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Abstract: The main purpose of this paper is to show that the sequence space CeS[(an), (pn ), (qn)] defined by Altay

and Basar (2007) is k-nearly uniformly convex (k-NUC) for K 3 2 when Liminf p, >1 .Therefore it is fully k-rotund

n® ¥
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Introduction

Let (X, ||.|) be Banach space over the real
numbers R and let B(X) (respec. S(X)) be the closed
unit ball (resp. unit sphere) of X.

A point X1 S(X) is an extreme point of B(X), if
- +7
for anyy,Zl S(X), the equality xzch

implies y=z.

A Banach space X is said to be Rotund (R) if for
every point of S(X) is an extreme point of
B(X).Clarkson [1]who introduced the concept of
uniform convexity.

A Banach space X is called uniformly convex (UC) if
€ >0 $0>0 such that for X, Y| S(X), the

X+
inequalitle- )l<e implies thatl—24<a.

(1.1) forany XI B(X) , the drop determined by
X is the set

D(x,B(X))=conv((x} E B(X)). (.2
Rolewicz [12], basing on Dane$ drop theorem [4],
introduced the notation of drop property for Banach
spaces.

A Banach space X has the drop property (D) if

For every closed set C disjoint with B(X) $X1 C
such that D(x, B(X)) ¢ C = {x}.

(1.3)

X is said to have the property (H), if for any sequence
on the unit sphere of X, weak convergence coincides
norm convergence. In [13], Rolewicz proved that if
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the Banach space X has the drop property (D), then X
is reflexive. Montesinos [11]extended this result by
showing that X has the drop property if and only if X
is reflexive and has the property (H).A sequence

{Xn}‘l X is said to be € -separated sequence for

some € >0 if

sep(X,) :inf'xn - erli nt m}>e
A Banach space X is called nearly uniformly convex
(NUC) if* €>0 $al (0,1)such that for every
sequence (X,) | B(X)withsep(x,)ze , we
havecOnV(x,)C (1- @)B(X)* 7.  (@5)
Huff [6] proved that every NUC Banach spaces X is

reflexive and it has property (H). Kutzarova [7] has
defined k-nearly uniformly convex Banach spaces.

Let k3 2be an integer, a Banach space X is called

(1.4)

k-nearly uniformly convex (k-NUC) if

"€>0%$a>0 such that for any sequence
(x.) 1 B(X) withsep(x,)=¢ thereare

N1, Ny.N3,..., Nkl N such

Clearly, k-NUC Banach spaces are NUC, however
the opposite implication does not hold in general [7].

Fan and Gliksberg [5] have introduced
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k-Rotund (kR) Banach spaces. A Banach space X is
called fully k-rotund (kR) if for any sequence

(x)1 B(X)

min{n, :1£1 £k]® ¥ implies that (X,) is

convergent. It is well known that UC implies kR and
kR implies (k+1)R, and kR spaces are reflexive and
rotund. Byw, we denote the space of all real or
complex sequences and the set of natural numbers by
N={1,23,...}.

For a real vector space X, a function
S5 : X ® [0,¥]is called modular, if it satisfies the
following conditions:

Hs(x)=00 x=0"xI X

Giys (/x)=s(x)" /T rwitnf/|=1,
(i)s(/x+by) Es(X)+s(y)" x,yT X
"/,b30;/ +b=1.

Further, the modular S is called convex if
V)s(/x+by)E/s(X)+bs(y)" x,yl X
"/,b30;/+b=1.1f S isamodularon X,
we define X, ={x1 X:lim s(/x)=0{, (1.7)

/®0°
XZ={x] X:s(/x)<¥,$/ >0}

Itis clear that X, i X .IfS isa convex

modular" XT X, we define

x|l =inf{/ >0:5 Fm2ELy (18)
i e/ o %

Orlicz [10] proved that if S is a convex modular on
X, then X, = X and || x| is a norm on X _ for which

X is a Banach space. The norm || x||, defined as in
(1.8), is called the Luxemburg norm.

A modular S is said to satisfy thed, -
condition (S T @) if" € >0 $constants K 3 2and
a > 0 such that s(2u) £Ks(U) +e€, (1.9)

ul X, withs(u) £a.If S satisfies the
d, -condition " & >0 with K 3 2 depending on a,
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we say that S satisfies the strong a’2 -condition

(sT ).

The following known
important for our consideration.

Theoreml.1. [2]

results are very

Ifs1 d,then” L>0and" € >0$0>0such
that'S(u +V) - s(u‘<e,

u,vli X, withs(u)£Lands (V) £a.

(1.10)

Proof. See [2, Lemma 2.1].

Theoreml.2. [2]

@ s &, then x1 X, , || x||=1if and only
ifs(x)=1.

) 1fs1 @, then for any sequence(X,)in X,

I X, |® O ifand onlyifs(x,) ® 0.

Proof. See [2, Corollary 2.2 and Lemma 2.3].

Theorem1.3.
1fs1 &, then" €l (0,)$al (0,1)such
thats (x) £1- 6imp|ies"£1- d.

Proof. Suppose that the theorem does not hold, then
$€>0and(x,)in X suchthats (x,)£1- e

,andi£|| X, || %2%4® 1. Leta, = 1
7 3|

Thena, % %%4® 0.LetL =sup, s (2x,) .Since
sT df$K3 2 such that s(2u) £Ks (u)+1
@.11)" ul X, withs (u) <1.By(1.11), we

haves (2x,) £ Ks (x,) +1<K +1" nl N.
Hence, 0 £ L <¥ By theorem1.2(1), we
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have 125(&.) =s(2a,x,+(1- a,)x,) (1.12)
£as(2x)+(- a)s(x, )£
alL+(l- e %%W®1- e

, which is a contradiction.

Altay and Basar (2007) defined the sequence space

cesf(a,), (P,). (a,)]as
ces[(a,), (p ),(a,)]=

x1 w: a (ana qk|xk[)p" <¥% (1.13),

n=0

_)_\_/

where (a,),(p,)and (q,) are sequences of

positive real numbers, 1£ p,<¥ " n1 N. with the
norm
L
S e g g U
I x[I=éa ¢aa a [ X [= G (1.14),
g=1€ k=1 g g
H =sup p,

n

They also showed that the space

ced[(a,),(p,),(0,)]is a complete linear metric
space paranormed

1

ey n P uH
o 0
by g(x) = Gﬁgana de I X% [= G also
gn =1€ k=1 4] o}

V.Karakaya and N.Simsek [16] proved that this space
is a Banach space and posses Kadec-Klee (H).

Remarks:
(1)Taking &, — e then
a Y
k=1
Ces((a,).(Pn).(g,)) = Ces((p,).(a,)) the

N"orlund sequence spaces studied by [18].
- 1 n T
(2)Takinga, —em; g, =1," nl N,
n

then Ces((a,),(p,),(q,)) =Ces(p,) studied by
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W. Sanhan and S. Suantai [15].

- 1 n T
(3)Takinga, ===, . =1,p,=p ," nl N,
n

then Ces((a,),(p,).(d,)) =Ces
Many authors see [8,9and14].

studied by

Throughout this paper, the sequence (p,) is a
bounded sequence of positive real numbers
with Liminf p, >1, and also

n® ¥

1)H =sup p, .

2) Let (p,)be a bounded sequence of positive real
numbers, we
have| a, +b, |™ £

kT .

2" (a | + b |7)

2. Main results
Proposition2.1.

The functional s is convex modular

onces[(a,), (P, ). (d,)]and for
anyx1 ces[(a,),(p,),(q,)]the functional

sonces(a,),(p,),(q,)] satisfies the following
properties:

(i) [If0<r<1, then

(ii) rHsgrQES(x) ands (rx) £rs(x) .
erg

Hw(o

S Cum--.
erg

(ii) Ifr>1, thens (X) £ r

(iii) If r=1, then S (X) £ rs (X) £ 5(rx).

Proof. All assertions are clearly obtained by the
definition and convexity of s see [17] .

Proposition2.2.
Forany X1 ces[(a,),(p,).(q,)]. the following

assertions are satisfied:

newyorksci@gmail.com




New York Science Journal

2010;3(3)

(i) 1]l X |I<1, thens (x) £]| x|,
(i) if]| X > 1, then s (x) 2 || X

(iii) || X ||=1 if and only if s (x) =1.

Proof: It can be proved with standard techniques in a
similar way as in [17].

Proposition2.3." L >0and" € >0$a >0 such

that'S(u +V) - s(u‘< e

wheneveru, v ces[(a,),(p,),(q,)]with
S(u)ELands(v)£a

Proof: Since(p, ) is bounded, it is easy to see

thats 1 O'ZS.Hence the proposition is obtained

directly from theorem (1.1).

Proposition2.4. For any

sequence (x,) 1 ces[(a, ), (p,), (G,)1.II x, [® 0
ifand only if s (x,) ® 0.

Proof: It follows directly from Theorem (1.2-2)
sinces T af.

Theorem2.5." x1 ces[(a,),(p,),(q,)]and
"€l (0,0),$al (0,1) such that
S(X)E1- 6imp|ies"£1- a.

Proof: Since s 1 d; , the theorem is obtained

directly from theorem (1.3).

Theorem2.6. The space ces[(a,),(p,),(q,)]is k-
NUC " integerk 3 2

Proof:

Lete >0and(x,)T B(ces[(a,),(p,).(q,)]) with

sep(x,)=e .Foreachml N, let
x" = (0,0,......, 0,x,(m), x,(m +1),..) .Since for

eachil N, (x, (i))¥_, is bounded, we have that

http://www.sciencepub.net/newyork

"l W, (x, (i))¥_, is bounded, by using the diagonal
method, we can find a subsequence

(X (D) of (X2 ) such that (X, (1) converges for
eachil N, 1£1£ m Therefore, there exists an
increasing sequence of positive integer (t,) such

that sep((x;“j )j>t, )2 € .Hence, there is a sequence

of positive integers () m- With I; <T, < <...gych

that 'Xm'3 &' Ml N. Then by proposition (2.4),
m 2

there exists/7 > Osuch

thats () ® A" m| . (2.1)

we may assume that

Let @ >0be such thatl<a < Liminf p, .For
n® ¥

by proposition (2.3) $4 >0
suchthafs U +v)- sf<g. (22
whenever s (U) £1and s (v) £ @ .Since by

proposition (2.2-1) s(X,)£1" nl N $ positive
integersm, (i =1,2,3,.....,k - 1) with

m <m, <M <.... <My 1such
thats (x[") £ danda £ p;" j3
m, =m,_, +1.By(2.1), we
have ¢ (xm)2 h Lets, =iforlEi £k-1,

m,_, .Define

ands, = Iy, -Then in virtue of (2.1),(2.2), and

Convexity of function f, (u) Z"Di (i1 ), we

have
s(>gl+)%+x%+ +x%) )+XSZO+&O+ +)&O|O
L i:1 P
a X )+x, 0)+x 0)+. +>g()|0
2 B |g
+ 4 &a
Aoy e
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glsee &4
225G adx (|J| +4 as

n:lkale i F  emH

X, 0+ §+2q£
kg

>g()+>g()+ 0,

@

¥an
+ 3 &3

2,841

£g}ék’1§n§q|>g 0

Jﬂ.

+4 aganaq|>g d

g nm J=2€ i

3 14 3
+a a@naq|>g0| ot d I(aqana

n:n}+1k1=se i= rm 1R j%-1€ i3

X, ®|§ +

o)
O_ Hk-Def

a‘ianaq b

n:mﬁg i

+5(% )*...+ 3 5

n:le i=

U 1 % 8
g aaaqlx.kd e
ﬂg emHEe =

16’"

£1--+-é— a ganaq|>gk '1

6 mmae i1

E1+k-Dg- r mgl@na%(

i=l

&'-10 L1686

£1+k- De- g—-.h—l g_@zg

By theorem (2.5) $ g > O such that

<1- g. Therefore,

ces[(a,), (p,) (a,)] is k-NUC.

Since k-NUC implies k R and k R implies R
and reflexivity holds, and k-NUC implies NUC and
NUC implies H-property and reflexivity holds, by
theorem (2.6), the following results are obtained.

COROLLARY2.7. ForLiminf p, >1, the
n® ¥

space ces[(a,), (P,). (4,)]is k R, NUC, and has a
drop property.

COROLLARY2.8. ForLiminf p, >1, the
n® ¥

space ces [(a,). (P,)] is k-NUC.
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COROLLARY29. For Liminf p, >1, the
n® ¥
space ces [(p,)] is k-NUC.

COROLLARY?2.10.
space Ces, is k-NUC.

Forl< p<¥, the
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