain takes place at a smaller value 
of cω than a flexible chain (Sintes, 2001 and Mishra et al., 
2003, Mishra, 2009a, b). We have compared the results of 
critical value of step fugacity, persistent length and 

cω obtained for PDSAW and FDSAW models on 

rectangular lattice with their corresponding results obtained 
using a square lattice. In the case of square lattice surface is 
a line (x=0) and walks are directed perpendicular to the 
surface. It has been found that qualitative nature of phase 
diagrams are similar for the rectangular and square lattice 
for both PDSAW and FDSAW models. 
  We would like to make a comment about cω , that we have 
obtained in the case of hexagonal lattice for PDSAW(I) and 
FDSAW models (Mishra, 2009a). In the case of hexagonal 
lattice, for a polymer chain adsorption on a curved surface,  

cω  is equal to 1.732.. for PDSAW(I) model and cω  
=1.732.. for adsorption of a flexible chain  (k=1) on a flat 
surface, that we have obtained in our present study for 
PDSAW model for rectangular lattice case. The cω  has 
value 1.414.. for FDSAW model for hexagonal lattice with 
curved surface and this value we have also obtained for 
FDSAW model in our present investigation for adsorption 
of a flexible polymer chain on a flat surface. 
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